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DISTORTION THEOREMS IN THE CLASS K, (D)

Abstract. This article presents the analysis of properties of functions belonging to
the class K, (D) earlier introduced by the author. This is a class of functions analytical
in the domain D, for which the n-th divided difference [F; zo, ..., 2»] # 0 for any pairwise
different points zo, . .., 2, € D. For n = 1 the class K; (D) consisting of functions univalent
in the domain D is obtained.

The subclass K,.(E), formed by functions F(z) = 2" 4+ an412""! + - - analytical in a
unit circle E is separated from class K, (D) and its properties are considered.

The author touches classical and at the same time urgent questions, arising at the
study of analytical functions, belonging to some class.

Introduction
Define the n-th order divided difference (see [1])

RIS GL.
27rir(§—zo)---(f—zn)’

where I' is a closed rectifiable Jordan curve in domain D enclosing all the
points 2g,...,2, € D.

[F;20,...,2n) =

DEFINITION 1. Denote by K, (D), n > 1, the class of analytic functions F' in
D, such that [F;zg,...,2,] # 0 for pairwise different points zg,...,2, € D
(see [2]).

Note that the class of univalent functions in D can be defined alter-
natively as the class of functions F', such that the first divided difference
[F'; 20, 21] # 0 for any different zg, 21 € D (see [3]).

Each function in K, (D), n > 1, (class defined by the author) is not more
than n-valent function in D (see [2]). The theory of this class covers a wide
range of problems frequently encountered at the boundary between different
branches of mathematics, e.g. the theory of interpolation and approximation
of functions, the theory of univalent and multivalent functions, and the
theory of Chebychev systems, etc.
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The present work continues the investigation of the properties of the
functions of the class Kn(D), n > 1. We will estimate the modules of the
functions and their derivatives and formulate the compactness tests for some
families of functions in the class K, (D), n > 1.

1. Let us present a number of lemmas, the proofs of which can be found
in [2].

LEMMA 1. If F € K, (D), then F™(2) #0 in D.

LEMMA 2. If F € K,(D), then aF(z) + P(z) € Kp(D) for any a # 0 and
for any polynomial P of degree not higher than n — 1.

LEMMA 3. Let the linear-fractional function £ = (az+b)(cz+d)™1, ad — b
# 0, maps domain D onto some domain Dy. If F € K,(Dy), then

(cz + d)" 1 F[(az + b)/(cz + d)] € Kn(D).

If D is the unit disk which we denote by E, then, according to Lemmas 1
and 2 in the class K, (E), one can separate the class K, (E) of n-normalized
in E functions of form

o0
F(z)=2"+ Z a2
k=2

Let &, 5, be a function analytic, n-normalized in E, and satisfying the
condition

(1= 22805 (2) — (n+ 1)(8n + )8 (2) =0, Vz€E,

where .
0, = sup F("H‘l) 0) .
" pekap (Mt 1)!| ©)
Note that
W 00 () = (1498 6o D(1 - 2) " 6,
(2) (1- 7-2)n+1¢£:2n (r)digl"‘lén(r) =1, Vr=|z<1.

THEOREM 1. If F € K,(E), then

n (n)
@  |m@ -l n s 1T

' Viz| =r < 1.
n!

Proof. Let

F(2)=2"+) apnz"t* 1 €Ky (B)
k—2
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and A be the set of all linear-fractional functions of form
w=w(z)=(2+¢) (1+C_z)_1, ( €E.
According to Lemma 3, for any fixed ¢ € E the function

U(5¢) = (1+8)" T F(z+¢)/ (1+82) = Y bm () 2™

m=0
is in K,(E). According to Lemma 1, we have b,(¢) # 0, ¥¢ € E. By
subtracting the polynomial
bo (C)+b1(Q) 2+ +ba1(¢) 2"
from ¥(z; ¢) and dividing the result by b, (¢), we obtain the function F(z; (),

which, according to Lemma 2, belongs to the class K, (E). Let us expand
this function in to the power series of z:

F(z:0)=2"+Y agn(¢) 2",
k=2

Observe that F(z;0) = F(z) and thus, axn(0) = axn, k = 2,3,.... Fur-
thermore,

_ F(n+1)(()
4 WO = —C4+ (1 —j¢)—
Let us substitute z for {. Calculations show that
_r(1-r%) 8 o nt1 F(M(2)
(5) azn(z) = (n 1)z or n(l —r°)2 -
Since |ag n(2)] < 8,, Vz € E, then in view of (4), (5), we get
(n) r T
ovntt F ()N |f (n41)z n+1
In ((1 -Tr ) 2 T)l = (S)r—(l—_—ﬂ—)az,n(z) dr < (S)l—;?(sndr
_n + 15n In 147
2 1—7r
for any |z| = r < 1. Thus the inequality (3) is proved.
THEOREM 2. If F € K,(E), then
(6) oM (r) < ‘ r® (z)| <o) (r), Vizl=r<1

and
n+1 1+r

(n) < —
(7) larg &'\ (z)| < 5 6nln1_r, V|z| =r < 1.
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Proof. From the formula (1) and inequality (3), we get

~In <(1 - 7-2)%1%';(7‘)) <In ((1 - ﬂ)ﬁFM)

n! n!
wn B0 (1)
<In ((1 —r?)72 —n"'——>

On the other hand taking into account (2), we can write:

In ((1 - rz)"—f,:*—lw) <l <(1 2y M)

n! n!
w1 2173 (2)
<In ((1 —r?)"2 ——’—n"'—>

Hence, the inequality (6) follows. In a similar way, we get (7).
THEOREM 3. If F € K,(E), then
IF® ()| <o) (1), Vid=r<1, k=0,1,...,n.
Proof. Theorem 2 for kK = n yields the inequality
|F(") (z)‘ <o (r), Vlzd=r<L

Integrating this inequality along the radius of the circle E from zero to the
point zg = rge®° # 0, we obtain

To To , To
|F(n—l) (ZO)‘ _ ‘ S F) (2) dz‘ < S \F(n) (rewo) dr < S 455:’1% (r) dr
0 0 0
=5 (ro).

By virtue of the arbitrariness of the choice of zy, we arrive at the inequality
[FOD () <0V (), Viel=r<1.

The continuation of the process convince us in of the validity of Theorem 3.
Note that for any function F' € K, (E) we have also proven the inequality

|F (2)] < s, (1), V]zl=r<1.

2. Let us formulate and prove the following two general distortion
theorems, analogous to those established by Koebe (see [4]) for univalent
functions.
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THEOREM 4. For a given domain D and a compact H C D, there ezists a
positive number M such that the double inequality

®) Ll

Proof. Without losing generality we can assume that H is a bounded,
closed domain in D. In fact, any compact can be included in some bounded,
closed domain H’, H' € D, so if inequality (8) is satisfied for H’, it is also
satisfied with the same M for any compact in H'.

So, let H be a bounded, closed domain in D and h be the distance from
this domain to the boundary of the domain D. Let us cover the (z)-plane
by a square grid with the grid size of h/4, h > 0. The closed squares of
the grid, which include the points from the set H form a closed domain Dy,
such that H C Dy and Dy C D.

Let z; and z2 be two arbitrary points in the set H. Then, there exists a
sequence of points {1 = 21,(2,...,{p = 22 in D, such that any two successive
points in this sequence are located in neighbouring squares and the number p
of such points in this sequence does not exceed the number N of all squares,
comprising the closed set Dy. The distance between points (x and (g1,
1 <k <p—1, does not exceed h/v/2. Note that h/+/2 < 3h/4. The circles
|z—(k| < h,k=1,...,parelocated completely inside domain D. Therefore,
the function

(F h¢) —
W) = ™ ( (il:l;(nfz(k) =g Z (G,

where P(({) is a polynomial of power not exceedlng n — 1, will belong to
the class K,(E) for k = 1,...,p — 1. Differentiating the function ¥x(¢)n
times with respect to ¢ and taking into account Theorem 1, we obtain the
inequalities

F™ (¢ + hQ) (n)
TFw gy | ST VK=r<lk=l..p-L

In particular, if h¢{ = (x41 — (&, then 4|¢| < 3 and the inequalities (9)

become | w |
F™ (Cry1) <3>
Bk g5 (S) =g, k=1,....p— 1.
Fo ()] ~ m\a) "9 p

Multiplying these inequalities, we get the inequality

|F(n)(22)| —1 N-1
L \PE < gP < =M.
FO(z) — 7 =9

(10)



548 E. G. Kir’yatskii

The positive number M is independent of the choice of the function F(z)
in the class K,,(D), as well as of the choice of points 21, z2 in the set H.
By interchanging the points 23,22 in (10) we obtain the second inequality
from (8).

THEOREM 5. For a given domain D and a compact H C D, there exist
constants bg = 1, by, ...,b, such that there holds the inequality

(11) |F(22)| < ) bl F™(21)],  VF(2) € Kn(D), V1,22 € H.
m=0

Proof. As in the proof of Theorem 4, we suppose that H is a bounded,
closed domain inside D. Let us use the same constructions as in the proof
of Theorem 4. First, note that

¢

(12)  FO (G + hC) = R FU (G + h)dC + F™V(G),
" m=1,...,n; k=1,...,p
Furthermore (9) yields
(13) [FO (G + h¢) < 803 (MIF™ ()], k=1,...,p.

Now, we integrate any of the inequalities (13) along the radius connecting
the origin to the point ¢. Assuming |{| = r < 1 and using (12) for m = n,
we obtain

n— (n—1) n—
(14)  [F® (G + k)| < ks, (NIF™(Ge)| + [FP DG, kE=1,...,p.
Assuming m = n — 1 in (12) and using (14), we have

(n—2)

[FP=D (G + hO)| < B2, (NIF™ ()] + hr| FOD(G)] + [FO2(G),
k=1,...,p
Continuing this reasoning, we establish validity of the following inequal-
ities:
-1

PG,

kzl,...,p, =1,...,n

PG + h)| < B8 ™ (7)™ (G) |+Z

Here, writing h( = (x41 — (& and taking into account that 4|¢| < 3, we
obtaint inequalities
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(15)  |[F™™) Gy
m— l
< W™ (3/4) F™ (Gi) |+Z h 3/ 4 IF(" D),

k=1,..., —1, m=1,...,n

For m = n, we have

n—l
18) 1P (Gern) < W0, 3OO + D O R0y,
=1

k=1,...,p—1.

The value |F(®)(¢;)| in (16) can be estimated by using the value
|F(*)(Cx—1)|, by replacing k by k — 1 in (15). Similarly, one can estimate
the values |F(®)((x_1)| by using the module |F()(¢x_3)|, and so on. As the
result, we arrive at the inequalities

n
IF (Gen)l S IF ()] + 3 b [F™ )|, k=1,00,p -1,
m=1
where by, ..., by, are constants. By substituting k¥ = p—1, we will get ¢, = 22
thus proving the inequality (11).
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