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ON BG-ALGEBRAS

Abstract. In this paper we introduce the notion of BG-algebras which is a gen-
eralization of B-algebras. We construct a BG-algebra from a non-empty set, which is
non-group-derived. Moreover, using the notion of normal subalgebra, we obtain several
isomorphism theorems of BG-algebra and related properties.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras ([3,4]). It is known that the class of BCK-
algebras is a proper subclass of the class of BCI-algebras. In [1,2] Q. P. Hu
and X. Li introduced a wide class of abstract algebras: BC H-algebras. They
have shown that the class of BCI-algebras is a proper subclass of the class
of BC H-algebras. J. Neggers and H. S. Kim ([8]) introduced the notion
of d-algebras which is another generalization of BC K-algebras, and then
they investigated several relations between d-algebras and BC K-algebras
as well as some other interesting relations between d-algebras and oriented
digraphs. They also introduced B-algebras ([9, 10]), i.e., (I) z xz = 0;
(ID) zx0 =z; ) (z*xy)*2 = xx (z2x(0xy)), for any z,y € X.
Recently, Y. B. Jun, E. H. Roh and H. S. Kim ([5]) introduced a new
notion, called a BH-algebra which is a generalization of BCH/BCI/BCK-
algebras, i.e., (I); (II) and (IV) z*y = 0 and y *xx = 0 imply z = y,
for any z,y € X. In this paper we introduce the notion of BG-algebras
which is a generalization of B-algebras. We construct a BG-algebra from a
non-empty set, which is non-group-derived. Moreover, using the notion of
normal subalgebra, we obtain several isomorphism theorems of BG-algebra
and related properties.
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2. BG-algebras
A BG-algebra is a non-empty set X with a constant 0 and a binary

operation “x” satisfying the following axioms:
(1) zxz =0,

(2) rzx0=uz,

(3) (z*y)*x(0*y) ==,

for all z,y € X.
ExAMPLE 2.1. Let X := {0, 1,2} be a set with the following table:

lof1]2
0|1

0 2
1101
2{2|2|0

Then (X;*,0) is a BG-algebra.
THEOREM 2.2. If (X;%,0) is a B-algebra, then (X;*,0) is a BG-algebra.

Proof. Since (X;*,0) is B-algebra, the axioms (1) and (2) for BG-algebra
are satisfied and (z xy) * (O*y) =z * ((0*y) * (0*xy)) = %0 = z for any
z,y € X. Hence (X;*,0) is a BG-algebra. m

REMARK. The converse of Theorem 2.2 does not hold. The BG-algebra
(X; *,0) given in Example 2.1 is not a B-algebra, since (0%2)*1 =21 =2
and 0% (1% (0%2)) =0%(1%2) =0%1=1imply (0%2)%1 # 0% (1% (0%2)).

Thus the class of B-algebras is a proper subclass of BG-algebras.

PROPOSITION 2.3. Let (X;0,0) be a group. If we define xxy = x oy !,
then (X;*,0) is a BG-algebra.

Proof Weseethat zxz =zoz '=0andz*0=200"! =200 = z. For
any T,y € X, we have (zxy) *(0*y) = (zoy )o(0oy™ ) ! =zo(y loy) =
z 00 = z. Hence (X;*,0) is a BG-algebra. u

From Proposition 2.3 we can see that every group (X;o,0) can deter-
mine a BG-algebra (X; x,0), called a group-derived BG-algebra. It is then a
question of interest to determine whether or not all BG-algebras are group-
derived. Example 2.1 is an example of a non-group-derived BG-algebra,
since the only group of order 3 is (Z3; +, 0). Indeed, if we assume that Exam-
ple 2.1 is group-derived, then 2 = 2%1 = 2+1~! = 242 = 1, a contradiction.

LEMMA 2.4. Let (X;*,0) be a BG-algebra. Then

(1) the right cancellation law holds in X, i.e., zxy = zxy implies x = z,
(i) 0x (Oxz) =z for allz € X,
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(iii) if c*y =0, thenz =y for any z,y € X,

(iv) f Oxz =0xy, thenx =y for any z,y € X,

(v) (zx(0xx))*xx ==z forallz € X.
Proof. (i). Assume that z*xy = z*xy. Thenz = (zxy) * (0xy) =
(z*xy)* (0xy) = 2. (ii). In axiom (3) for BG-algebra, replacing y by z, we
have that (z * z) * (0 x ) = x implies 0 x (0 x z) = z. (iii). f z*y = 0,
then we have z * y = 0 = y x y. By applying (i) we obtain, z = y. (iv). If
Oxz=0xy, thenz = (zxz)*x(0xz) = (y*xy) * (0*xy) =y by the axiom
(3) for BG-algebra. (v). (xx (0*xz))*xxz = (z*(0xx))* (0% (0xz)) =z by
the axiom (3) and Lemma 2.4-(ii). =
THEOREM 2.6. Let (X;*,0) be a BG-algebra with the identity (x x y) x z =
zx (0% ((0%y)*2)) for all z,y,z € X. Then (X;x,0) is group-derived.

Proof. Define a binary operation “o” on X by
zoy:=z*(0xy).

Then z00=2z%(0x0) =zx0=xzand 0oz =0x* (0xx) = z by Lemma
2.4-(ii)). Thus 0 acts like an identity element on X. Also zo (0 xz) =
z*x(0x(0xz)) =xz+z=0and Oxz)ox=(0*x)*(0xz)=0. So 0z
behaves like a multiplicative inverse for x with respect to the operation “o”.
We claim that (X;o0) is a semigroup. Indeed,

zo(yoz)=zx*(0x(yx*(0x2)))
=zx(0%((0%(0*y))*(0x2))) [by Lemma 2.4-(ii)]
=(z*x(0*y))*(0x2) [by hypothesis]
= (zoy)oz.
Note that zoy ™! =z * (0xy™ 1) =z % (0% (0xy)) = z *y. Hence (X;*,0)
is also a group-derived BG-algebra. This completes the proof. m

The condition (z*y)*z = z*(0%((0*y)+*2z)) in Theorem 2.6 does not hold
in general. In Example 2.1 we have (2x1)%2 = 0, while 2% (0% ((0x1)*2)) = 2.

EXAMPLE 2.7. Let X = {0,1,2,3} be a set with the following table:

i CIESEIE]
0112

0 3
1(11({0(3|2
21213|0(1
3(3|2|1|0

Then (X;*,0) is a BG-algebra satisfying the identity (z * y) * z = z * (0 %
((0*y) *2)). So (X;*,0) is a group-derived BG-algebra.
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PROPOSITION 2.8. Every BG-algebra is a BH -algebra.
Proof. It follows immediately from Lemma 2.4-(iii). =

The converse of Proposition 2.8 need not be true in general.

EXAMPLE 2.9. Let X :={0,1,2,3} be a set with the following table:

FJoftf2]s
01310

WIN|=]D
S| Wl

110]0
21210
31311

Then (X;%,0) is a BH-algebra ([5]), but it is not a BG-algebra, since
(2%3)*(0%x3)=1%#2.

By Theorem 2.2 and Proposition 2.8, we know the following relation:

The class The class The class
of C of C of
B-algebras BG-algebras BH-algebras

We construct a BG-algebra for any non-empty set as follows:

THEOREM 2.10. Let X be a set with 0 € X. If we define a binary operation
“x" on X by
y ifz=0,
rzxy: =40 fzr=y,
T otherwise,

for any z,y € X, then (X;*,0) is a BG-algebra.

Proof. Forany z,y € X, if £ = 0, then (z*y) *(0xy) = (0Oxy)*x(0*xy) = 0.
Assume z # 0. If y = z, then (zxy)*x(0xy) = (zxz)*(0*x) = 0% (0*z) = z.
If y # z, then (zxy) * (0xy) = zx (0xy) = x *xy = z, proving that (X;,0)
is a BG-algebra. »

Using Theorem 2.10 we can construct an infinitely many BG-algebras.
The following example is constructed by Theorem 2.10.
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ExXAMPLE 2.11. Let X := {0, 1,2,3} be a set with the following table:

Flojtf2]s
012

3

WIN|-=O

1{0]1]1
212|102
3(3(1(0

Then (X;*,0) is a BG-algebra.

THEOREM 2.12. The BG-algebra (X; *,0), | X| >3, obtained by Theorem 2.10
is non-group-derived.

Proof. Let a,b,c € X be distinct elements and ¢ # 0. Then cxa = cxb = c¢.
If we assume that (X *,0) is a group-derived BG-algebra obtained from the
group (X;0) by Theorem 2.10, then ¢ = cxa = coa™! and ¢ = cxb = cob™!,
i.e., @ = b, a contradiction. This proves the theorem. =

3. Homomorphisms and quotient BG-algebras

Let (X;*x,0x) and (Y; *y, 0y ) be BG-algebras. A mappingyp: X — Y
is called a BG-homomorphism if p(z xx y) = p(z) *xy ¢(y) for any z,y € X.
A BG-homomorphism ¢ : X — Y is called a BG-isomorphism if ¢ is a
bijection, and denote it by X 2 Y. Let ¢ : X — Y be a BG-homomorphism.
Then the subset {z € X|p(z) = Oy} of X is called the kernel of the BG-
homomorphism ¢, and denote it by Kerp. In this section, we discuss several
isomorphism theorems discussed in [9] in view of BG-algebras, and also
obtain some consequences of structure theorems.

DEFINITION 3.1. Let (X;*,0) be a BG-algebra. A non-empty subset S of
X is called a subalgebraof X if xxy € S for any z,y € S.

In Example 2.11, S; = {0,1} and S2 = {0, 1,2} are subalgebras of X.
We know that any subalgebra of a BG-algebra is also a BG-algebra.

THEOREM 3.2. Let (X;*,0) be a BG-algebra and @ # S C X. Then the
following are equivalent:

(a) S is a subalgebra of X ;

(b) zx(0*y),0xy €S foranyz,y € S.

Proof. (a)=(b). Since S # @, there exists an element r € S and so
0=z*z € S. Since S is closed under “x”,0*y € S and thus z*(0*y) € S.
(b)=(a). Sincez*y=z*x(0x (0*y)), zxy € Sforany z,y € S. »

A non-empty subset N of X is said to be normal ([9]) of X if (z *a) *
(yxb) € N for any z xy,axb e N.
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EXAMPLE 3.3. Let X :={0,1,2,3} be a set with the following table:

M CIEVEIE)
0|21

0 3
1((1({0[3]|2
20121301
313|11({2]0

Then (X;*,0) is a BG-algebra and N = {0, 3} is normal of X.

THEOREM 3.4. Every normal subset N of a BG-algebra X is a subalgebra
of X.

Proof. If z,y € N, then x x0,y *0 € N. Since N is normal, z xy =
(x*xy)*(0%0) € N. Thus N is a subalgebra of X. u

REMARK. The converse of Theorem 3.4 does not hold. Indeed, in Example
2.1, N = {0, 2} is a subalgebra of X, but it is not normal, since 0%2,1x1 € N,
while (0% 1) (2x1)=1¢ N.

LEMMA 3.5. Let N be a normal subalgebra of o BG-algebra X and let
r,yeE N. Ifcxy € N, thenyxx € N.

Proof. Let xxy € N. Since y*y =0 € N and N is normal, y xx =
(y*xz)*(y*y) EN. =

Let (X;%,0) be a BG-algebra and let N be a normal subalgebra of X.
Define a relation ~y on X by x ~y y if and only if xxy € N, where z,y € X.
Then it is easy to show that ~p is an equivalence relation on X. Denote
the equivalence class containing z by [z]n, i.e., [z]y = {y € X|z ~n y} and
let X/N = {[z]n|z € X}.

THEOREM 3.6. Let N be a normal subalgebra of a BG-algebra X. Then
X/N is a BG-algebra.

Proof. If we define [z]n * [y]n := [z * y]n, then the operation “ =7 is
well-defined, since if ¢ ~y p and y ~n ¢, then x xp € N and yxqg € N
implies (z *y) * (p *x ¢) € N by normality of N. So z*y ~xn p*q and so
[z *y]y = [p*q]n. Note that 0]y = {z € X|z ~n 0} = {z € X|zx0 €
N} ={z € X|z € N} = N. Checking remaining axioms is trivial and we
omit the proof. =

The BG-algebra X/N discussed in Theorem 3.6 is called the quotient
BG-algebra of X by N. The proofs of Theorems 3.7 and 3.10 follow from
the Homomorphism Theorem for algebras ([6, p. 28-29]), and we omit the
proofs.
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THEOREM 3.7. Let N be a normal subalgebra of a BG-algebra X. Then
the mapping v X — X/N given by y(z) := [z|§ is a surjective BG-
homomorphism, and Kery = N.

The mapping ~ discussed in Theorem 3.7 is called the natural (or canon-
ical) BG-homomorphism of X onto X/N.

THEOREM 3.8. Let ¢ : X — Y be a BG-homomorphism. Then ¢ is injective
if and only if Kerp = {0x}.

Proof. Let z,y € X with o(z) = ¢(y). Then p(z) * p(y) =0y. Sozxy €
Kerp. Since Kergp = {0x}, £ *y = Ox. Thus ¢ = y by Lemma 2.4-(iii).
Hence ¢ is injective. The converse is trivial, and we omit the proof. m

THEOREM 3.9. Let ¢ : X — Y be a BG-homomorphism. Then the kernel
Kery is a normal subalgebra of X .

Proof. Since 0x € Keryp, Kerp # 0. Let z xy,a*b € Kerp. Then
o(z) * p(y) = 0 = p(a) * p(b). Thus by Lemma 2.3-(iii), p(z) = ©(y) and
w(a) = @(b). It follows that p((z *a) * (y*b)) = p(x*a)*xp(y*b) = (p(z) *
p(a)) * (p(y) * p(b)) = (p(z) *x p(a)) * (p(z) *p(a)) = 0. So (zxa)*(y*b) €
Kerp. Hence Kery is a normal subalgebra of X. »

By Theorem 3.7 and Theorem 3.9, if ¢: X —Y is a BG-homomorphism,
then X/Kerp is a BG-algebra.

THEOREM 3.10. Let ¢ : X — Y be a BG-homomorphism. Then X/Kerp =
Imyp. In particular, if ¢ is surjective, then X/Kerp 22Y.

THEOREM 3.11. Let ¢ : X — Y be a BG-epimorphism, and let K be a
normal subalgebra of Y. Then X/p 1 (K) 2 Y/K.

Proof. Let v : Y — Y/K be a natural BG-homomorphism, and let p =
v o . Then p is a BG-homomorphism and Keruy = Ker(yo ) = {z €
X| (yo@)(@) = [p(@)lx = K} = {z € X| ¢(z) € K} = {z € X| ¢ €
¢ 1K)} = ¢p~}(K). By Theorem 3.10, we have X/¢o 1 (K) 2 Y/K. =

The proofs of Theorems 3.12, 3.13 and 3.15 follow from the Second Iso-
morphism Theorem ([6, p. 149-150]), and we omit the proofs.

THEOREM 3.12. Let N and K be normal subalgebras of a BG-algebra X,

and let K C N. Then X/N = 3%,

THEOREM 3.13. Let XY and Z be BG-algebras, and h : X — Y be a
BG-epimorphism and g : X — Z be a BG-homomorphism. If Ker(h) C
Ker(g), then there exists a unique BG-homomorphism f : Y — Z satisfying
foh=yg.
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THEOREM 3.14. Let X,Y and Z be BG-algebras, and g : X — Z be a
BG-homomorphism and h :' Y — Z be a BG-monomorphism. If Im(g) C
Im(h), then there is a unique BG-homomorphism f : X — Y satisfying
hof=yg.

Proof. For each z € X,g(z) € Im (¢g) C Im (h). Since h is a BG-
monomorphism, there exists a unique y € Y such that h(y) = g(z). Define
amap f: X - Y by f(x) = y. Then ho f = g. Let z1,20 € X,
then g(z1 * z2) = h(f(z1 * x2)) = h(f(z1) * f(z2)). Since h is injective,
f(z1 *z2) = f(x1) * f(z2). So f is a BG-homomorphism. The uniqueness
of f follows from the fact that h is a BG-monomorphism. This completes
the proof. =

THEOREM 3.15. Let X and Y be BG-algebras and let f : X — Y be a BG-
homomorphism. If N is a normal subalgebra of X such that N C Ker(f),
then f : X/N — Y defined by f([z]n) := f(z) for all z € X is a unique
BG-homomorphism such that f oy = f. where v : X — X/N is natural
BG-homomorphism.

COROLLARY 3.16. Let X andY be BG-algebras and let f : X — Y be a BG-
homomorphism. If N is a normal subalgebra of X such that N C Ker(f),
then the following are equivalent:

(1) there ezists a unique BG-homomorphism f: X/N — Y such that

foy=f, wherey: X — X/N is the natural BG-homomorphism;

(i) N C Ker(f).
Furthermore, f is a BG-monomorphism if and only if N = Ker(f).
Proof. (ii)=(i). By Theorem 3.13.

(i)=(ii). If z € N, then
fz) = (fo)(z) = f([z]n) = f([0]n) = £(0) = 0.
Hence z € Ker(f). B
Furthermore, f is a monomorphism if and only if Ker f = {N} if and

only if f(z) = 0 implies [z]y = [0]y = N if and only if Ker(f) C N. This
completes the proof. =
THEOREM 3.17. Let f : X — Y be a BG-homomorphism, and let M, N
be normal subalgebras of X and Y, respectively, such that f(M) C N.
Then there exists a unique BG-homomorphism h : X/M — Y/N such that
hop =gqof, wherep: X - X/M and q : Y — Y/N are natural BG-
homomorphisms.
Proof. Define a map h : X/M — Y/N by h([z]m) = [f(z)]y. Then
h is well-defined. Indeed, if [z]p = [y|m (z,y € X), then zxy € M.
Thus f(z) * f(y) = flzxy) € f(M) € N. So [f(z)lv = [f(y)ln. If
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[z]m, [ylm € X/M, then h([z]nm * [ylm) = h([z * ylu) = [fz *xy)lv =
[f@)]N * [f(W)]n = h([z]m) * h([y]amr). So h is a BG-homomorphism. On
the other hand, if z is any element of X, then since (h o p)(z) = h([z]m) =
[f(z)]n = (go f)(z), we obtain that hop = go f. To show the uniqueness of
h,let k: X/M — Y /N be a BG-homomorphism such that kop = go f. Then
k([z]m) = k(p(z)) = q(f(z)) = h(p(z)) = h([z]n) for any [z]ym € X/M.
Thus k = h. This completes the proof. m
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