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ON BG-ALGEBRAS 

Abstract. In this paper we introduce the notion of BG-algebras which is a gen-
eralization of .B-algebras. We construct a BG-algebra from a non-empty set, which is 
non-group-derived. Moreover, using the notion of normal subalgebra, we obtain several 
isomorphism theorems of BG-algebra and related properties. 

1. Introduction 

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras ([3,4]). It is known that the class of BCK-
algebras is a proper subclass of the class of BCI-algebras. In [1,2] Q. P. Hu 
and X. Li introduced a wide class of abstract algebras: BC.//-algebras. They 
have shown that the class of BCI-algebras is a proper subclass of the class 
of BCH-algebras. J. Neggers and H. S. Kim ([8]) introduced the notion 
of d-algebras which is another generalization of BCK-algehvas, and then 
they investigated several relations between d-algebras and BCK-algebras 
as well as some other interesting relations between ri-algebras and oriented 
digraphs. They also introduced .B-algebras ([9, 10]), i.e., (I) x * x = 0; 
(II) x * 0 = x; (III) (x * y) * z = x * (z * (0 * y)), for any x,y 6 X. 
Recently, Y. B. Jun, E. H. Roh and H. S. Kim ([5]) introduced a new 
notion, called a BH-algebra which is a generalization of BCH/BCI/BCK-
algebras, i.e., (I); (II) and (IV) x * y = 0 and y * x = 0 imply x = y, 
for any x,y € X. In this paper we introduce the notion of 5G-algebras 
which is a generalization of .B-algebras. We construct a .BG-algebra from a 
non-empty set, which is non-group-derived. Moreover, using the notion of 
normal subalgebra, we obtain several isomorphism theorems of .BG-algebra 
and related properties. 
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2. BG-algebras 
A BG-algebra is a non-empty set X with a constant 0 and a binary 

operation " * " satisfying the following axioms: 
(1) x * x = 0, 

(2) x * 0 = x, 
(3) (x * y) * (0 * y) = x, 

for all x, y G X. 

EXAMPLE 2.1. Let X := {0,1,2} be a set with the following table: 
* 0 1 2 

0 0 1 2 
1 1 0 1 
2 2 2 0 

Then (X; *,0) is a BG-algebra. 

THEOREM 2.2 . If (X\ *, 0 ) is a B-algebra, then (X; *, 0 ) is a BG-algebra. 

P r o o f . Since [X\ *, 0) is B-algebra, the axioms (1) and (2) for BG-algebra 
are satisfied and (x * y) * (0 * y) — x * ((0 * y) * (0 * y)) = x * 0 = x for any 
x, y € X. Hence (X; *,0) is a BG-algebra. • 

REMARK. The converse of Theorem 2.2 does not hold. The BG-algebra 
(X] *,0) given in Example 2.1 is not a B-algebra, since (0*2)*1 = 2*1 = 2 
and 0 * (1 * (0 * 2)) = 0 * (1 * 2) = 0 * 1 = 1 imply (0*2 )*1 ^ 0 * (1 * (0 * 2)). 

Thus the class of B-algebras is a proper subclass of BG-algebras. 

PROPOSITION 2 .3 . Let ( X ; o , 0 ) be a group. If we define x * y = x o y~l, 
then (X; *, 0) is a BG-algebra. 

P r o o f . We see that x * x = x o x~l = 0 and x * 0 = x o 0 _ 1 = x o 0 = :r. For 
any x,y G X, we have (x * y) * (0 * y) = ( x o y - 1 ) o ( 0 o y - 1 ) - 1 = xo(y~l oy) — 
x o 0 = x. Hence (X; *, 0) is a BG-algebra. • 

From Proposition 2.3 we can see that every group (X;o, 0) can deter-
mine a BG-algebra (X; *, 0), called a group-derived BG-algebra. It is then a 
question of interest to determine whether or not all BG-algebras are group-
derived. Example 2.1 is an example of a non-group-derived BG-algebra, 
since the only group of order 3 is (Z3; + , 0). Indeed, if we assume that Exam-
ple 2.1 is group-derived, then 2 = 2*1 = 2 + 1 - 1 = 2+2 = 1, a contradiction. 

LEMMA 2.4. Let (X;*,0) be a BG-algebra. Then 

(i) the right cancellation law holds in X, i.e., x*y = z*y implies x = z, 
(ii) 0 * (0 * x) = x for all x E X, 
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(iii) if x * y = 0, then x = y for any x, y G X, 
(iv) if 0 * x = 0 * y, then x = y for any x, y G X, 
( v ) (x * (0 * x)) * x = x for all x G X. 

Proof , (i). Assume that x * y = z * y. Then x = (x * y) * (0 * y) = 
(z * y) * (0 * y) = 2. (ii). In axiom (3) for 5G-algebra, replacing y by x, we 
have that (x * x) * (0 * x) = x implies 0 * (0 * x) = x. (iii). If x * y = 0, 
then we have x*y = 0 = y*y. By applying (i) we obtain, x = y. (iv). If 
0 * x = 0 * y, then x = (x * x) * (0 * x) — (y * y) * (0 * y) = y by the axiom 
(3) for £?G-algebra. (v). (x * (0 * a;)) * x = (x * (0 * x)) * (0 * (0 * x)) = x by 
the axiom (3) and Lemma 2.4-(ii). • 

T H E O R E M 2 . 6 . Let ( X ; * , 0 ) be a BG-algebra with the identity (x *y) * z = 
x * (0 * ((0 * y) * z)) for all x,y,z G X. Then (X; *, 0) is group-derived. 

Proof . Define a binary operation " o " on X by 

x o y := x * (0 * y). 

Then x o 0 = x * ( 0 * 0 ) = x * 0 = x and 0 o x = 0 * ( 0 * x ) = x b y Lemma 
2.4-(ii). Thus 0 acts like an identity element on X. Also x o (0 * x) = 
x * (0 * (0 * x)) = x * x = 0 and (0 * x) o x = (0 * x) * (0 * x) = 0. So 0 * x 
behaves like a multiplicative inverse for x with respect to the operation " o ". 
We claim that (X; o) is a semigroup. Indeed, 

x o (y o z) = x * (0 * (y * (0 * z))) 
= x * (0 * ((0 * (0 * y)) * (0 * z))) [by Lemma 2.4-(ii)] 
= (x * (0 * y)) * (0 * z) [by hypothesis] 
= (x o y) o z. 

Note that x o y~l = x * (0 * y~l) = x * (0 * (0 * y)) = x * y. Hence (X; *, 0) 
is also a group-derived BG-algebra. This completes the proof. • 

The condition ( x * y ) * z = x*(0*((0*y)*2i)) in Theorem 2.6 does not hold 
in general. In Example 2.1 we have (2*1)*2 = 0, while 2*(0*((0*1)*2)) = 2. 

E X A M P L E 2.7. Let X = {0 ,1 ,2 ,3} be a set with the following table: 
* 0 1 2 3 

0 0 1 2 3 
1 1 0 3 2 
2 2 3 0 1 
3 3 2 1 0 

Then (X; *, 0) is a .BG-algebra satisfying the identity (x * y) * z = x * (0 * 
((0 * y) * z)). So (X; *, 0) is a group-derived ¿?G-algebra. 
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PROPOSITION 2.8. Every BG-algebra is a BH-algebra. 

P r o o f . It follows immediately from Lemma 2.4-(iii). • 

The converse of Proposition 2.8 need not be true in general. 

EXAMPLE 2.9. Let X := {0,1,2,3} be a set with the following table: 

* 0 1 2 3 

0 0 3 0 2 
1 1 0 0 0 
2 2 2 0 3 
3 3 3 1 0 

Then (X;*,0) is a BH-algebra ([5]), but it is not a .BG-algebra, since 
(2 * 3) * (0 * 3) = 1 ^ 2. 

By Theorem 2.2 and Proposition 2.8, we know the following relation: 

The class The class The class 
of C of C of 

B-algebras BG-algebras BH-algebras 

We construct a BG-algebra for any non-empty set as follows: 

THEOREM 2.10. Let X be a set with 0 € X. If we define a binary operation 
" * " on X by 

y if x = 0, 
x * y := 0 if x = y, 

x otherwise, 

for any x,y G X, then (X; *,0) is a BG-algebra. 

P r o o f . For any x, y e X, if x = 0, then {x*y) * (0*y) = (0*y) * (0*y) = 0. 
Assume x ^ 0. If y = x, then (x * y) * (0 * y) = (x*x)*(0*x) = 0*(0*x) = x. 
If y ^ x, then (x * y) * (0 * y) = x * (0*y) = x *y = x, proving that (X; *, 0) 
is a BG-algebra. • 

Using Theorem 2.10 we can construct an infinitely many BG-algebras. 
The following example is constructed by Theorem 2.10. 
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EXAMPLE 2.11. Let X := {0,1,2,3} be a set with the following table: 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 1 1 

2 2 2 0 2 

3 3 3 1 0 

Then (X;* ,0 ) is a BG-algebra. 

THEOREM 2.12. The BG-algebra {X-,*,0), \X\>3, obtained by Theorem2.10 
is non-group-derived. 

Proo f . Let a, b, c G X be distinct elements and c ^ 0. Then c*a = c*b = c. 
If we assume that (X; *, 0) is a group-derived BG-algebra obtained from the 
group (X; o) by Theorem 2.10, then c = c*a = coa - 1 and c = c*b — cob-1, 
i.e., a = b, a contradiction. This proves the theorem. • 

3. Homomorphisms and quotient BG-algebras 
Let (X; Ox) and (y ; *y, 0y) be BG-algebras. A mapping ip : X —* Y 

is called a BG-homomorphism if (p(x *x y) = *y <p(y) for any x, y G X. 
A BG-homomorphism ip : X —> Y is called a BG-isomorphism if (p is a 
bijection, and denote it by X = Y. Let tp : X —> Y be a BG-homomorphism. 
Then the subset {x G X\ip(x) = 0y } of X is called the kernel of the BG-
homomorphism ip, and denote it by Kerip. In this section, we discuss several 
isomorphism theorems discussed in [9] in view of BG-algebras, and also 
obtain some consequences of structure theorems. 

DEFINITION 3.1. Let ( X ; * , 0 ) be a BG-algebra. A non-empty subset S of 
X is called a subalgebra of X if x * y G S for any x,y G S. 

In Example 2.11, Si = {0,1} and S2 = {0,1,2} are subalgebras of X. 
We know that any subalgebra of a BG-algebra is also a BG-algebra. 

THEOREM 3.2. Let ( X ; * , 0 ) be a BG-algebra and® ^ S C X. Then the 
following are equivalent: 

(a) S is a subalgebra of X; 
(b) x * (0 * y), 0 * y G S for any x,y G S. 

Proo f . (a)=>(b). Since S ^ 0, there exists an element x G 5 and so 
0 = x * x G S. Since S is closed under " * ", 0 * y G S and thus x * (0 * y) G S. 

(b)=i>(a). Since x * y = x * ( 0 * ( 0 * y)), x * y G S for any x,y G S. m 

A non-empty subset N of X is said to be normal ([9]) of X if (x * a) * 
(y * b) G N for any x * y,a * b G N. 
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EXAMPLE 3.3. Let X •— {0,1,2,3} be a set with the following table: 
* 0 1 2 3 

0 0 2 1 3 
1 1 0 3 2 
2 2 3 0 1 
3 3 1 2 0 

Then (X; *, 0) is a 5G-algebra and N — {0, 3} is normal of X. 

THEOREM 3.4. Every normal subset N of a BG-algebra X is a subalgebra 
o f X . 

P r o o f . If x,y G N, then x * 0,y * 0 G N. Since N is normal, x * y = 
(x * y) * (0 * 0) G N. Thus iV is a subalgebra of X. » 

REMARK. The converse of Theorem 3.4 does not hold. Indeed, in Example 
2.1, N = {0,2} is a subalgebra of X, but it is not normal, since 0*2,1*1 G N, 
while (0 * 1) * (2 * 1) = 1 g N. 

LEMMA 3.5. Let N be a normal subalgebra of a BG-algebra X and let 
x,y G iV. If x *y G N, then y * x G N. 

P r o o f . Let x * y G N. Since y * y = 0 G N and N is normal, y * x = 
(y * x) * (y * y) G N. • 

Let (X; *, 0) be a .BG-algebra and let N be a normal subalgebra of X. 
Define a relation on X by x ~jv y if and only if x*y G N, where x, y G X. 
Then it is easy to show that is an equivalence relation on X. Denote 
the equivalence class containing x by [X]AT, i.e., [X]N = {y G X\x y} and 
let X/N = {[x]N\x e X}. 

THEOREM 3.6. Let N be a normal subalgebra of a BG-algebra X. Then 
X/N is a BG-algebra. 

P r o o f . If we define [x]jv * [y]jv [x * V]N-, then the operation " * " is 
well-defined, since if x V and y q, then x * p G N and y * q G iV 
implies (x * y) * (p * q) G N by normality of N. So x * y ~JV p * q and so 
[x * y]jv = [p * q]N- Note that [0]jv = {x G X\x 0} = {x G X\x * 0 G 
N} = {x G X\x <S N\ = N. Checking remaining axioms is trivial and we 
omit the proof. • 

The .BG-algebra X/N discussed in Theorem 3.6 is called the quotient 
BG-algebra of X by N. The proofs of Theorems 3.7 and 3.10 follow from 
the Homomorphism Theorem for algebras ([6, p. 28-29]), and we omit the 
proofs. 
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THEOREM 3.7. Let N be a normal subalgebra of a BG-algebra X. Then 

the mapping 7 X —> X/N given by j(x) := [x]jv is a surjective BG-

homomorphism, and Ker-y - N. 

The mapping 7 discussed in Theorem 3.7 is called the natural (or canon-

ical) BG-homomorphism of X onto X/N. 

THEOREM 3.8. Let ip : X —> F be a BG-homomorphism. Then ip is injective 

if and only if Kerip = {Ox } • 

P r o o f . Let x,y G X with ip(x) = ip(y). Then tp(x) * ip(y) = 0y. So x * y G 
Kerip. Since Kerip = { O x } , x * y = Ox- Thus x = y by Lemma 2.4-(iii). 
Hence ip is injective. The converse is trivial, and we omit the proof. • 

THEOREM 3.9. Let ip : X —> Y be a BG-homomorphism. Then the kernel 

Kenp is a normal subalgebra of X. 

P r o o f . Since Ox £ Kerip, Kerip ^ 0. Let x * y,a * b G Kerip. Then 
ip(x) * <p(y) = 0 = ip(a) * ip(b). Thus by Lemma 2.3-(iii), ip{x) — ip(y) and 
ip(a) = ip(b). It follows that <p((x * a) * (y * b)) = ip(x * a) * ip(y * b) = (ip(x) * 

ip(a)) * (ip(y) * <p(b)) = (ip(x) * ip(a)) * (<p{x) * <p(a)) = 0. So (x * a) * (y * b) G 

Kerip. Hence Kerip is a normal subalgebra of X. • 

By Theorem 3.7 and Theorem 3.9, if i p \ X ^ Y is a SG-homomorphism, 
then X/Kerip is a BG-algebra. 

THEOREM 3.10. Letip : X —> F be a BG-homomorphism. Then X/Kerip = 

Imip. In particular, if ip is surjective, then X/Kerip = Y. 

THEOREM 3.11. Let ip : X —> Y be a BG-epimorphism, and let K be a 

normal subalgebra ofY. Then X/ip^iK) = Y/K. 

P r o o f . Let 7 : Y —» Y/K be a natural BG-homomorphism, and let fi = 
7 0 ip. Then fi is a BG-homomorphism and Ker/j, = Ker(y o ip) = {x G 
X\ (7 o <p)(x) = [ip{x)]K = K} = {x G X\ ip{x) G K) = {x G X\ x G 
ip~\K)} = ip~l{K). By Theorem 3.10, we have X/ip'^K) ^ Y/K. m 

The proofs of Theorems 3.12, 3.13 and 3.15 follow from the Second Iso-
morphism Theorem ([6, p. 149-150]), and we omit the proofs. 

THEOREM 3.12. Let N and K be normal subalgebras of a BG-algebra X, 

and let K C N. Then X/N ^ 

THEOREM 3.13. Let X,Y and Z be BG-algebras, and h : X -> Y be a 

BG-epimorphism and g : X —> Z be a BG-homomorphism. If Ker(h) C 
Ker(g), then there exists a unique BG-homomorphism f : Y Z satisfying 

f °h = g. 
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THEOREM 3.14. Let X,Y and Z be BG-algebras, and g : X —• Z be a 

BG-homomorphism and h : Y —> Z be a BG-monomorphism. If Im(g) C 
Im(h), then there is a unique BG-homomorphism f : X —> Y satisfying 

hof = g. 

P r o o f . For each x 6 X,g(x) € Im (g) C Im (h ) . Since h is a BG-
monomorphism, there exists a unique y e V such that h(y) = g(x). Define 
a map / : X —> Y by f(x) = y. Then h o / = g. Let xi,x2 € X, 

then g{x\ * X2) = h(f(x 1 * X2)) = h{f{x\) * f(x2)). Since h is injective, 
f(x 1 * X2) = f(x 1) * f(x2). So / is a BG-homomorphism. The uniqueness 
of / follows from the fact that h is a BG-monomorphism. This completes 
the proof. • 

THEOREM 3.15. Let X and Y be BG-algebras and let f : X —> Y be a BG-

homomorphism. If N is a normal subalgebra of X such that N C Ker(f), 

then f : X/N —> Y defined by /([x]/v) := f{x) for all x € X is a unique 

BG-homomorphism such that / o 7 = / . where 7 : X —> X/N is natural 

BG-homomorphism. 

COROLLARY 3.16. Let X and Y be BG-algebras and let f : X -*Y be a BG-

homomorphism. If N is a normal subalgebra of X such that N C Ker(f), 

then the following are equivalent: 

( i ) there exists a unique BG-homomorphism f : X/N —• Y such that 

f o 7 = / , where 7 : X —> X/N is the natural BG-homomorphism; 

(ii) N C Ker(f). 

Furthermore, f is a BG-monomorphism if and only if N = Ker{f). 

P r o o f . ( i i )=Ki ) . By Theorem 3.13. 
( i ) ^ ( i i ) . If X € N, then 

f{x) = (f o 7 ) ( x ) = f{[x]N) = f([0]N) = /(0) = 0. 

Hence x e Ker(f). 

Furthermore, / is a monomorphism if and only if Ker f = {TV} if and 
only if f(x) = 0 implies [x]N = [0]jv = N if and only if Ker(f) C N. This 
completes the proof. • 

THEOREM 3.17. Let f : X —> Y be a BG-homomorphism, and let M,N 

be normal subalgebras of X and Y, respectively, such that f ( M ) C N. 

Then there exists a unique BG-homomorphism h : X/M —> Y/N such that 

h o p — q o f , where p : X —> X/M and q : Y —> Y/N are natural BG-

homomorphisms. 

P r o o f . Define a map h : X/M -»• Y/N by h([x]M) = [f{x)]N• Then 
h is well-defined. Indeed, if [X]M = [V]M (X,y € X), then x * y 6 M. 
Thus f{x) * fiy) = fix * y) E / ( M ) C AT. So [/(X)]JV = [fiy)}N- If 
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[X]M, [V]M e X/M, then h([x]M * [V]M) = h([x * y]M) = [f(x * V)]N = 
[/(̂ OJiv * [/(y)]jv = H[X]M) * M[yW)- So h is a BG-homomorphism. On 
the other hand, if x is any element of X , then since (h o p)(x) = /I([X]M) = 
[/(̂ OW = (Q° f)(x), we obtain that hop — qof. To show the uniqueness of 
h, let k : X/M —> Y/N be a SG-homomorphism such that hop = qof. Then 
k([x}M) = Hp(x)) = q(f(x)) = h(p(x)) = h([x]M) for any [x]M € X/M. 
Thus k = h. This completes the proof. • 
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