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DISTORTION THEOREMS IN THE CLASS Kn(D) 

Abs t rac t . This article presents the analysis of properties of functions belonging to 
the class Kn(D) earlier introduced by the author. This is a class of functions analytical 
in the domain D, for which the n-th divided difference [F; 20 , . . . , zn] / 0 for any pairwise 
different points zo, • • • ,zn G D. For n = 1 the class Ki (D) consisting of functions univalent 
in the domain D is obtained. 

The subclass K n (E) , formed by functions F(z) = zn + an+izn+1 + • • • analytical in a 
unit circle E is separated from class K n ( D ) and its properties are considered. 

The author touches classical and at the same time urgent questions, arising at the 
study of analytical functions, belonging to some class. 

Introduction 
Define the n-th order divided difference (see [1]) 

r p . , i I f m x 

where r is a closed rectifiable Jordan curve in domain D enclosing all the 
points zo,... ,zn G D. 
DEFINITION 1. Denote by Kn(D), n > 1, the class of analytic functions F in 
D, such that [F; Zo,..., zn] 0 for pairwise different points zo,..., zn G D 
(see [2]). 

Note that the class of univalent functions in D can be defined alter-
natively as the class of functions F, such that the first divided difference 
[F; zo, zi] ^ 0 for any different ZQ, Z\ G D (see [3]). 

Each function in K n ( D ) , n > 1, (class defined by the author) is not more 
than n-valent function in D (see [2]). The theory of this class covers a wide 
range of problems frequently encountered at the boundary between different 
branches of mathematics, e.g. the theory of interpolation and approximation 
of functions, the theory of univalent and multivalent functions, and the 
theory of Chebychev systems, etc. 
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The present work continues the investigation of the properties of the 
functions of the class Kn(D), n > 1. We will estimate the modules of the 
functions and their derivatives and formulate the compactness tests for some 
families of functions in the class K n (D) , n > 1. 

1. Let us present a number of lemmas, the proofs of which can be found 
in [2]. 

LEMMA 1. If F e Kn(D), then F^(z) ^ 0 in D. 

LEMMA 2. If F € K„(£>), then aF{z) + P(^) G K n (D) for any a / 0 and 
for any polynomial P of degree not higher than n — 1. 

LEMMA 3. Let the linear-fractional function £ = (az + b)(cz + d)-1, ad —be 
0, maps domain D onto some domain Do- If F G Kn(Do), then 

(cz + d^FKaz + b)/(cz + d)] € Kn(D). 

If D is the unit disk which we denote by E, then, according to Lemmas 1 
and 2 in the class K n (E) , one can separate the class K n (E) of n-normalized 
in E functions of form 

oo 
F{z)=Zn + YJ^nZn+k~\ 

k=2 
Let $n,5n be a function analytic, n-normalized in E, and satisfying the 

condition 

( l - ~ ( n + l)(«» + * ) * & ( * ) = 0, V* e E, 

where 

S n = sup 
FeK„(E) ( N + 1 ) ! 

Note that 

L f i W _ /I , ^ ^ ( i n - l ) ^ _ (1) = ( ! + » ( i B _ 1 ) ( l - ' ( 5 " + 1 ) , 

(2) (1 - r 2 ) " + 1 < l n ( r ) ^ n ( r ) = 1, Vr = \z\ < 1. 

THEOREM 1. If F G K„(E), then 

(3) n! 
n + 1 1 + r 

< — - <Jnln- , V z = r < 1. 
I 1 — r 

ln((l - r ' ) — — ^ ) 

P r o o f . Let 
oo 

F{z) = zn + YJ ak,nZn+k-1 G Kn (E) 
k-2 
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and A be the set of all linear-fractional functions of form 

u> 

According to Lemma 3, for any fixed ( e E the function 

m=0 

= o,(z) = (z + 0 ( i + Cz) \ C e E . 

¥ (z ; C) = ( 1 + C z ) n ~ l F((z + 0 / ( 1 + C * ) ) = £ &m (C) z " 

is in Kn(E). According to Lemma 1, we have 6n(C) 0> ^C £ E. By 
subtracting the polynomial 

M 0 + bi (C)* + - " + &»- i (C)* n ~ 1 

from ( ) and dividing the result by bn((), we obtain the function F(z; C), 
which, according to Lemma 2, belongs to the class K n ( E ) . Let us expand 
this function in to the power series of 2: 

00 

k=2 

Observe that F(z; 0) = F(z) and thus, afc;Tl(0) = ajt in, k = 2,3, Fur-
thermore, 

(4) a2,„(c) = - c + ( i - i c r ) 
0 

(n + l )F(" ) (C) ' 

Let us substitute z for Calculations show that 

(5) 
r ( l — r 2 ) d . 2 , »± i F™(z) 
(n + 1 )z dr v y n! 

Since |o2,n(^)| < ¿n, Vz G E, then in view of (4), (5), we get 

In I ( 1 - r 2 ) ^ 
n±lF( n ) (z ) W ( Z ) \ = (n + 

n\ ) J r ( l -
(n + l)z 

r 2 ) d2,n(z) d r 

0 
n + 1 , 1 + r 

-dn In 
2 " 1 - r 

for any \z\ = r < 1. Thus the inequality (3) is proved. 

THEOREM 2. 7 / F E K„(E) , then 

(6) (r) < \FW (z)| < <] n (r), V|z| = r < 1 

and 

(7) l a r g ^ M ^ ^ ^ l n i + I , V|z| = r < 1. 
2 1 — r 
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P r o o f . Prom the formula (1) and inequality (3), we get 

n! 

On the other hand taking into account (2), we can write: 

< In (1 - r 2 ) 

In (1 - r 2 ) 
a., # n+1 

(n) 
n,—5, 

n! 
< In (1 - r 2 ) 

N±l\F(n)(Z)\ 

< In (1 - r 2 ) 

n! 
. -0 ( 

n! 

Hence, the inequality (6) follows. In a similar way, we get (7). 

THEOREM 3. If F e K „ ( E ) , I/ien 

|F<fc> (*) | < ^ ( r ) , V\z\ = r < 1, k = 0 , 1 , . . . , n. 

P r o o f . Theorem 2 for k = n yields the inequality 

| < < ] > ) , V|z| = r < l . 

Integrating this inequality along the radius of the circle E from zero to the 
point zo — roe170 / 0, we obtain 

ro ro ro 
F ^ " 1 ) (ZO) = j FW (Z) dz < j F™ dr < j ^ (r) dr 

0 0 0 

By virtue of the arbitrariness of the choice of zo, we arrive at the inequality 

F ( n - i ) ( 2 ) | < ^ - i ) ( r ) ) V |z| = r < 1. 

The continuation of the process convince us in of the validity of Theorem 3. 
Note that for any function F e K n ( E ) we have also proven the inequality 

\F(z)\ <<Pn,6n(r), V|z| = r < 1. 

2. Let us formulate and prove the following two general distortion 
theorems, analogous to those established by Koebe (see [4]) for univalent 
functions. 
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THEOREM 4. For a given domain D and a compact H c D, there exists a 
positive number M such that the double inequality 

( 8 ) n{D)^zuZ2eH 

is valid. 

P r o o f . Without losing generality we can assume that H is a bounded, 
closed domain in D. In fact, any compact can be included in some bounded, 
closed domain H', H' £ Z), so if inequality (8) is satisfied for H', it is also 
satisfied with the same M for any compact in H'. 

So, let H be a bounded, closed domain in D and h be the distance from 
this domain to the boundary of the domain D. Let us cover the (z)-plane 
by a square grid with the grid size of h/A, h > 0. The closed squares of 
the grid, which include the points from the set H form a closed domain Do, 
such that H c Do and Do C D. 

Let z\ and Z2 be two arbitrary points in the set H. Then, there exists a 
sequence of points Ci = z\, C2, • • •, Cp — z2 in D, such that any two successive 
points in this sequence are located in neighbouring squares and the number p 
of such points in this sequence does not exceed the number N of all squares, 
comprising the closed set Do- The distance between points and Cfe+ii 
1 < k < p — 1, does not exceed h/yj2. Note that hj\J2 < 3/i/4. The circles 
\z—< h, k = 1,..., p are located completely inside domain D. Therefore, 
the function 

00 

* f c ( 0 = — h n p { n ) ( a ) — - c + 2 _ , 2 c ™ ( a ) c 

where P(C) is a polynomial of power not exceeding n — 1, will belong to 
the class K n (E) for k = 1 , . . . ,p — 1. Differentiating the function ^(«Qn 
times with respect to £ and taking into account Theorem 1, we obtain the 
inequalities 

( 9 ) F{n)(a + h<;) 
F M ( C f c ) 

In particular, if hQ = — Cfc, then 4|£| < 3 and the inequalities (9) 
become 

If'-'Kt+i)! „„ (3\ , , 

Multiplying these inequalities, we get the inequality 

(10) 
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The positive number M is independent of the choice of the function F(z) 
in the class KN(D), as well as of the choice of points 21,2:2 in the set H. 
By interchanging the points z\, 22 in (10) we obtain the second inequality 
from (8). 

THEOREM 5. For a given domain D and a compact H C D, there exist 
constants bo = 1, b\,...,bn such that there holds the inequality 

n 

(11) \F{Z2)\ < Y , bM\F^(ZL)\, VF(z) € K N ( D ) , V z i , * 2 € H. 
m=0 

Proof . As in the proof of Theorem 4, we suppose that H is a bounded, 
closed domain inside D. Let us use the same constructions as in the proof 
of Theorem 4. First, note that 

C 
(12) F(— 1 ) ( a + hC) = h\ F^(Ck + K)dC + F^iCk), 

0 

m = 1 , . . . , n; k = 1 , . . . ,p. 

Furthermore (9) yields 

(13) |F<">(0fc + h4)\ < <]n(r)|FW(Cfc)|, k = l,...,p. 

Now, we integrate any of the inequalities (13) along the radius connecting 
the origin to the point Assuming = r < 1 and using (12) for m = n, 
we obtain 

(14) iF^iCk + hOl < h^\r)\F^(Ck)\ + i F ^ m , k — 1,... ,p. 

Assuming m = n — 1 in (12) and using (14), we have 

|^(n-2)(a + H)I < h2^{r)\F^\Ck)\ + hr\F<-n-V(Ck)\ + \F{n~2\Ck)\, 
k — 1,... ,p. 

Continuing this reasoning, we establish validity of the following inequal-
ities: 

TTL L. 771 I Tfl I 
I ( C f c + hC)| < (»•)IF(n)(C*)I + £ ( m - n \ I p { n ~ l ) ^ 

1=1 ^ '' 
k = 1 , . . . m — 1 , . . . , n. 

Here, writing = (k+1 — Ck and taking into account that 4|£| < 3, we 
obtaint inequalities 
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( 1 5 ) ) ( C f c + i ) | 

fe = l , . . . , p — 1 ; m = l , . . . , n . 

For m = n, we have 

(16) |F(Cfc+i)| < ^ „ , 5 n ( 3 / 4 ) | F W ( C f c ) | + £ ^ ( V t r V ( n " ° ( C f c ) | , 

k = l,...,p—l. 

The value |F^(Cfe)| in (16) can be estimated by using the value 
|F(s)(Cfc_i)|, by replacing k by k — 1 in (15). Similarly, one can estimate 
the values |.F(s)(0fc-i)| by using the module |F^(Ca;-2)|) and so on. As the 
result, we arrive at the inequalities 

n 
\F(Ck+i)\<\F{zi)\ + ^ b , 

m = l 
where b\,..., bn are constants. By substituting k = p — 1, we will get £p = 22 
thus proving the inequality (11). 

F ( m ) (21) k = 1, • • .,p~ 1, 
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