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A CLOSEDNESS THEOREM FOR NORMED SPACES

Abstract. For spaces X,Y, for which some algebraic operations are defined and in
some cases topologies for X,Y are defined too, we define for the space X a dual space
X? with respect to the space Y. If o is a topology for Y, (compatible with the algebraic
operations of Y'), then the pointwise topology 7, for Y X is defined. We show that X¢ is
(algebraically)r,-closed in YX. For normed spaces is shown that suitable subspaces of X¢
are Tp-closed in a product space K C YX. As a corollary we obtain a generalization of
Alaoglu’s theorem.

1. Introduction

By R and C we denote the reals and the complex numbers respectively
and by K we mean R or C.

Now let (X, ]| - ||) be a normed K-vector space and X' := {f : X — K|f
linear and continuous} the (first) dual space (dual) of X. Hence X’ consists
of functions which at the same time are an algebraic homomorphism (a linear
map) and a topological homomorphism (a continuous map). Of course X
and K are normed spaces, meaning that X and K belong to the same class
of spaces. We will also set X9 := X',

Now we consider another quite different example. Let X,Y be rings and
for simplicity let us assume that X,Y are commutative rings with units.
Then we can consider X? := {h € YX| h is a ring homomorphism} as the
first dual space of X (w.r.t.Y.)

REMARKS. 1. (X,]| - |) and (K,|-|) and X = (X(+,%)), Y = (Y (+,*))
respectively not only belong to the same class of spaces, but we also have a
natural correspondence between the (algebraic) operations. In the first case
the vector space structure of X correspondes to the vector space structure
of K and the norm topologies 7). and 7, (Euclidian topology) correspond
to each other. Concerning the rings X,Y we let correspond: the addition
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of X to the addition of Y and the multiplication of X to the multiplication
of Y.

2. By the usual operator norm, (X', |- ||) = (X4,|| - ||) again becomes a
normed space (even a Banach space) meaning that also X and X’ belong to
the same class of spaces. For our two rings X and Y in the usual pointwise
manner we can in YX define an addition and a multiplication but then in
general X¢ is not closed under these operations, i.e. f+ g, f * g may not
be homomorphisms if f, g are. This different behaviour becomes important
if we want to define second dual spaces: X% = (X',| - ||) = (X%, - )¢
and X% (w.r.t.Y) for the rings X,Y respectively. Such constructions we
will present in a forthcoming paper. If we have defined X9 then we can
consider the canonical embedding map J : X — X% vz € X, J(z) =
w(z, ), where w(z, h) = h(z) Yh € X% Here we used the evaluation map
w: X xYX =Y, w, f) = f(z), (z,f) € X xYX.

And of course the choice of a suitable space Y for the Y-dual of the space
X depends on the fact, whether or not the canonical map J is well-defined
and has nice properties. In our paper we want to prove a T,-closedness
theorem for X¢, where Tp, means the pointwise topology for YX and X,Y
are normed spaces. As a corollary we get a generalization of Alaoglu’s
theorem for normed spaces.

2. Definition of an abstract dual space
Starting from our two examples we will define the dual space of a given
space X with respect to a suitable space Y.

DEFINITION 2.1. Let X, Y be spaces with finitely many algebraic operations
such that X,Y belong to the same class of such spaces. We assume that
we can assign to each algebraic operation in X an algebraic operation in
Y (in a natural manner). X? := {h: X — Y| h is a homomorphism with
respect to each pair of corresponding algebraic operations in X and in Y
respectively}; if both Y and X have topologies we assume in addition that
each h € X% is continuous. X? is called the Y-dual of X or the dual space
of X with respect to Y.

ExAMPLES. 1. Let X,Y be K-normed spaces, then X¢ = L(X,Y) =
{h: X — Y | hislinear and h is continuous} is the (“natural”) Y-dual of X.

2. We know that a Boolean ring is a ring each element of which is idempo-
tent. We also know that there exists the smallest nontrivial (commutative)
ring with unit F» = {0,1} which is at the same time a field. For this ring
we have for instance 0-0 =0, 1-1 =1 and hence F5 is a Boolean ring too.

Now let X be a Boolean ring with unit. To get a Y-dual for X we set
Y = F5 and define:
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X% ={h:X — Fy | his a ring homomorphism}
to be the first dual space of X.

REMARKS. 1. If X is a normed space then X' consists of a special family of
functionals, where X¢ from our definition 2.1. consists of a special family
of operators.

2. If X,Y are vector spaces (over K) then a linear map from X to
Y we consider as a homomorphism from X to Y. If we assume that YV
has a topology o and the algebraic operations in Y are continuous then
this includes that the scalar multiplication from (K, 7)) x (Y, o) to (Y,0) is
continuous too.

3. The closedness theorem

At first we must show that X¢ is algebraically closed in YX with respect
to the pointwise topology 7.

PROPOSITION 3.1. We assume that'Y has a Hausdorff topology o such that
all algebraic operations in'Y are continuous with respect to o.
Then X9 is 7,-closed in YX.

Proof. Let be f € Fp, then we find a net (f;)ie; from X¢ such that

fi A f € YX; now we consider an arbitrary pair of (multiplicatively written)
algebraic operations, for example binary ones:

implying f;(z)fi(y) — f(z)f(y) by the continuity of algebraic operations
in Y; but f; € X% implies that fi(z)f;(y) = fi(zy), hence fi(zy) — f(zy)
and fi(zy) — f(z)f(y) implying f(zy) = f(z)f(y) since Y is Hausdorff.
Since by this way we can treat unitary operations and operations of arbitrary

arity and we also can include linear maps from X to Y, so finally we have
feX d 9

REMARK. We can denote by (X%)a, = {h : X — Y | h is a homomor-
phism w.r.t. each pair of corresponding algebraic operations in X and Y
respectively}. If X has no topology or Y has no topology then X¢ = (X d)alg;
otherwise by definition 2.1 X¢ = (X?¢),; NC(X,Y), where C(X,Y) are the
continuous functions. In 3.1 we used (X d) alg, since to force the function f to
be continuous too, we must (in addition) assume that X is equicontinuous
or evenly continuous.

We now can prove the closedness theorem.

THEOREM 3.2. Let X,Y be K-normed spaces, and let in addition exist
finitely many pairs of corresponding algebraic operations in X and in' Y
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respectively; if || - || is the norm for Y, let all algebraic operations in'Y be
7|~ continuous; let X 4 be defined as in Definition 2.1 and let L(X,Y) be the
set of all linear and continuous maps from X toY, as we already mentioned;
hence X C L(X,Y) and for L(X,Y) we consider the operator norm:

7l = sup ||R(z)I]
Ixli<1

and we restrict || - | to X?. Let be

VeeR, ¢>0, H.:={he X% ||n|| <c};
Vee X, Ve>0, Ko :={yeY| |yl <clzll};

Ve for [ ex Kec we consider the Tychonoff-topology.
Then H: C [ cx Kzc and H is closed in [[ o x Ko
Proof. Let h € H, then ||k} < ¢

Vz € X, ||h(z)|| < ||h]] |lz]| < cllz|| = h(z) € Kze = h € H K.
zeX

Let g € 7{—? Ko then there exists a net (h;)ier from H; such that h; — g
in [],cx Kz,c implying h; A g since [ cx Kzc C YX and h; A ginY¥X.
(Y, T”.”) is Hausdorff and all algebraic operations in Y are 7.-continuous;
since h; € X% Vi € I by 3.1. we get that g is linear and that g is a

homomorphism for each pair of algebraic operations in X and Y respectively.
Now g € [[ Kzc

= (9(2))sex € [[ Ko = 9(z) € Koo ¥z € X = |lg(@)|l < cllz|| Vz € X
= ¢ is continuous and g € L(X,Y), ||g|| < ¢ implying g € H,.

COROLLARY 3.3. If X, Y have the properties mentioned in Theorem 3.2 and
(Y, - ) is a finite-dimensional normed space, then (Hc,7,) is a compact
Hausdorff space for each ¢ > 0.

Proof. If (Y, - ||) is finite-dimensional then each K. is compact because
K . is bounded and closed in Y; then Hze x Kz is compact by the Ty-
chonoff theorem Ve > 0. Hence H. being closed in er x Kz, is compact
too. Since (Y, 7)) is Hausdorff, each K . is Hausdorff and hence Hiex Kze
is Hausdorff too and so H, is Hausdorff. u

REMARK 3.4. If X is a normed space alone, if Y = K and ¢ = 1 then we
get the Alaoglu theorem (for normed spaces; see for instance {1}). Thus the
corollary is a generalization of Alaoglu’s theorem.
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