Harry Poppe

A CLOSEDNESS THEOREM FOR NORMED SPACES

Abstract. For spaces X,Y, for which some algebraic operations are defined and in some cases topologies for X,Y are defined too, we define for the space X a dual space X^d with respect to the space Y. If σ is a topology for Y, (compatible with the algebraic operations of Y), then the pointwise topology τ_p for Y^X is defined. We show that X^d is (algebraically) τ_p -closed in Y^X . For normed spaces is shown that suitable subspaces of X^d are τ_p -closed in a product space $K \subseteq Y^X$. As a corollary we obtain a generalization of Alaoglu's theorem.

1. Introduction

By $\mathbb R$ and $\mathbb C$ we denote the reals and the complex numbers respectively and by $\mathbb K$ we mean $\mathbb R$ or $\mathbb C$.

Now let $(X, \|\cdot\|)$ be a normed K-vector space and $X' := \{f : X \to \mathbb{K} | f \text{ linear and continuous} \}$ the (first) dual space (dual) of X. Hence X' consists of functions which at the same time are an algebraic homomorphism (a linear map) and a topological homomorphism (a continuous map). Of course X and \mathbb{K} are normed spaces, meaning that X and \mathbb{K} belong to the same class of spaces. We will also set $X^d := X'$.

Now we consider another quite different example. Let X, Y be rings and for simplicity let us assume that X, Y are commutative rings with units. Then we can consider $X^d := \{h \in Y^X | h \text{ is a ring homomorphism}\}$ as the first dual space of X (w.r.t.Y.)

REMARKS. 1. $(X, \|\cdot\|)$ and $(\mathbb{K}, |\cdot|)$ and X = (X(+, *)), Y = (Y(+, *)) respectively not only belong to the same class of spaces, but we also have a natural correspondence between the (algebraic) operations. In the first case the vector space structure of X correspondes to the vector space structure of \mathbb{K} and the norm topologies $\tau_{\|\cdot\|}$ and $\tau_{|\cdot|}$ (Euclidian topology) correspond to each other. Concerning the rings X,Y we let correspond: the addition

Key words and phrases: generalized dual space, rings, pointwise topology, normed spaces, Alaoglu's theorem.

²⁰⁰⁰ Mathematics Subject Classification: 46B10, 46B50, 46E15.

124 H. Poppe

of X to the addition of Y and the multiplication of X to the multiplication of Y.

2. By the usual operator norm, $(X', \| \cdot \|) = (X^d, \| \cdot \|)$ again becomes a normed space (even a Banach space) meaning that also X and X' belong to the same class of spaces. For our two rings X and Y in the usual pointwise manner we can in Y^X define an addition and a multiplication but then in general X^d is not closed under these operations, i.e. f+g, f*g may not be homomorphisms if f,g are. This different behaviour becomes important if we want to define second dual spaces: $X^{dd} = (X', \| \cdot \|)' = (X^d, \| \cdot \|)^d$ and X^{dd} (w.r.t.Y) for the rings X,Y respectively. Such constructions we will present in a forthcoming paper. If we have defined X^{dd} then we can consider the canonical embedding map $J: X \to X^{dd}$, $\forall x \in X$, $J(x) = w(x,\cdot)$, where $w(x,h) = h(x) \ \forall h \in X^d$. Here we used the evaluation map $w: X \times Y^X \to Y$, w(x,f) = f(x), $(x,f) \in X \times Y^X$.

And of course the choice of a suitable space Y for the Y-dual of the space X depends on the fact, whether or not the canonical map J is well-defined and has nice properties. In our paper we want to prove a τ_p -closedness theorem for X^d , where τ_p means the pointwise topology for Y^X and X,Y are normed spaces. As a corollary we get a generalization of Alaoglu's theorem for normed spaces.

2. Definition of an abstract dual space

Starting from our two examples we will define the dual space of a given space X with respect to a suitable space Y.

DEFINITION 2.1. Let X, Y be spaces with finitely many algebraic operations such that X, Y belong to the same class of such spaces. We assume that we can assign to each algebraic operation in X an algebraic operation in Y (in a natural manner). $X^d := \{h: X \to Y | h \text{ is a homomorphism with respect to each pair of corresponding algebraic operations in <math>X$ and in Y respectively}; if both Y and X have topologies we assume in addition that each $h \in X^d$ is continuous. X^d is called the Y-dual of X or the dual space of X with respect to Y.

EXAMPLES. 1. Let X, Y be \mathbb{K} -normed spaces, then $X^d = L(X, Y) = \{h: X \to Y \mid h \text{ is linear and } h \text{ is continuous}\}$ is the ("natural") Y-dual of X.

2. We know that a Boolean ring is a ring each element of which is idempotent. We also know that there exists the smallest nontrivial (commutative) ring with unit $F_2 = \{0, 1\}$ which is at the same time a field. For this ring we have for instance $0 \cdot 0 = 0$, $1 \cdot 1 = 1$ and hence F_2 is a Boolean ring too.

Now let X be a Boolean ring with unit. To get a Y-dual for X we set $Y = F_2$ and define:

$$X^d = \{h : X \to F_2 \mid h \text{ is a ring homomorphism}\}$$

to be the first dual space of X.

REMARKS. 1. If X is a normed space then X' consists of a special family of functionals, where X^d from our definition 2.1. consists of a special family of operators.

2. If X, Y are vector spaces (over \mathbb{K}) then a linear map from X to Y we consider as a homomorphism from X to Y. If we assume that Y has a topology σ and the algebraic operations in Y are continuous then this includes that the scalar multiplication from $(\mathbb{K}, \tau_{|\cdot|}) \times (Y, \sigma)$ to (Y, σ) is continuous too.

3. The closedness theorem

At first we must show that X^d is algebraically closed in Y^X with respect to the pointwise topology τ_p .

PROPOSITION 3.1. We assume that Y has a Hausdorff topology σ such that all algebraic operations in Y are continuous with respect to σ .

Then X^d is τ_p -closed in Y^X .

Proof. Let be $f \in \overline{X^d}^{\tau_p}$, then we find a net $(f_i)_{i \in t}$ from X^d such that $f_i \xrightarrow{\tau_p} f \in Y^X$; now we consider an arbitrary pair of (multiplicatively written) algebraic operations, for example binary ones:

$$\forall (x,y) \in X \times X, \ f_i(x) \to f(x), \ f_i(y) \to f(y), \ f_i(xy) \to f(xy)$$

implying $f_i(x)f_i(y) \to f(x)f(y)$ by the continuity of algebraic operations in Y; but $f_i \in X^d$ implies that $f_i(x)f_i(y) = f_i(xy)$, hence $f_i(xy) \to f(xy)$ and $f_i(xy) \to f(x)f(y)$ implying f(xy) = f(x)f(y) since Y is Hausdorff. Since by this way we can treat unitary operations and operations of arbitrary arity and we also can include linear maps from X to Y, so finally we have $f \in X^d$.

REMARK. We can denote by $(X^d)_{\rm alg} = \{h: X \to Y \mid h \text{ is a homomorphism w.r.t.}$ each pair of corresponding algebraic operations in X and Y respectively $\}$. If X has no topology or Y has no topology then $X^d = (X^d)_{\rm alg}$; otherwise by definition $2.1 \ X^d = (X^d)_{\rm alg} \cap C(X,Y)$, where C(X,Y) are the continuous functions. In 3.1 we used $(X^d)_{\rm alg}$, since to force the function f to be continuous too, we must (in addition) assume that X^d is equicontinuous or evenly continuous.

We now can prove the closedness theorem.

THEOREM 3.2. Let X, Y be \mathbb{K} -normed spaces, and let in addition exist finitely many pairs of corresponding algebraic operations in X and in Y

126 H. Poppe

respectively; if $\|\cdot\|$ is the norm for Y, let all algebraic operations in Y be $\tau_{\|\cdot\|}$ -continuous; let X^d be defined as in Definition 2.1 and let L(X,Y) be the set of all linear and continuous maps from X to Y, as we already mentioned; hence $X^d \subseteq L(X,Y)$ and for L(X,Y) we consider the operator norm:

$$||h|| = \sup_{||\times|| \le 1} ||h(x)||$$

and we restrict $\|\cdot\|$ to X^d . Let be

$$\forall c \in \mathbb{R}, \ c > 0, \ H_c := \{ h \in X^d | \ ||h|| \le c \};$$
$$\forall x \in X, \ \forall c > 0, \ K_{x,c} := \{ y \in Y | \ ||y|| \le c ||x|| \};$$

 $\forall c \text{ for } \prod_{x \in X} K_{x,c} \text{ we consider the Tychonoff-topology.}$

Then $H_c \subseteq \prod_{x \in X} K_{x,c}$ and H_c is closed in $\prod_{x \in X} K_{x,c}$.

Proof. Let $h \in H_c$, then $||h|| \le c$;

$$\forall x \in X, \ \|h(x)\| \le \|h\| \ \|x\| \le c\|x\| \Rightarrow h(x) \in K_{x,c} \Rightarrow h \in \prod_{x \in X} K_{x,c}.$$

Let $g \in \overline{H}_c^{\prod K_{x,c}}$ then there exists a net $(h_i)_{i \in I}$ from H_c such that $h_i \to g$ in $\prod_{x \in X} K_{x,c}$ implying $h_i \stackrel{\tau_p}{\to} g$ since $\prod_{x \in X} K_{x,c} \subseteq Y^X$ and $h_i \stackrel{\tau_p}{\to} g$ in Y^X . $(Y, \tau_{\|\cdot\|})$ is Hausdorff and all algebraic operations in Y are $\tau_{\|\cdot\|}$ -continuous; since $h_i \in X^d \ \forall i \in I$ by 3.1. we get that g is linear and that g is a homomorphism for each pair of algebraic operations in X and Y respectively. Now $g \in \prod K_{x,c}$

$$\Rightarrow (g(x))_{x \in X} \in \prod K_{x,c} \Rightarrow g(x) \in K_{x,c} \ \forall x \in X \Rightarrow \|g(x)\| \le c \|x\| \ \forall x \in X$$
$$\Rightarrow g \text{ is continuous and } g \in L(X,Y), \ \|g\| \le c \text{ implying } g \in H_c. \ \blacksquare$$

COROLLARY 3.3. If X, Y have the properties mentioned in Theorem 3.2 and $(Y, \|\cdot\|)$ is a finite-dimensional normed space, then (H_c, τ_p) is a compact Hausdorff space for each c > 0.

Proof. If $(Y, \|\cdot\|)$ is finite-dimensional then each $K_{x,c}$ is compact because $K_{x,c}$ is bounded and closed in Y; then $\prod_{x\in X}K_{x,c}$ is compact by the Tychonoff theorem $\forall c>0$. Hence H_c being closed in $\prod_{x\in X}K_{x,c}$ is compact too. Since $(Y, \tau_{\|\cdot\|})$ is Hausdorff, each $K_{x,c}$ is Hausdorff and hence $\prod_{x\in X}K_{x,c}$ is Hausdorff too and so H_c is Hausdorff. \blacksquare

REMARK 3.4. If X is a normed space alone, if $Y = \mathbb{K}$ and c = 1 then we get the Alaoglu theorem (for normed spaces; see for instance [1]). Thus the corollary is a generalization of Alaoglu's theorem.

References

[1] J. B. Conway, A Course in Functional Analysis, Second Edition, New York, Springer 1990.

INSTITUTE OF MATHEMATICS UNIVERSITY OF ROSTOCK Universitätsplatz 1 18051 ROSTOCK, GERMANY E-mail: harry.poppe@uni-rostock.de

Received February 9, 2007; revised version August 14, 2007.