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NEIGHBOURHOODS OF CERTAIN p-VALENTLY
ANALYTIC FUNCTIONS DEFINED BY USING
SALAGEAN OPERATOR

Abstract. By making use of the familiar concept of neighbourhood of analytic and
p-valent functions, the author prove coeflicient bounds and distortion inequalities and
associated inclusion relations for the (j, 8)-neighbourhoods of a family of p-valent functions
with negative coeflicients and defined by using Salagean operator which is defined by means
of a certain non-homogenous Cauchy—Euler differential equation.

1. Introduction
Let T'(j,p) denote the class of functions of the form :
[e o]
(1.1) f(z)=2P — Z arz® (x> 0;p,5€ N={1,2,....}),
k=j+p
which are analytic and p-valent in the open unit disc U = {z : |z| < 1}.
A function f(z) € T'(j,p), is said to be p-valently starlike of order a if it
satisfies the inequality :

(1.2) Re{zj:;g)}>a (zeU;0<a<p;p€N).

We denote by T} (p, @) the class of all p-valently starlike functions of order «.
Also a function f(z) € T'(j,p) is said to be p-valently convex of order « if it
satisfies the inequality :

2f (2)
f(z)

(1.3) Re{1+ }>a (zeU;0<a<p;,p€eN).
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We denote by C;(p, ) the class of all p-valently convex functions of order .
We note that ( see for example Duren [10] )

2f (2)
D

(1.4) f(2) € Ci(p,0) &

The classes T} (p, @) and Cj(p, @) are studied by Owa [15].
For a function f(z) in T'(j,p), we have

DRf(2) = (2),
D =Df& =f == Y (ast

k=j+p p

€T;(pa) (0<a<ppeN).

, .
D2f(z) = D(D3 () = 2( 2 (2)) =27 - Y e,
: e =3(@) =2- 3 ()«
and
Drf(z) = D(DPYf(2)) (ne N).

It is easy to see that

oo n

(1.5) D"f(z) = 2P — Z (E) arz®  (n € Ny = NuU{0}).

k=j+p p
For j = p = 1, the differential operator D™ was introduced by Salagean [19].

Now, making use of the differential operator Dy f(z) given by (1.5), we

introduce a new class S,(j,p, A, b, 3) of the p-valently analytic functions
f(2) € T(j, p) satisfying the following inequality:

1(zF, 7; A(2)

W7 )| <8

n,p,A

(1.6) (zeU;p,jeEN;neN;;0<A<1;beC\{0};0<B<1),

where
(L.7) Frpa(z) = (1= NDRf(2) + A2(D2f(2)) .
We note that :

(i) So(4,ps Ap— ,1) = Tj(p, ¢, A) (0 < a < p) (Altintas et al. [3] and
[7]);

(i) So(j,1, A1~ a,1) = P(j,A\a) (€ N;0<a<L0< AL
(Altintas [1]);

(iii) Sp(4,1,0,1 — a,1) = P(j,a,n) (j € N;n € Np; 0 < a < 1) (Aouf
and Srivastava [9]);

(iv) So(4,p,0,p — ,1) = T} (p,@) (p,j € N; 0 < & < p) (Owa [15] and
Yamakawa [22]);
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(v) So(j,p,1,p — a,1) = Cj(p,a) (p,j € N; 0 < a < p) (Owa [15] and
Yamakawa [22]).

Now, following the earlier investigation by Goodman [11], Ruscheweyh
[18], and others including Altintas and Owa [5], Altintas et al. ([6] and [7]),
Murgusundaramoorthy and Srivastava [12], Raina and Sirvastava [17], Aouf
[8], Prajapat et al. [16] and Srivastava and Orhan [20] ( see also [13], [14]
and [21]), we define the (j, d)-neighbourhood of a function f(z) € Tp(n) by
(see, for example, [7, p. 1668])

(18)  Nyo(fi0)={9:9€TG,p), g Z by
k=j+p
o0
and 3 k|ak—bk|§9}.
k=j+p
In particular, if
(1.9) hz) =2 (peN),
we immediately have
(110)  Njo(hig) = {g:9 € T(,p),g Z by
k=j+1
and Z E|bk| 59}.
k=j+p

The main object of this paper is to derive several coefficient bounds, dis-
tortion inequalities and associated inclusion relations for the (7, 6)-neigh-
bourhood of function in the class Hy,(4,p, A, b, 8;6) which consists of func-
tions f(z) € T'(j,p) satisfying the following non-homogenous Cauchy-Euler
differential equation :

200

(1.11) 22((11 - +2(5+1)z‘2—+5(6+1)w_ (p+8)(p+d+1)g(2)

(w = f(z) € T(4,p); g € Sul(4,p, A, b,8);6 > —p (d € R)).

2. Coefficient bounds and distortion inequalities
In our present investigation of the class S, (4, p, A, b, 3) we shall require
Lemmas 1 and 2 below.

LEMMA 1. Let the function f(z) € T(j,p) be defined by (1.1). Then f(z) is
in the class Sp(j,p, A\, b, B) if and only if

ey 3 (g)nwwwi—p)[lﬂ(k—l)]aksmbu1+A<p—1>1.

k=j+p
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Proof. Letafunction f(z) of the form (1.1) belong to the class S,(j, p, A, b, 5).
Then, in view of (1.5) and (1.6), we obtain the following inequality:

zF,
(2.2) Re{%}\((z)) p} > —p0b] (z€U),

or, equivalently,

- k—p)[1+ Ak — 1)]agzFP
(23) Re { — Y jap(3) (k= p)[1 + Ak ~ 1)) _ }>—ﬂlbl,
[+ Mp = 1)] = 3321, + Ak — D)agzb—?
(z € U).
Setting z = 7 (0 < 7 < 1) in (2.3), we observe that the expression in the
denominator of the left-hand side of (2.3) is positive for r = 0 and also for

0 < r < 1. Thus, by letting r — 1~ through real values, (2.3) leads us to
the desired assertion of Lemma 1.

Conversely, by applying the hypothesis (2.1) and letting |2| = 1, we find
from (1.6) that

!

Fn,p,/\(z)
e [Fe -
I?ij+p( ) (k= D)1+ Ak — 1)]a2*?

‘[1+)\ )] — zk_MJ( )1+ Ak — 1)]agzk—P
Zk—]-}-p( ) (k= p)[1 + Ak — 1)]ay
T - D] - E i (5) 1+ A - Diax
< B+ A — D] = 3521 (5)"[L 4+ Ak — Dla}
L+~ 1] = 25220, (5) [+ Ak — D]a

Hence, by the maximum modulus theorem, we have f(z) € S,(j,p, A, b, 3),
which evidently completes the proof of Lemma 1.

= plb].

LEMMA 2. Let the function f(z) given by (1.1) be in the class Sn(j,p, A, b, B).
Then

= BIbl[1 + Alp — 1))
(2.4) k;p kS (Z2)n (5 + Bl + A +p — 1)

and

o GHn)BHILAE1) ,
P DTV RS e rEr ey B
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Proof. By using Lemma 1, we find from (2.1) that

(ZE2) G+ oo+ aG+p-11 Y- o

k=j+p
o< k n
< ) [k + Blbl - p)[L + Ak — Dla
2 () i :

which immediately yields the first assertion (2.4).
For the proof of the second assertion, by appealing to (2.1), we have

(J;p> 14+ X[ +p—1) Z kay

k=j+p
SMHH+A(—1H+<]+p)(p_ﬁWHL+Mj+p_D]§:(%
! k=j+p
< ﬂlb”l + /\(p - 1)] + (p _ ﬂlbl)ﬁlbl[(t—:_z(lil)_ 1)]
_ G +p)BIbl[L + Ap - 1))
(j + BIbl) -

Hence
2 o i TSI (p > 10)),

k> 775 . .
S S @R DL+ AG +p— 1)
which implies the second assertion (2.5). =

Our main distortion inequalities for functions in the class H,(j, p, A, b, 3, §)
are given by Theorem 1 below.

THEOREM 1. Let a function f(2)€T(j,p) be in the class Hy(j,p, A\, b, 3; ).

then for z € U we have

Aplll + Alp—D](p+8)(p+6+1)

2.6 < |z|P +

B0 W= W Gy b+ AG +p - DIG 490
Bl +Alp—Dilp+d)(p+d+1)

(ZB)»(j + BN+ AG +p— DG +p+6)
P

(28) |ﬂmuns{@

|z|j+p

z Jj+p

27 |f2)] =z -

b

—m)!
S (RYUES VLAY, 29 8 VS e
(BB + BN+ AG +p— V]G +p+06)([F +p—m)!
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and
(m)(, o
29 eIz { Lt
OB+ A=+ + 5+ 1) +p)! H]}'zlp m.
(ZR)n (5 + BN+ MG +p - DG +p+0)(j +p —m)!

Proof. Suppose that f(z) € T(j,p) is given by (1.1). Also let the func-
tion g(z) € Sn(j,p, A, b, B), occuring in the non-homogenous Cauchy-Euler
differential equation (1.11), be given as in the definitions (1.8) and (1.10)
with

bpy>0 (k=j+pj+p+1,...... ).
Then we easily see from (1.11) that
_(p+d)p+d+1)

(2.10) = (k+5)(k+5+1)bk (k=j+pji+tp+1,...... ),
so that
(2.11)  f(z) = 2" - Z aF == 3 (p+o)pto+l),

o S ko) (k+5+1)

o orsir s 5 BN,

and

O LA = =18

Since g(2) € Sn(j,p, A, b, B), the first assertion (2.4) of Lemma 2 yields the
following inequality:

1+A(p—-1
(ZB)(7 + BIbDA + A +p—1)]
(k=j+pj+p+1,j+p+2,...).
This, in conjunction with (2.12) gives

Il + Ap—DIp+0)p+o+1), iy
(SR + BIBD[L + A +p — 1)]

(2.15)  |f(2)] < 2P +

1
xk;p Froiorn €U
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Observe that also the following identity holds:

= 1 - 1 1
(2.16) kg;p k+ohTo+1) ‘k;ﬂ,((kw) “HrerD)
1

:j+p+(5 (‘SER\{—j—P,—j—P—1,—j—p—2,...}).

Now the assertion (2.6) of Theorem 1 follows at once from (2.15) together
with (2.16). The second assertion (2.7) of Theorem 1 can be proven by,
similarly applying (2.13), (2.14) and (2.16).

REMARK 1. (i) Puttingn =0, f =1landb=p—-0a,0 < a < p,in
Theorem 1, we obtain the result obtained by Altintas et al. [7, Theorem 1J;
(ii) Puttingn =0, 8=1and b=p— o, 0 < a < p, in Theorem 1, we
obtain the result obtained by Altintas [2, Theorem 1 with g = 0];
(iii) Putting n = 0, in Theorem 1, we obtain the result obtained by
Altintas et al. [4, Theorem 1 with ¢ = 0].

3. Neighborhoods for the classes S,(j,p, A, b, 3) and H,(j,p, A, b, 5;6)

In this section, we determine inclusion relations for the classes
Sn(4,p, A\, b, B) and H,(j,p, A, b, B; §) involving the (4, §)-neighbourhoods de-
fined by (1.8) and (1.10).

THEOREM 2. If f(2) € T(j,p) is in the class Sn(j,p, A, b, B), then
(3.1) Sn(d, 0, A, b,8) C Njo(h; f),
where h(z) is given by (1.9) and

(4 +p)Bb[[1 + Alp = 1)]

(3.2) 6= .

(LB + BIBDIL +A( +p — 1)]

Proof. Assertion (3.1) follows easily from the definition of N;¢(h; f), which
is given by (1.10) with g(z) replaced by f(z), and the second assertion (2.5)
of Lemma, 2.

THEOREM 3. Let the function f(z) €T (j,p) be in the class Hn(j,p, A, b, 3;9).
Then

(3.3) Hy(j,p, A, b,8;6) C Njo(g; f),
where g(z) is given by (1.11) and

G+p)BPIA+ A - DI+ @+ +6+2)]
(HB)n (G + BN+ AG +p - 1)) +p+9)

(34) 6= (p > [b]).
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Proof. Suppose that f(z) € Hp(j4,p, A, b, 3;6). Then we obtain

(p+0)p+d+1)
. - < .
(3.6) Z klby — ax| Z kby + Z i 5) k+6+1)kbk
k=j+p k=j+p k=j+p

Next, since g(z) € Sn(4,p, A, b, 3), the second assertion (2.5) of Lemma 2
yields

(J +p)BIbI[1+ A(p — 1)]
(3.7) kb < )G+ B)EAG+p - D)
(k=j+pj+p+1Lj+p+2;....).

Finally, by making use of (2.5) as well as (3.7) on the right - hand side of
(3.6), we find that

0 o
+p)BJbj[1+ A(p—1
(38) Y klbk—axl < m(J p)AIbI[L+ A(p — L)
(5B)"(G + B[ + A +p —1)]
(p+d)(p+d+1) )
1+ Z
( ok 0)(k+d+1)
which, by virture of the identity (2.16), immediately yields that

| + b[l+A(p—1
el = @)+ A1+ NG +p— 1)
i+ (p+5)(p+5+2)>
=6 bl).
o (LD (v > 10)
Thus, by definition (1.8) with g(z) interchanged by f(z), f(2) € N;e(g; f).
This evidently completes the proof of Theorem 3.

k=j+p

REMARK 2. (i) Puttingn =0,8=1and b=p—«a, 0 < a < p, in Theorem
3, we obtain the result obtained by Altintas et al. [7, Theorem 3];

(ii) Puttingn =0, =1and b=p— a, 0 < a < p, in Theorem 3, we
obtain the result obtained by Altintas [2, Theorem 3 with ¢ = 0J;

(iii) Putting n = 0, in Theorem 3, we obtain the result obtained by
Altintas et al. [4, Theorem 3 with ¢ = 0].
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