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A CLOSEDNESS THEOREM FOR NORMED SPACES 

Abstract. For spaces X, Y, for which some algebraic operations are defined and in 
some cases topologies for X, Y are defined too, we define for the space X a dual space 
Xd with respect to the space Y. If a is a topology for Y, (compatible with the algebraic 
operations of Y), then the pointwise topology r p for Y x is defined. We show that Xd is 
(algebraically)rp-closed in Y x . For normed spaces is shown that suitable subspaces of Xd 

are rp-closed in a product space K C Y x . As a corollary we obtain a generalization of 
Alaoglu's theorem. 

1. Introduction 
By R and C we denote the reals and the complex numbers respectively 

and by K. we mean R or C. 
Now let (X, || • ||) be a normed K-vector space and X' := {/ : X —* K | / 

linear and continuous} the (first) dual space (dual) of X. Hence X' consists 
of functions which at the same time are an algebraic homomorphism (a linear 
map) and a topological homomorphism (a continuous map). Of course X 
and K are normed spaces, meaning that X and K belong to the same class 
of spaces. We will also set Xd := X'. 

Now we consider another quite different example. Let X, Y be rings and 
for simplicity let us assume that X, Y are commutative rings with units. 
Then we can consider Xd := {he Yx\ h is a ring homomorphism} as the 
first dual space of X (w.r.t.Y.) 
REMARKS. 1. (X,|| • ||) and (K, | • |) and X = (X(+,*)), Y = (F(+,*)) 
respectively not only belong to the same class of spaces, but we also have a 
natural correspondence between the (algebraic) operations. In the first case 
the vector space structure of X correspondes to the vector space structure 
of K and the norm topologies T||.|| and 7].| (Euclidian topology) correspond 
to each other. Concerning the rings X, Y we let correspond: the addition 
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of X to the addition of F and the multiplication of X to the multiplication 
of y . 

2. By the usual operator norm, (X ' , || • ||) = (Xd, || • ||) again becomes a 
normed space (even a Banach space) meaning that also X and X' belong to 
the same class of spaces. For our two rings X and Y in the usual pointwise 
manner we can in Yx define an addition and a multiplication but then in 
general Xd is not closed under these operations, i.e. f + g, f * g may not 
be homomorphisms if / , g are. This different behaviour becomes important 
if we want to define second dual spaces: Xdd = (X', || • ||)' = (Xd, || • ||)d 

and Xdd (w.r.t.Y) for the rings X, Y respectively. Such constructions we 
will present in a forthcoming paper. If we have defined Xdd then we can 
consider the canonical embedding map J : X Xdd, Vx € X, J(x) = 
w(x,-), where w(x,h) = h(x) V7i € Xd. Here we used the evaluation map 
w : X x Y x ^ Y , w(x,f) = f(x), (x,f) £ X x Y x . 

And of course the choice of a suitable space Y for the F-dual of the space 
X depends on the fact, whether or not the canonical map J is well-defined 
and has nice properties. In our paper we want to prove a rp-closedness 
theorem for Xd, where TP means the pointwise topology for Yx and X,Y 
are normed spaces. As a corollary we get a generalization of Alaoglu's 
theorem for normed spaces. 

2. Definition of an abstract dual space 
Starting from our two examples we will define the dual space of a given 

space X with respect to a suitable space Y. 

D E F I N I T I O N 2 . 1 . Let X, Y be spaces with finitely many algebraic operations 
such that X, Y belong to the same class of such spaces. We assume that 
we can assign to each algebraic operation in X an algebraic operation in 
Y (in a natural manner). Xd := {h, : X Y\ h is a, homomorphism with 
respect to each pair of corresponding algebraic operations in X and in Y 
respectively}; if both Y and X have topologies we assume in addition that 
each h G 

Xd 
is continuous. Xd is called the F-dual of X or the dual space 

of X with respect to Y. 
E X A M P L E S . 1. Let X,Y be K-normed spaces, then X d = L(X,Y) = 

{h : X —> Y | h is linear and h is continuous} is the ("natural") F-dual of X. 
2. We know that a Boolean ring is a ring each element of which is idempo-

tent. We also know that there exists the smallest nontrivial (commutative) 
ring with unit F2 = {0,1} which is at the same time a field. For this ring 
we have for instance 0 -0 = 0, 1 - 1 = 1 and hence Fi is a Boolean ring too. 

Now let X be a Boolean ring with unit. To get a F-dual for X we set 
F = i<2 and define: 
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is a ring homomorphism} 

to be the first dual space of X. 

REMARKS. 1. If X is a normed space then X' consists of a special family of 
functionals, where Xd from our definition 2.1. consists of a special family 
of operators. 

2. If X, Y are vector spaces (over K) then a linear map from X to 
Y we consider as a homomorphism from X to Y. If we assume that Y 
has a topology a and the algebraic operations in Y are continuous then 
this includes that the scalar multiplication from (K,T|.|) X (Y, a) to (Y, a) is 
continuous too. 

3. The closedness theorem 
At first we must show that Xd is algebraically closed in Y x with respect 

to the pointwise topology rp . 
PROPOSITION 3.1 . We assume that Y has a Hausdorff topology a such that 
all algebraic operations in Y are continuous with respect to a. 

Then Xd is r„- closed in Y x . 

P r o o f . Let be / G XdTp, then we find a net (fi)iet from Xd such that 
Y x \ now we consider an arbitrary pair of (multiplicatively written) 

algebraic operations, for example binary ones: 

V(x,y) e l x l , fox) - / (*) , Mv) - f(y), Mxy) - f(xv) 
implying Mx)fi(y) ~~> f ( x ) f ( v ) by the continuity of algebraic operations 
in Y\ but fi G Xd implies that Mx)fi(v) = Mxv)i hence fi(xy) —• f(xy) 
and Mxv) f i x ) f { y ) implying f(xy) = f ( x ) f ( y ) since Y is Hausdorff. 
Since by this way we can treat unitary operations and operations of arbitrary 
arity and we also can include linear maps from X to Y, so finally we have 
feXd.m 

REMARK. We can denote by ( X d ) a i g = {h : X —> Y \ h is a homomor-
phism w.r.t. each pair of corresponding algebraic operations in X and Y 
respectively}. If X has no topology or Y has no topology then Xd = (Xd)aig; 
otherwise by definition 2 .1 Xd = (XD)A L G N C(X, Y), where C(X, Y) are the 
continuous functions. In 3.1 we used (Xd)aig, since to force the function / to 
be continuous too, we must (in addition) assume that Xd is equicontinuous 
or evenly continuous. 

We now can prove the closedness theorem. 

THEOREM 3.2. Let X, Y be K-normed spaces, and let in addition exist 
finitely many pairs of corresponding algebraic operations in X and in Y 
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respectively; if || • || is the norm for Y, let all algebraic operations in Y be 
T||.|| - continuous; let Xd be defined as in Definition 2.1 and let L(X, Y) be the 
set of all linear and continuous maps from X to Y, as we already mentioned; 
hence Xd C L(X, Y) and for L(X, Y) we consider the operator norm: 

||/i|| = sup ||/>(x)|| 
I M I < i 

and we restrict || • || to Xd. Let be 

Vc € R, c > 0, Hc := {h G Xd\ ||/i|| < c}; 
Vx G X , Vc > 0, KXtC := {y G Y\ ||y|| < c||x||}; 

Vc for r jxex we consider the Tychonoff-topology. 

Then Hc C n®ex and Hc is closed in HxeX Kx,c-

P r o o f . Let h G Hc, then ||/i|| < c; 

Vx G X , ||/i(x)|| < II ||x|| < c||x|| h(x) eKXiC^he J ] KXtC. 
xeX 

rr 
Let g G Hc x'c then there exists a net (hi)i<zj from Hc such that hi —> g 
in Y[xeX Kx,c implying hi -4 g since I l i e x Kx,c Q YX a n d hi g in 
(Y, Tj|. | |) is Hausdorff and all algebraic operations in Y are T||.||-continuous; 
since hi G Xd Vi G I by 3.1. we get that g is linear and that g is a 
homomorphism for each pair of algebraic operations in X and Y respectively. 
Now g G I I Kx,c 

(9(x))xex € Yl K*,c 9{x) G KXfi Vx G X ||5(x)|| < c||x|| Vx G X 

=> g is continuous and g G L(X, Y), ||</|| < c implying g G Hc. • 

COROLLARY 3.3. If X,Y have the properties mentioned in Theorem 3.2 and 
(Y, || • ||) is a finite-dimensional normed space, then (Hc,Tp) is a compact 
Hausdorff space for each c > 0. 

P r o o f . If (y, || • ||) is finite-dimensional then each KXFI is compact because 
Kx<c is bounded and closed in Y; then rixex ^x,c is compact by the Ty-
chonoff theorem Vc > 0. Hence Hc being closed in r ixex is compact 
too. Since (Y, ry.||) is Hausdorff, each KXjC is Hausdorff and hence rixex Kx,c 
is Hausdorff too and so Hc is Hausdorff. • 

REMARK 3.4. If X is a normed space alone, if Y = K and c = 1 then we 
get the Alaoglu theorem (for normed spaces; see for instance [1]). Thus the 
corollary is a generalization of Alaoglu's theorem. 
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