

M. K. Aouf

NEIGHBOURHOODS OF CERTAIN p-VALENTLY
 ANALYTIC FUNCTIONS DEFINED BY USING
 SALAGEAN OPERATOR

Abstract. By making use of the familiar concept of neighbourhood of analytic and p-valent functions, the author prove coefficient bounds and distortion inequalities and associated inclusion relations for the (j, θ) -neighbourhoods of a family of p-valent functions with negative coefficients and defined by using Salagean operator which is defined by means of a certain non-homogenous Cauchy–Euler differential equation.

1. Introduction

Let $T(j, p)$ denote the class of functions of the form :

$$(1.1) \quad f(z) = z^p - \sum_{k=j+p}^{\infty} a_k z^k \quad (a_k \geq 0; p, j \in N = \{1, 2, \dots\}),$$

which are analytic and p-valent in the open unit disc $U = \{z : |z| < 1\}$. A function $f(z) \in T(j, p)$, is said to be p-valently starlike of order α if it satisfies the inequality :

$$(1.2) \quad \operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha \quad (z \in U; 0 \leq \alpha < p; p \in N).$$

We denote by $T_j^*(p, \alpha)$ the class of all p-valently starlike functions of order α . Also a function $f(z) \in T(j, p)$ is said to be p-valently convex of order α if it satisfies the inequality :

$$(1.3) \quad \operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \alpha \quad (z \in U; 0 \leq \alpha < p; p \in N).$$

Key words and phrases: p-valently analytic function, Salagean operator, non-homogenous differential equation, neighbourhood.

2000 *Mathematics Subject Classification:* 30C45.

We denote by $C_j(p, \alpha)$ the class of all p -valently convex functions of order α . We note that (see for example Duren [10])

$$(1.4) \quad f(z) \in C_j(p, \alpha) \Leftrightarrow \frac{zf'(z)}{p} \in T_j^*(p, \alpha) \quad (0 \leq \alpha < p; p \in N).$$

The classes $T_j^*(p, \alpha)$ and $C_j(p, \alpha)$ are studied by Owa [15].

For a function $f(z)$ in $T(j, p)$, we have

$$D_p^0 f(z) = f(z),$$

$$D_p^1 f(z) = Df(z) = \frac{z}{p} f'(z) = z^p - \sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right) a_k z^k,$$

$$D_p^2 f(z) = D(D_p^1 f(z)) = \frac{z}{p} \left(\frac{z}{p} f'(z)\right)' = z^p - \sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^2 a_k z^k,$$

and

$$D_p^n f(z) = D(D_p^{n-1} f(z)) \quad (n \in N).$$

It is easy to see that

$$(1.5) \quad D^n f(z) = z^p - \sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^n a_k z^k \quad (n \in N_0 = N \cup \{0\}).$$

For $j = p = 1$, the differential operator D^n was introduced by Salagean [19].

Now, making use of the differential operator $D_p^n f(z)$ given by (1.5), we introduce a new class $S_n(j, p, \lambda, b, \beta)$ of the p -valently analytic functions $f(z) \in T(j, p)$ satisfying the following inequality:

$$\left| \frac{1}{b} \left(\frac{zF'_{n,p,\lambda}(z)}{F_{n,p,\lambda}(z)} - p \right) \right| < \beta$$

$$(1.6) \quad (z \in U; p, j \in N; n \in N_0; 0 \leq \lambda \leq 1; b \in C \setminus \{0\}; 0 < \beta \leq 1),$$

where

$$(1.7) \quad F_{n,p,\lambda}(z) = (1 - \lambda)D_p^n f(z) + \lambda z(D_p^n f(z))'.$$

We note that :

(i) $S_0(j, p, \lambda, p - \alpha, 1) = T_j(p, \alpha, \lambda)$ ($0 \leq \alpha < p$) (Altintas et al. [3] and [7]);

(ii) $S_0(j, 1, \lambda, 1 - \alpha, 1) = P(j, \lambda, \alpha)$ ($j \in N; 0 \leq \alpha < 1; 0 \leq \lambda \leq 1$) (Altintas [1]);

(iii) $S_n(j, 1, 0, 1 - \alpha, 1) = P(j, \alpha, n)$ ($j \in N; n \in N_0; 0 \leq \alpha < 1$) (Aouf and Srivastava [9]);

(iv) $S_0(j, p, 0, p - \alpha, 1) = T_j^*(p, \alpha)$ ($p, j \in N; 0 \leq \alpha < p$) (Owa [15] and Yamakawa [22]);

(v) $S_0(j, p, 1, p - \alpha, 1) = C_j(p, \alpha)$ ($p, j \in N; 0 \leq \alpha < p$) (Owa [15] and Yamakawa [22]).

Now, following the earlier investigation by Goodman [11], Ruscheweyh [18], and others including Altintas and Owa [5], Altintas et al. ([6] and [7]), Murgusundaramoorthy and Srivastava [12], Raina and Srivastava [17], Aouf [8], Prajapat et al. [16] and Srivastava and Orhan [20] (see also [13], [14] and [21]), we define the (j, θ) -neighbourhood of a function $f(z) \in T_p(n)$ by (see, for example, [7, p. 1668])

$$(1.8) \quad N_{j,\theta}(f; g) = \left\{ g : g \in T(j, p), g(z) = z^p - \sum_{k=j+p}^{\infty} b_k z^k \right. \\ \left. \text{and } \sum_{k=j+p}^{\infty} k|a_k - b_k| \leq \theta \right\}.$$

In particular, if

$$(1.9) \quad h(z) = z^p \quad (p \in N),$$

we immediately have

$$(1.10) \quad N_{j,\theta}(h; g) = \left\{ g : g \in T(j, p), g(z) = z^p - \sum_{k=j+1}^{\infty} b_k z^k \right. \\ \left. \text{and } \sum_{k=j+p}^{\infty} k|b_k| \leq \theta \right\}.$$

The main object of this paper is to derive several coefficient bounds, distortion inequalities and associated inclusion relations for the (j, θ) -neighbourhood of function in the class $H_n(j, p, \lambda, b, \beta; \delta)$ which consists of functions $f(z) \in T(j, p)$ satisfying the following non-homogenous Cauchy-Euler differential equation :

$$(1.11) \quad z^2 \frac{d^2 w}{dz^2} + 2(\delta + 1)z \frac{dw}{dz} + \delta(\delta + 1)w = (p + \delta)(p + \delta + 1)g(z) \\ (w = f(z) \in T(j, p); g \in S_n(j, p, \lambda, b, \beta); \delta > -p \ (\delta \in R)).$$

2. Coefficient bounds and distortion inequalities

In our present investigation of the class $S_n(j, p, \lambda, b, \beta)$ we shall require Lemmas 1 and 2 below.

LEMMA 1. *Let the function $f(z) \in T(j, p)$ be defined by (1.1). Then $f(z)$ is in the class $S_n(j, p, \lambda, b, \beta)$ if and only if*

$$(2.1) \quad \sum_{k=j+p}^{\infty} \left(\frac{k}{p} \right)^n (k + \beta|b| - p)[1 + \lambda(k - 1)]a_k \leq \beta|b|[1 + \lambda(p - 1)].$$

Proof. Let a function $f(z)$ of the form (1.1) belong to the class $S_n(j, p, \lambda, b, \beta)$. Then, in view of (1.5) and (1.6), we obtain the following inequality:

$$(2.2) \quad \operatorname{Re} \left\{ \frac{zF'_{n,p,\lambda}(z)}{F_{n,p,\lambda}(z)} - p \right\} > -\beta|b| \quad (z \in U),$$

or, equivalently,

$$(2.3) \quad \operatorname{Re} \left\{ \frac{-\sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^n (k-p)[1+\lambda(k-1)]a_k z^{k-p}}{[1+\lambda(p-1)] - \sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^n [1+\lambda(k-1)]a_k z^{k-p}} \right\} > -\beta|b|, \quad (z \in U).$$

Setting $z = r$ ($0 \leq r < 1$) in (2.3), we observe that the expression in the denominator of the left-hand side of (2.3) is positive for $r = 0$ and also for $0 < r < 1$. Thus, by letting $r \rightarrow 1^-$ through real values, (2.3) leads us to the desired assertion of Lemma 1.

Conversely, by applying the hypothesis (2.1) and letting $|z| = 1$, we find from (1.6) that

$$(2.4) \quad \begin{aligned} & \left| \frac{zF'_{n,p,\lambda}(z)}{F_{n,p,\lambda}(z)} - p \right| \\ &= \left| \frac{\sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^n (k-p)[1+\lambda(k-1)]a_k z^{k-p}}{[1+\lambda(p-1)] - \sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^n [1+\lambda(k-1)]a_k z^{k-p}} \right| \\ &\leq \frac{\sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^n (k-p)[1+\lambda(k-1)]a_k}{[1+\lambda(p-1)] - \sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^n [1+\lambda(k-1)]a_k} \\ &\leq \frac{\beta|b|\{[1+\lambda(p-1)] - \sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^n [1+\lambda(k-1)]a_k\}}{[1+\lambda(p-1)] - \sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^n [1+\lambda(k-1)]a_k} = \beta|b|. \end{aligned}$$

Hence, by the maximum modulus theorem, we have $f(z) \in S_n(j, p, \lambda, b, \beta)$, which evidently completes the proof of Lemma 1.

LEMMA 2. *Let the function $f(z)$ given by (1.1) be in the class $S_n(j, p, \lambda, b, \beta)$. Then*

$$(2.4) \quad \sum_{k=j+p}^{\infty} a_k \leq \frac{\beta|b|[1+\lambda(p-1)]}{\left(\frac{j+p}{p}\right)^n (j+\beta|b|)[1+\lambda(j+p-1)]}$$

and

$$(2.5) \quad \sum_{k=j+p}^{\infty} k a_k \leq \frac{(j+p)\beta|b|[1+\lambda(p-1)]}{\left(\frac{j+p}{p}\right)^n (j+\beta|b|)[1+\lambda(j+p-1)]} \quad (p > |b|).$$

Proof. By using Lemma 1, we find from (2.1) that

$$\begin{aligned}
 & \left(\frac{j+p}{p}\right)^n (j + \beta|b|)[1 + \lambda(j + p - 1)] \sum_{k=j+p}^{\infty} a_k \\
 & \leq \sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^n [k + \beta|b| - p][1 + \lambda(k - 1)]a_k \\
 & \leq \beta|b|[1 + \lambda(p - 1)],
 \end{aligned}$$

which immediately yields the first assertion (2.4).

For the proof of the second assertion, by appealing to (2.1), we have

$$\begin{aligned}
 & \left(\frac{j+p}{p}\right)^n [1 + \lambda(j + p - 1)] \sum_{k=j+p}^{\infty} k a_k \\
 & \leq \beta|b|[1 + \lambda(p - 1)] + \left(\frac{j+p}{p}\right)^n (p - \beta|b|)[1 + \lambda(j + p - 1)] \sum_{k=j+p}^{\infty} a_k \\
 & \leq \beta|b|[1 + \lambda(p - 1)] + (p - \beta|b|) \frac{\beta|b|[1 + \lambda(p - 1)]}{(j + \beta|b|)} \\
 & = \frac{(j+p)\beta|b|[1 + \lambda(p - 1)]}{(j + \beta|b|)}.
 \end{aligned}$$

Hence

$$\sum_{k=j+p}^{\infty} k a_k \leq \frac{(j+p)\beta|b|[1 + \lambda(p - 1)]}{\left(\frac{j+p}{p}\right)^n (j + \beta|b|)[1 + \lambda(j + p - 1)]} \quad (p > |b|),$$

which implies the second assertion (2.5). ■

Our main distortion inequalities for functions in the class $H_n(j, p, \lambda, b, \beta, \delta)$ are given by Theorem 1 below.

THEOREM 1. *Let a function $f(z) \in T(j, p)$ be in the class $H_n(j, p, \lambda, b, \beta; \delta)$. then for $z \in U$ we have*

$$(2.6) \quad |f(z)| \leq |z|^p + \frac{\beta|b|[1 + \lambda(p - 1)](p + \delta)(p + \delta + 1)}{\left(\frac{j+p}{p}\right)^n (j + \beta|b|)[1 + \lambda(j + p - 1)](j + p + \delta)} |z|^{j+p},$$

$$(2.7) \quad |f(z)| \geq |z|^p - \frac{\beta|b|[1 + \lambda(p - 1)](p + \delta)(p + \delta + 1)}{\left(\frac{j+p}{p}\right)^n (j + \beta|b|)[1 + \lambda(j + p - 1)](j + p + \delta)} |z|^{j+p},$$

$$\begin{aligned}
 (2.8) \quad |f^{(m)}(z)| & \leq \left\{ \frac{p!}{(p - m)!} + \right. \\
 & \left. + \frac{\beta|b|[1 + \lambda(p - 1)](p + \delta)(p + \delta + 1)(j + p)!}{\left(\frac{j+p}{p}\right)^n (j + \beta|b|)[1 + \lambda(j + p - 1)](j + p + \delta)(j + p - m)!} |z|^j \right\} |z|^{p-m}
 \end{aligned}$$

and

$$(2.9) \quad |f^{(m)}(z)| \geq \left\{ \frac{p!}{(p-m)!} - \frac{\beta|b|[1+\lambda(p-1)](p+\delta)(p+\delta+1)(j+p)!}{(\frac{j+p}{p})^n(j+\beta|b|)[1+\lambda(j+p-1)](j+p+\delta)(j+p-m)!} |z|^j \right\} |z|^{p-m}.$$

Proof. Suppose that $f(z) \in T(j, p)$ is given by (1.1). Also let the function $g(z) \in S_n(j, p, \lambda, b, \beta)$, occurring in the non-homogenous Cauchy-Euler differential equation (1.11), be given as in the definitions (1.8) and (1.10) with

$$b_k \geq 0 \quad (k = j+p, j+p+1, \dots).$$

Then we easily see from (1.11) that

$$(2.10) \quad a_k = \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} b_k \quad (k = j+p, j+p+1, \dots),$$

so that

$$(2.11) \quad f(z) = z^p - \sum_{k=j+p}^{\infty} a_k z^k = z^p - \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} b_k z^k,$$

$$(2.12) \quad |f(z)| \leq |z|^p + |z|^{j+p} \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} b_k$$

and

$$(2.13) \quad |f(z)| \geq |z|^p - |z|^{j+p} \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} b_k.$$

Since $g(z) \in S_n(j, p, \lambda, b, \beta)$, the first assertion (2.4) of Lemma 2 yields the following inequality:

$$(2.14) \quad b_k \leq \frac{\beta|b|[1+\lambda(p-1)]}{(\frac{j+p}{p})^n(j+\beta|b|)[1+\lambda(j+p-1)]} \\ (k = j+p, j+p+1, j+p+2, \dots).$$

This, in conjunction with (2.12) gives

$$(2.15) \quad |f(z)| \leq |z|^p + \frac{\beta|b|[1+\lambda(p-1)](p+\delta)(p+\delta+1)}{(\frac{j+p}{p})^n(j+\beta|b|)[1+\lambda(j+p-1)]} |z|^{j+p} \\ \times \sum_{k=j+p}^{\infty} \frac{1}{(k+\delta)(k+\delta+1)} \quad (z \in U).$$

Observe that also the following identity holds:

$$(2.16) \quad \sum_{k=j+p}^{\infty} \frac{1}{(k+\delta)(k+\delta+1)} = \sum_{k=j+p}^{\infty} \left(\frac{1}{(k+\delta)} - \frac{1}{(k+\delta+1)} \right) \\ = \frac{1}{j+p+\delta} \quad (\delta \in R \setminus \{-j-p, -j-p-1, -j-p-2, \dots\}).$$

Now the assertion (2.6) of Theorem 1 follows at once from (2.15) together with (2.16). The second assertion (2.7) of Theorem 1 can be proven by, similarly applying (2.13), (2.14) and (2.16).

REMARK 1. (i) Putting $n = 0$, $\beta = 1$ and $b = p - \alpha$, $0 \leq \alpha < p$, in Theorem 1, we obtain the result obtained by Altintas et al. [7, Theorem 1];

(ii) Putting $n = 0$, $\beta = 1$ and $b = p - \alpha$, $0 \leq \alpha < p$, in Theorem 1, we obtain the result obtained by Altintas [2, Theorem 1 with $q = 0$];

(iii) Putting $n = 0$, in Theorem 1, we obtain the result obtained by Altintas et al. [4, Theorem 1 with $q = 0$].

3. Neighborhoods for the classes $S_n(j, p, \lambda, b, \beta)$ and $H_n(j, p, \lambda, b, \beta; \delta)$

In this section, we determine inclusion relations for the classes $S_n(j, p, \lambda, b, \beta)$ and $H_n(j, p, \lambda, b, \beta; \delta)$ involving the (j, δ) -neighbourhoods defined by (1.8) and (1.10).

THEOREM 2. *If $f(z) \in T(j, p)$ is in the class $S_n(j, p, \lambda, b, \beta)$, then*

$$(3.1) \quad S_n(j, p, \lambda, b, \beta) \subset N_{j, \theta}(h; f),$$

where $h(z)$ is given by (1.9) and

$$(3.2) \quad \theta = \frac{(j+p)\beta|b|[1 + \lambda(p-1)]}{\left(\frac{j+p}{p}\right)^n(j + \beta|b|)[1 + \lambda(j+p-1)]}.$$

P r o o f. Assertion (3.1) follows easily from the definition of $N_{j, \theta}(h; f)$, which is given by (1.10) with $g(z)$ replaced by $f(z)$, and the second assertion (2.5) of Lemma 2.

THEOREM 3. *Let the function $f(z) \in T(j, p)$ be in the class $H_n(j, p, \lambda, b, \beta; \delta)$. Then*

$$(3.3) \quad H_n(j, p, \lambda, b, \beta; \delta) \subset N_{j, \theta}(g; f),$$

where $g(z)$ is given by (1.11) and

$$(3.4) \quad \theta = \frac{(j+p)\beta|b|[1 + \lambda(p-1)][j + (p+\delta)(p+\delta+2)]}{\left(\frac{j+p}{p}\right)^n(j + \beta|b|)[1 + \lambda(j+p-1)](j+p+\delta)} \quad (p > |b|).$$

Proof. Suppose that $f(z) \in H_n(j, p, \lambda, b, \beta; \delta)$. Then we obtain

$$(3.6) \quad \sum_{k=j+p}^{\infty} k|b_k - a_k| \leq \sum_{k=j+p}^{\infty} kb_k + \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} kb_k.$$

Next, since $g(z) \in S_n(j, p, \lambda, b, \beta)$, the second assertion (2.5) of Lemma 2 yields

$$(3.7) \quad kb_k \leq \frac{(j+p)\beta|b|[1+\lambda(p-1)]}{(\frac{j+p}{p})^n(j+\beta|b|)[1+\lambda(j+p-1)]} \\ (k = j+p; j+p+1; j+p+2; \dots).$$

Finally, by making use of (2.5) as well as (3.7) on the right - hand side of (3.6), we find that

$$(3.8) \quad \sum_{k=j+p}^{\infty} k|b_k - a_k| \leq \frac{(j+p)\beta|b|[1+\lambda(p-1)]}{(\frac{j+p}{p})^n(j+\beta|b|)[1+\lambda(j+p-1)]} \\ \times \left(1 + \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} \right),$$

which, by virtue of the identity (2.16), immediately yields that

$$(3.9) \quad \sum_{k=j+p}^{\infty} k|b_k - a_k| \leq \frac{(j+p)\beta|b|[1+\lambda(p-1)]}{(\frac{j+p}{p})^n(j+\beta|b|)[1+\lambda(j+p-1)]} \\ \times \left(\frac{j+(p+\delta)(p+\delta+2)}{j+p+\delta} \right) = \theta \quad (p > |b|).$$

Thus, by definition (1.8) with $g(z)$ interchanged by $f(z)$, $f(z) \in N_{j,\theta}(g; f)$. This evidently completes the proof of Theorem 3.

REMARK 2. (i) Putting $n = 0$, $\beta = 1$ and $b = p - \alpha$, $0 \leq \alpha < p$, in Theorem 3, we obtain the result obtained by Altintas et al. [7, Theorem 3];

(ii) Putting $n = 0$, $\beta = 1$ and $b = p - \alpha$, $0 \leq \alpha < p$, in Theorem 3, we obtain the result obtained by Altintas [2, Theorem 3 with $q = 0$];

(iii) Putting $n = 0$, in Theorem 3, we obtain the result obtained by Altintas et al. [4, Theorem 3 with $q = 0$].

References

- [1] O. Altintas, *On a subclass of certain starlike functions with negative coefficients*, Math. Japon. 36 (1991), 489–495.
- [2] O. Altintas, *Neighborhoods of certain p -valently analytic functions with negative coefficients*, Appl. Math. Comput. 187 (2007), no. 1, 47–53.

- [3] O. Altintas, H. Irmak and H. M. Srivastava, *Fractional calculus and certain starlike functions with negative coefficients*, Comput. Math. Appl. 30 (1995), no. 2, 9–15.
- [4] O. Altintas, H. Irmak and H. M. Srivastava, *Neighborhoods for certain subclasses of multivalently analytic functions defined by using a differential operator*, Comput. Math. Appl. (2007) (To appear).
- [5] O. Altintas and S. Owa, *Neighborhoods of certain analytic functions with negative coefficients*, Internat. J. Math. Math. Sci. 19 (1996), 797–800.
- [6] O. Altintas, O. Ozkan and H. M. Srivastava, *Neighborhoods of a class of analytic functions with negative coefficients*, Appl. Math. Letters 13 (2000), no. 3, 63–67.
- [7] O. Altintas, O. Ozkan and H. M. Srivastava, *Neighborhoods of a certain family of multivalent functions with negative coefficients*, Comput. Math. Appl. 47 (2004), 1667–1672.
- [8] M. K. Aouf, *Neighborhoods of certain classes of analytic functions with negative coefficients*, Internat. J. Math. Math. Sci. Vol. 2006, Article ID 38258, 1–6.
- [9] M. K. Aouf and H. M. Srivastava, *Some families of starlike functions with negative coefficients*, J. Math. Anal. Appl. 203 (1996), 762–790.
- [10] P. L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften 259, Springer, New York, Berlin, Heidelberg, Tokoyo, 1983.
- [11] A. W. Goodman, *Univalent functions and nonanalytic curves*, Proc. Amer. Math. Soc. 8 (1957), 598–601.
- [12] G. Murugusundaramoorthy and H. M. Srivastava, *Neighborhoods of certain classes of analytic functions of complex order*, J. Inequal. Pure Appl. Math. 5 (2) (2004), Article 24, 1–8 (electronic).
- [13] H. Orhan and E. Kadioglu, *Neighborhoods of a class of analytic functions with negative coefficients*, Tamsui Oxford J. Math. Sci. 20 (2004), 135–142.
- [14] H. Orhan and M. Kamali, *Neighborhoods of a class of analytic functions with negative coefficients*, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 21 (2005), no. 1, 55–61 (electronic).
- [15] S. Owa, *The quasi-Hadamard products of certain analytic functions*, in: H. M. Srivastava and S. Owa (Eds.) *Current Topics in Analytic Function Theory*, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992, 234–251.
- [16] J. K. Prajapat, R. K. Raina and H. M. Srivastava, *Inclusion and neighbourhood properties for certain classes of multivalently analytic functions associated with the convolution structure*, J. Inequal. Pure Appl. Math. 8 (1) (2007), Article 7, 1–8 (electronic).
- [17] R. K. Raina and H. M. Srivastava, *Inclusion and neighborhood properties of some analytic and multivalent functions*, J. Inequal. Pure Appl. Math. 7 (1) (2006), Article 5, 1–6 (electronic).
- [18] St. Ruscheweyh, *Neighborhoods of univalent functions*, Proc. Amer., Math. Soc. 8 (1981), 521–527.
- [19] G. S. Salagean, *Subclasses of univalent functions*, Lecture Notes in Math. (Springer) 1013 (1983), 362–372.
- [20] H. M. Srivastava and H. Orhan, *Coefficient inequalities and inclusion some families of analytic and multivalent functions*, Appl. Math. Letters 20 (2007), 686–691.
- [21] H. M. Srivastava and S. Owa (Eds.), *Current Topics in Analytic Function Theory*, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

[22] R. Yamakawa, *Certain subclasses of p -valently starlike functions with negative coefficients*, in: H. M. Srivastava and S. Owa (Eds.) Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992, 393–402.

FACULTY OF SCIENCE
MANSOURA UNIVERSITY
MANSOURA 35516, EGYPT
e-mail: mkaouf127@yahoo.com

Received October 10, 2007.