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LINE GRAPHS, THEIR DESARGUESIAN CLOSURES,
AND CORRESPONDING GROUPS OF AUTOMORPHISMS

Abstract. The notion of Desarguesian closure of an arbitrary graph was introduced
in [7], and basic properties of Desarguesian closure of complete graphs were also presented
in [7]. Then, in [4], the Desarguesian closure of binomial graphs (cf. [5]) was studied. In
this paper we shall be mainly concerned with the line graphs associated with complete
graphs, their Desarguesian closure, horizon, and automorphisms.

Introduction

The notion of Desarguesian closure of a (complete) graph was introduced
in [7]. Roughly speaking, the construction of such a closure consists in adding
to every edge of a graph an “improper point”, and collecting new points into
new improper lines, determined by triangles (“planes”) of the underlying
graph. The resulting structure, which is a partial Steiner triple system,
can be considered as a “generalized Desargues configuration” representing a
perspective of two simplices. As an interesting feature of a generalized De-
sargues configuration we can note that it satisfies the (projective) Desargues
axiom: every Desargues configuration contained in it closes, and every trian-
gle in such a structure can be completed to a Desargues configuration. Some
basic properties of generalized Desargues configurations were established in
[7], in particular, their automorphisms were described.

Clearly, the construction of Desarguesian closure can be applied to an
arbitrary graph. In [4] it was applied to binomial graphs, and then the
resulting geometry was studied. The aim of this paper is to characterize the
geometry which arises when we apply our construction to line graphs. For
a given graph & its line graph &* (cf. [8]) describes the structure of the
neighborhood of edges of &. Evidently, the construction of the line graph
can be iterated, and on every level we can apply the construction of the
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Desarguesian closure. What are then the resulting geometries, and what
relationships between them may hold? For an arbitrary graph & the family
of improper objects of its Desarguesian closure yields a substructure, called
the horizon of &. One can note a similarity between the construction of the
horizon of & and the construction of the graph G* — how can this similarity
be formally stated? In this paper we try to solve these questions.

Section 1 consists, primarily, of definitions of the notions investigated
in this paper. Then, in section 2 we remind some general properties of
(generalized) Desargues configurations, called Desargues spaces. In what
follows, we show that the horizon of every graph can be embedded into the
projective space over GF(2) (2.4(iv)). In section 3 we examine in some
details horizons of graphs. After some preliminary observations (which can
be also of some interest on their own, e.g. in 3.3 we characterize the cliques
on the horizon of an arbitrary graph) we determine the geometry of the
horizon of the line graph associated with a complete graph (3.7) and then
in section 4 we determine the group of its automorphisms (4.6, 4.7). More
general, proposition 4.2 characterizes the groups of automorphisms of the
horizons of the line graphs associated with a wider class of graphs. In the
appendix (section A) we give recursive and direct formulas for parameters
of iterated line graphs and Desarguesian closures of such graphs.

1. Definitions and preliminary results

Let X be an arbitrary set. We write §4(X) for the family of all k-element
subsets of X. Then a graph is a structure & = (S, &) with 0 # £ C £2(9), i.e.
a partial linear space with 2-element lines (in this context lines are usually
called edges).

With an arbitrary graph & = (S, £) we associate its Desarguesian closure
defined as follows. With every edge a € £ we associate an element a® in
such a way that a® ¢ S and a;® # ae™ for distinct a,a2 € €. Set
§®° ={a®:a€E}and S = SUS®. Fora € £ we put @ =aU {a®}. A
subset Z € ©3(S) is a triangle of & if ©2(Z) C &; let T = T be the set
of all triangles of &. Then for any Z € T we define a new “line” Z*° =
{a™®: a € ©5(Z)}. Finally, we define L ={a:a € E}U{Z*: Z € T}. The
Desarguesian closure of G is the structure

D(8) := (5, L)

(cf. [7]). It is seen that D(S) is a partial linear space with line size equal
to 3, i.e. it is a partial Steiner triple system (cf. 1, 2, 6]). Elements of the
set S are frequently called improper points of D(S), and elements of the
set S are proper points. Similarly, lines of the form @ are proper, and those
of the form Z* are improper. Note that the set of improper points yields a
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subspace of D(&), which will be referred to as the (Desarguesian) horizon
of 6, and will be denoted by H(S).

Let, as above, & = (S, &) be an arbitrary graph. With & we associate
its line graph &* as follows. For any two edges a,b € £ we say that a and b
are neighbors if aNb # @ and a # b; in such a case we write a ~ b. Then we
put $* = £ and £* = {{a,b} € £2(€): a ~ b}. Finally (cf. [8, 2]),

&* = (S*, £%).

For an arbitrary finite partial linear space MM = (X, L) with £ C #£(X)
we use the following notation:

e v = vgy = | X| is the number of points of M;

e b = byy = |L| is the number of lines of M,

® T = Ty is the number of triangles in IM;

e ron(z) = r(x) for z € X is the number of lines of M which pass through
z; if r(z) = r(y) for all z,y € X we write simply r = rgn = rop(z);
kon(l) = k(1) for | € L is the number of points of Mt which are on [; if
k(l) = k(m) for all [, m € L we write simply k = koy = kon(l).

If X is an arbitrary set, two disjoint families £ and L2 of subsets of X
yield a partial net if

for every x € X there is exactly one I; € £1 and there is exactly
one ls € Lo with z € [, ls;

note that then the structure (X, £; U £2) is a partial linear space, and ele-
ments of £; are pairwise disjoint, both for ¢ = 1 and for ¢ = 2.

LEMMA 1.1. Let & = (S,&) be an arbitrary graph. Then the parameters of
G* are calculated as follows:

(1) Ve = bG'

(i) ber = Taes ("57).

(i) Ifa={z,y} € S* then re-(a) = re(z) + re(y) — 2.

(V) Te =T+ Laes ("57)-
Proof. (i) is evident.
(ii): Every edge {a, b} of &* can be uniquely associated with the pair (z, Z) €
S x $9(S) such that z € anb and {z,t} € € for t € Z. Thus Z is a subset
of the set of all points collinear with z in & so, Z can be chosen in (1'62(33))
ways.
(iii): Let p € S* be arbitrary. From definition, a ~ p iff, either p goes
through z, or p goes through y, and p # a. This justifies our formula.
(iv): Note that a triple of points of &* is a triangle in &* if, either, it has
the form {{z,y}, {y, 2z}, {z,z}}, or it has the form {{t,z},{¢t,y},{t,2}} for
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some I,y, 2,t € S. Triangles of the first type correspond to triangles of G —
there are T triangles of this type. Triangles of the second type are formed
(point after point) by edges of & with one end fixed. O

To avoid some trivial cases, we assume the following condition
Cx : Every connected component of & has at least 3 elements.

As a consequence of Cx, no edge of & is its connected component. It is seen
that Cx states, equivalently, that &* has no isolated (i.e. degree 0) point.

Immediately from definition we get parameters of the Desarguesian clo-
sure of a graph.

FACT 1.2. Let & be an arbitrary graph, set © = D(S).
(i) The number vy of improper points of © is bg; consequently, vy =
'v(5+v°6° =’Ue+b5.

(ii) The number bF of improper lines of © is the number Tg of triangles
of 8, and then bp = bg + bF =bs + 7s.

(iii) If g is a proper point, then ro(q) = re(q); if ¢ = a®°, where a =
{z,y} is an edge of &, then ro(q) = rE(a) + 1, where rF(a) = ru(e)(q) is
the number of points z of & such that {z,y, 2} is a triangle in &.

(iv) The size of every line l of ® is kp(l) = 3.

Combining 1.1 with 1.2 we obtain the following.
COROLLARY 1.3. Let & = (S,E) be an arbitrary graph, let © = D(G*).

(i) vp=ve +be =bs+ Y s (")
(ii) bp = be- + b3 = E:CES (Tsz(z)) +Te+ ZzES (rﬁs(z))'
(ili) If A = {a,b} € &*, then rp(A®) = rZ.(A) + 1 and rZ.(A) =
re(anb) —2+0(a,b), where o(a,b) =1 if a,b can be completed to a triangle
in G, and o(a,b) =0 otherwise.

.

Proof. (i) and (ii) are evident. To prove (iii) it suffices to determine, with
the same reasoning as in the proof of 1.1(iv), all the triangles of G* with one
fixed side A. O

The construction of the line graph can be, evidently, iterated. For an
arbitrary graph & we define inductively: 60 = &, 6™+t = M)~ for
m =20,1,.... In section A we shall show some properties of this iteration.

2. Complete graphs

Recall that the complete graph on n vertices is the structure K, =
(X,92(X)), where X is any set with |X| = n. In the sequel, for short
we write K™ = (K,)™. For convenience, we take X = {0,...,n — 1}.
The following is evident
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FACT 2.1. For every integer n with n > 2 it holds

n n
VK, =N, bKn = (2)a TK, = (3>7 TK, =N — 17

o(a,b) = 1 for every pair (a,b) of neighbor edges of K.

As an immediate consequence of 2.1 and 1.3 we obtain
COROLLARY 2.2. Let ©® = D(K,*) and $ = H(K,").

(i) D has (n —1)(3) points, (n + 1)(3) lines, its proper points have
degree 2n — 4, and improper poinls have degree n — 1.

(ii) $ hasn(™;") points, (n—2)(3) lines, and its points are of the degree
n—2.
Proof. We have in turn: vy = bg, + vk, - (”2‘") = (Z’) +1n(";1) =
(n— 1)(72") Then bp = vk, - (’”2(") + Tk, + VK, - (”'13(,1) = n(n; ) + (g) +

n("3"):
A proper point a = {z,y} of ® has degree 2-rg, (z) —2=2(n—-1) - 2.
An improper point has degree rg, —2+0c+1=(n—1)+0. 0O

Complete graphs and their Desarguesian closures are, in a sense, most
important. We write D, = D(K,,) and we call D,, the Desargues space (of
dimension n — 1). It is seen that D, can be visualized as the perspective
with center 0 of the simplex {1,...,n} onto {{0,i}**:¢ = 1...,n}. This
observation yields

FACT 2.3. Let n > 4 and let P be an at least (n — 1)-dimensional projec-
tive space. Every independent set Xo with |Xo| = n of points of P can be
completed to a closed configuration © in P such that ® = D,,.

Proof. From assumption, B can be considered as a projective completion
of an affine space 2, defined over a vector space V with dim(V) = m > n.
Without loss of generality we can assume that Xy = {eg, €1, ...,en}, where
eg is the zero vector of V, and thus Xo\ {ep} is an independent set of vectors
of V. Let us consider a map f’: X — X defined by f'(i) = ¢;. Clearly, no
two lines of ¥ determined by points in X are mutually parallel. Fori,j € X,
i # 7 let f”({%,5}°) be the direction of the line of & which joins f/(i) and
f'(j). The map f’ embeds K, into %, and f = f'U f” is an embedding of
D(K,) onto a closed configuration in ‘B. O
PROPOSITION 2.4.

(i) Let & be an arbitrary graph on n vertices. Then & is a subgraph
of K.

(ii) If &y is a subgraph of Gz, then D1 = D(G;) is a subspace of Dy =
D(63), and the horizon of &1 is a subspace of the horizon of &.
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(iii) Let n > 4. Then the (n — 1)-dimensional Desargues space D, can
be embedded into the projective (n — 1)-dimensional space over GF(2), and
the horizon of Ky, isomorphic to D,,_1 can be embedded into the projective
(n — 2)-space over GF(2).

(iv) Let & be as in (i). Then the horizon of & is a partial Steiner triple
system embedable into the projective (n — 2)-space over GF(2).

Proof. (i) and (ii) are evident.
(iii): By 2.3, D, is isomorphic to a closed configuration in the (n — 1)-
dimensional projective space P over GF(2). Since lines of P have the same
size as lines of D,,, we obtain a required embedding.

To close the proof of this statement it suffices to recall that the map

i— {0,i}*° — 1 forie X\ {0}; 0—0
determines an automorphism of D,,, which maps the set of improper points

of D(K,,) onto D(&'), where &' is the complete graph on the vertices X \ {0}.
(iv) is an immediate consequence of (i), (ii), and (iii). a

The observations of 2.4, of a pure theoretical importance (comp. e.g.
problems on embedability examined in [1]), can not be directly used to de-
termine the geometry of the Desarguesian closure of particular graphs and
their horizons.

3. Desarguesian horizon
Note the following

PROPOSITION 3.1. Let & = (S,E) be a connected graph with constant point
degree. Then the following conditions are equivalent.

(i) All points of D(G) have the same degree.
(i) & = K, for some n, and thus D(&) = D, is a Desargues space.

Proof. The implication (ii) = (i) is evident. Assume that (i) holds. Let
a = {z,y} € £ and ¢ = a*. In accordance with 1.2, rp(g)(q) = r&(a)+1 =
re(x), which means that {y,t} € £ whenever {z,t} € £ and t # y. Thus &
is determined by a transitive relation, which proves that £ = £5(.5). O

In view of 3.1, in general, the geometry of the Desarguesian closure of a
graph and the geometry of its horizon may differ. Therefore, in the sequel,
we shall be mainly concerned with Desarguesian horizons of graphs.

To get an idea, how the horizon of a graph looks like let us note the
following observation. Let & = (S,€) be a graph and K be the family
of the maximal cliques in &. Every K € K determines in & a complete
subgraph = K for s = |K|, and, by 2.4, K determines a subspace K> =
{a™: a € P2(K)} of the horizon H(S), which is isomorphic to Ds_;. Let us
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write K = {K *: K e IC}. Since every edge of G is contained in at least
one clique we get that K is a covering of H(S) by a family of Desargues
spaces. Therefore, to characterize the geometry of the horizon of G it suffices
to determine the structure of cliques in &.

To this aim the following observation is useful.

FacT 3.2. Let G be an arbitrary graph and (KC;: i = 1,...,3) be a partition
of the family IC of all the mazimal cliques of & such that

(i) if K1, Ka € K; for some i, then |[K1 N Ka| < 1;
(i1) if K, € K;, forr = 1,2 and i1 # 42, then K; N K» is at most an edge
of G.
Then the family (K;*°: i =1,...,s) has the following properties:
(iii) Let g € My, My € K;*® for some i. Then My = Ms.
(iv) Let M, € K;.*° forr =1,2 and i1 # i2. Then |M1 N M| < 1.
(v) Letqe M, € K;,*®° forr =1,2 and i1 # i3, and ¢; € M; \ M3_;.
Then q1 and g2 are not collinear in H(S).

Proof. The statement (iii) is an immediate consequence of (i), and (iv)
follows by (ii).

Let M, = K,* and K, € K;_, and let ¢ = a® with a = {z,y} € ©2(K);
by (ii), a = K1 N K2. Consider gr = a,*°, where a, = {z,,y,} € P2(K,);
then g. € M,. Suppose that ¢; and g2 are collinear in H(G), then a1, a9 are
sides of a triangle in & so, without loss of generality, we can assume that
z1 = z2 and ¢ = {y1,y2} is an edge of &. Since z1 € K1 N K, we infer that
z € a, say: r1 = z. Since ¢, ¢, g2 are pairwise distinct, the edges a, a1, as
are pairwise distinct as well. The set Z = {x,y,y1,y2} is a clique in & so,
it can be extended to a maximal clique Ky. Note that |Ko N K| > 3 so, by
(1),(i1), Ko = K3 = Ko, which is impossible. This proves (v). O

The covering K™ is determined entirely by the geometry of H(S).
Namely, we have the following

FACT 3.3. Let & = (S,&) be an arbitrary graph, we write J = J(H(®)) for
the graph of collinearity of points of H(S).

(i) Every line of H(®) is a mazimal clique in J.

(ii) Let H be a mazimal clique in J. Then there is a cliqgue K in & such
that K™ is the subspace of H(S&) spanned by H. If no three points of H are
collinear in H(®), then K is mazimal.

(iii) Let K be a mazimal cliqgue in &. Then there is a mazimal clique H
in J such that K is the subspace of H(&) spanned by H.

Proof. Note that, directly from definition, if ¢; = a;* for a; € £ (i = 1, 2),
q1 7 q2, and ¢qi, g2 are collinear in H(&), then a; Nas # § and a1 Uas € Tg.
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(i): Let L be a line in H(&), then L = T, where T is a triangle in
G. Clearly, L is a clique in J. Let ¢ = a® with a € £ and suppose that ¢
is collinear with all points on L. Then a N ¢ # § for every side c € ®o(T),
which yields a C T so, g € L.

(ii): If H is a line of H(G), the claim is evident (cf. (i)). Assume that
no three points in H are collinear and let q;, g2 € H. Then there are vertices
¥, 1, z2 of & such that {y,z1,z2} € Tg and ¢; = a;* with a; = {y, z;} for
i=1,2. Weset K =J{a: y€a €&, a™ € H}. Evidently, K is a clique
in &. Suppose that K9 = K U {z} is a clique and z ¢ K. Then {y,2}* is
collinear with all the points in H, which contradicts the maximality of H.
Clearly, K*° is a (desarguesian) subspace of the horizon of &, and H C K*°;
it is seen that it is the smallest subspace of H(&) that contains H.

(iii): If K is a triangle, the claim follows directly from (i); therefore we
assume |K| > 3. From 2.4(iii) we know, that K> is a Desargues space, so
it can be presented in the form D(J') for some complete subgraph J’ of J.
The point is to show the vertices of J' explicitly.

Let y € K, weset H = {a®:y € a € $2(K)}. Clearly, H is a clique in
J and, as in the proof of 2.4, we prove that the elements of K™ can be
identified with the points of the set D(H) which, in turn, is the subspace of
H(&) spanned by H. It remains to show that H is maximal. Let (as in (i))
g = a® be collinear with all the points in H. There are at least three edges
of & passing through y and contained in K since a crosses them all, y € a.
Thus a = {y, z} for some z. Now, the requirement that q is collinear with
every ¢’ € H yields that {z,2'} € £ for every 2’ € K \ {z} and, since K is a
maximal clique, we get z € K so, finally, g € H. O

Let & = (X, &) be an arbitrary graph and t € X. We write £y = {a €
£:t € a}. Aswe already noted in the proof of 1.1, the family 7+ of triangles
of &* can be divided into two sets

Fex 1= {QQ(Z) Z € T@},

Vg* = U pg(g(t)),
teX

and thus the family of lines of H(G*) is divided into the following two:
F& ={T>*:T€Fs}, and V& :={T°:T€Ve}.
Moreover, we have evident

FACT 3.4. Let G = (S,€) be an arbitrary graph and t be one of its vertices
with re(t) > 3. Then &y is a mazimal clique in &*. Moreover, if t1 # ta,
then £,y # Et,) (note: Cx is used here!).
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If K is a mazimal clique in &*, then either K € Fg+ or K = &y for
some vertex t of G.

Let us write

He := {S(t): te S, re(t) > 2}

If K1,Ks € Fe« or K1,Ky € He+, and K1 # Ka, then |K1 N K| < 1.
If Ky € Fs« and Ky € Hg+, then K1 N Ko is at most an edge of &*.
Therefore, G* satisfies conditions (i) and (ii) of 8.2. Consequently, we have
the following.

Let T € V. Then T is contained in a (unique) cliqgue K in &%, and
K € He+. Therefore, lines contained in £4)*>° are members of V&.. Put

% = {M>: M € He+}. From previous considerations, elements of HZ.

are (Desargues) subspaces of H(G*). Distinct lines in F&. are pairwise
disjoint, and distinct subspaces M™>™ with M € Heg» are pairwise disjoint as
well. If L € F&. and M € HZ. then LN M is at most one element set. If,
moreover, ¢1 € L\ M and go € M\ L then ¢i, g2 are not collinear in H(G*).

As a consequence of 3.4 we note the following observation:

FACT 3.5. Let G = (S,£E) be an arbitrary graph and t be one of its vertices.
Let r = ra(t) > 4. Consider a pair C = {a,b} of edges of S witht =anb
and set ¢ = C™; then q is a point of H = H(S*). If o(a,b) =1 then there is
(ezactly one) line of D which passes through q and belongs to F&.. Let V7°
be the (remaining) lines through q; they are in V&.. Then points of V3° span
a (r — 2)-dimensional Desargues subspace of $) which coincides with E;)>.

Proof. The only non trivial part of the statement consists in the fact that
points of V° span &) *.

Let y, z be vertices of & with a = {t,y}, b = {t, 2}, and let {z1,...,2,—2}
be the set of the remaining vertices joinable with ¢; we put d; = {t,z;}
and then D := {di,...,d,_2} C &); in particular, every two edges in D
are neighbor. Then every line L; of $ through g which belongs to V&, is
determined by a triangle (a, b, d;) of &* and consists of the points g, u; = AS°,
and v; = B, where A; = {a,d;}, B; = {b,d;}. Every two points u;, u; are
on a line of §) determined by the triangle (a,d;, d;), the third point of this
line is w;; = {d;,d;}*, points v;,v;,w; ; are on the line determined by the
triangle (b, d;, d;), and for every triple (4, j, k) the points w; j, wjk, and w;
are on a line of §) determined by the triangle (d;, d;,dx). This proves that
the set {q,w; j,us,vj: 4,5 =1,...,7— 2, i # j} is a subspace of §), spanned
by D>, and equal to £¢)>. a

Directly from 3.5 we obtain

COROLLARY 3.6. Let & be a graph with the degree of every point at least 4,
let $ be the horizon of &* and let g be a line of . We write V> = V&,
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H® =HG., and F* = FZ.. The following conditions are equivalent:
(i) g €V>;
(i) for every (equivalently: for some) point q € g there are lines g1, g2 of
9 such that q € g1 and (g, 91, 92) are sides of a triangle in $.
9,91, 9 g

If the condition (ii) is not satisfied, then g € F°°.

Consequently, the families F°° and V> are intrinsically distinguishable.
Elements of H™ are at least 2-dimensional Desargues spaces. The families
F*® and H™ yield in $ a partial net.

In particular, we obtain

COROLLARY 3.7. Let & = K,, and $) be the horizon of G*.

(i) Let n = 4. The families F* and V™ of lines of $) yield a partial
net.

(i) Letn > 4. The horizon §) can be considered as a union of pairwise
disjoint (n — 3)-dimensional Desargues spaces formed by the lines from V>°.
The family H™ of these configurations together with the family F>° yield a
partial net.

4. Automorphisms

With every automorphism f of a graph & = (S, £) we associate the map
f*: &€ — & defined by the condition f*({z,y}) = {f(z), f(y)} and the map
[ defined on the set S by the condition f*(a™) = f*(a)> fora € £.

PROPOSITION 4.1. The two maps
Aut(6) > f— f* € Aut(6G*) and Aut(8) 3 f— f* € Aut(H(S))
are group monomorphz’sms.'

Proof. It is evident that f* € Aut(6*) and f* € Aut(H(S)) for every
f € Aut(S). Suppose that f*(a) = a for every a € &; take a = {z,y}. Let
So be the connected component of z, we can assume that re(z) > 1. From
assumption, either

a) f(z) =z and f(y) =y, or
b) f(x) =y and f(y) = =.

In the case (a) we obtain that f(z) = z for every z joinable with x and
therefore, f is the identity on Sp. In the case (b) we consider any z such that
a#b={z,z} €&. Since f*(b) = b we get f(2) =z and z = y. Similarly, =
is the only point joinable with y. Finally, Sg = a, which contradicts Cx.

Now, let us assume that f® = id, i.e. f*(a)™ = f*(a>®) = a* for every
edge a of &. This yields f* = id and, by the above, f = id. |
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Proposition 4.1 enables us to associate with every f € S, = Aut(K,) an
automorphism (™ of K,(Lm) defined inductively: f© = f, fm+l) — f(m)*.
Recall that Aut(K,) = S, and Aut(D(K},)) = Sp41 (comp. [7]).

We are going to prove that, with one exception (cf. 4.6) every automor-
phism of Aut(H(K,(lm))) is determined by a permutation in S,. Note, first,
an evident observation. Let & be an arbitrary graph. If f € Aut(&) then f*
leaves invariant the families Fg+ and Vg- of triangles of G*. Consequently,
f** leaves invariant the families of lines &, and V. of the horizon H(&*).

To determine the automorphism group of the horizon of K,* for n > 4
we shall prove a more general fact.

PROPOSITION 4.2.

(i) Let & be a graph such that the degree of each of its vertices is at
least 3. Then the graph G* satisfies the following:

(a) the degree of each of vertices of this graph is at least 4.
(b) every edge of the graph is a side of a triangle of it.

(ii) Let & satisfy (a) and (b), and let F' be an automorphism of the
horizon $ of G*. Then F = f** for some f € Aut(&). Consequently, from
4.1 we get that Aut($)) = Aut(S).

Proof. (i): From 1.1(iii) and assumptions, &* satisfies (a). Now, let A be
an edge of G*, then A C £y for some point ¢ of &. Since rg(t) > 3, from
3.4 we can complete A to a triangle in &*, which proves that this graph
satisfies (b).

(ii): In view of 3.6, every automorphism F' of §) must preserve the families
F° = F& and V*° = Vg.. Moreover, F must preserve the partition of the
set of points of §) into suitable subconfigurations £)*° =: Hy, t — a point of
G, as defined in 3.4.

Thus F determines a permutation f of the vertices of & such that F
maps H; onto Hyy. To close the proof we must show that f € Aut(&) and
F = f*>,

Let ap = {t1,t2} be an edge of &; we complete it with ¢y to a triangle
in & and set a; = {t2,t0}, a2 = {t1,t0}, A1 = {ao,a2}, Ay = {ag,a1},
Ap = {a1,a2}, and ¢; = A;® for ¢ = 0,1,2. Then points qo, g1, g2 are
one one line in F*°. Under our assumptions, g; € H;, is transformed onto
q; = F(q:) € Hy, for i = 1,2, moreover the points ¢) and g5 must lie
on a line in F*°. Therefore, there exists in & a triangle tj,¢],t) such that
¢ = A, A = {a, L}, o] = {t},t.} ({3, 5} = {0,1,2}). Then ¢| € Hy
so, t; = f(t;) and thus f(¢1) and f(¢2) must be joinable in &. This proves
that f € Aut(S).
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Let G = F~lo f**, then G € Aut()) and G preserves every subconfigu-
ration H;. Let g be a line in F°°, then g is determined by a triangle (z, y, z)
of & under the rule

g={{{ev} .2}, {n.2h .21}, {2}, {20}

Note that g crosses H;, Hy, and H,. Then the image G(g) must be in
F*°° and must cross the same subconfigurations H;, Hy, and H,. It is seen
that this yields G(g) = ¢ i.e. G leaves every line in F* invariant. Since
through every point of §) there pass exactly one line in F°° and exactly one
subconfiguration of the type H;, we get G = id, and thus F = f**®, as
required.

In view of (i) above, &* satisfies Cx as well. Applying 4.1 we get that the
map Aut(®) > f — f**° € Aut(S) is an isomorphism. O

COROLLARY 4.3. Let G be a graph satisfying (a) and (b) of 4.2, and F €
Aut(&*). Then F = f* for some f € Aut(S). Consequently, Aut(G*) =
Aut(6).

Proof. We set F/ = F*. By 4.2(ii), there is f € Aut(&) such that
F> = F' = f**, From 4.1 we infer that F' = f* which is our claim. a

Directly from 2.1 and 4.2(i) we obtain

COROLLARY 4.4. Let, eithern >4 and m >0, orn =4 and m > 0. Then
K™ satisfies the conditions (a) and (b) of 4.2.

One particular case is left: D(K4*). Its horizon has a slightly different
geometry.

For arbitrary integer n we consider X = {1,...,n};let S = X x X. Then
we define the cartesian net on §:

(1) I =X x {i}, W={i}xX fori=1,...,n,
(2 L={:i=1..., 2}, L'={l:i=1,...,n},L=L'uL".

Finally, from the incidence structure (S, L) we remove the diagonal A =
{(3,7) € S: i = j}, and the obtained structure (S \ A, £) we denote by N¢.

PROPOSITION 4.5. Let n be an integer with n > 3.

(i) The map p defined by u(i, j) = (4,1) is an involutory automorphism
of N9, which interchanges families L' and L".
(i) For every permutation a € S, there is exactly one F,, € Aut(N9)
such that Fo(l!') = lZ(i) for everyi=1,...,n. Moreover, Foou= poF,.
(i) If f € Aut(N?2), then there isa € Sy, such that f = F, or f = poFy,.
Consequently, Aut(N2) = Co @ S,,.
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Proof. (i) is evident, since u is a reflection in the diagonal A of the structure
defined by (1), (2).
(i) Let o € S,,. We set

(3) Fa(i,5) = (i), o(5)).

It is seen that F, is an automorphism of the cartesian net defined by (1),
(2), and F,, preserves A so, F, € Aut(N2). Evidently, F,(I/) = lg(i), and
F, and p commute.

To close the proof, we consider f € Aut(N?) such that f(I) = I for
every i = 1,...,n. Note that for every ¢ there is exactly one j such that I
and l; have no point in common, we simply take j = i. Therefore, f leaves
invariant every line I7, and thus f = id.

(iii) Let f € Aut(N?), and let ¢ = (1,n) € S\ A. If f maps I/, (passing
through ¢) onto a line in £, we set f' = f; if f maps I/, onto a line in
L", then we set f' = po f. Let p = (io,J0) = f'(¢) € S\ A. Therefore,
10 # jo and thus there exists o € S, with a(1) = iy, a(n) = jo. From (3) we
obtain F,(q) = p; let G = (Fy)~! o f'. Then G € Aut(N3), G(q) = ¢, and
G(ly) € L' so0, G(I,) = I, and G(I{) = lf. The lines crossed by I, are lj with
j # 1, and thus G must leave this family invariant; similarly we note that
G leaves invariant the family l;- with j # n and, finally, G leaves invariant
families £’ and £”. Thus G determines a permutation 3 € S, such that
G = lg(i) (note: B(1) =1 and B(n) = n), From (ii) we obtain Fg = G,
which closes the proof. 0

Note, as an interesting fact, that IN§ is a hexagon Cg — it is trivial that
Aut(Ng) = Cy & S3 (see any standard textbook, e.g. [3]). More important
observation is (cf. 3.7(i)) that the horizon of K4* is N§.

To justify this observation more directly we give two tables. The first of them shows
the incidence matrix of Ky; points are 1,2, 3,4, and lines (edges) are a, b, ¢, d, e, f. Then we
present how the points of H(K4*) are grouped into lines (7} is obtained from the triangle
without the point i; L; is obtained from the edges passing through ¢, for ¢ = 1,2, 3,4):

Tl T2 T3 T4
alblcldlels " 1l " 1"
1 I : L. | l. le|. he U P B e
2 d b ° L2 = {{67 f}oo, {fv d}°°7 {d’ e}oo}
3 oo °
4 oo | o Ly = {{e’ ™, {ea}™, {a, e}w}
Lo= | {{f,}*, {ab}”, {bf}%, }

Now it is seen that H(K4) = Nj.
As an immediate consequence of 4.5 we get
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COROLLARY 4.6. Let $) be the horizon of K4*. Then Aut($) = Cs @ Sy.

COROLLARY 4.7. Let n>4 and m>0, and let $ be the horizon of D(K,(lm)).
Then Aut(K,(lm)) >~ S, and, consequently, Aut($) = S,. If m >0, then
Aut(H(K‘Em))) > Aut(Kim)) = Aut(K4*), where the latter was described in 4.6.

Proof. By 4.2 and 4.4, Aut($)) = Aut(K,(lm_l)), which, by 4.3 closes the

proof. a

A. Iteration of the construction of line graphs

In this appendix we shall apply the results of previous sections to compute
explicit formulas for basic parameters of the Desarguesian closures and of
Desarguesian horizons of iterated line graphs. Let us begin with the following
general observation, which follows immediately from 1.1.

FACT A.l. Let G be a graph with constant point degree. We denote v(™ =
Vg(m), b(™ = bgm), r(m = To(m), and 7(m = Tam)- Then the following
recursive formulas are satisfied:
plmtl) = 9. p(m) _ 9
p(m+l) = p(m)
) pimH1) — ylm) . (T
=v™ - (7,7),

T(m+l) — T(m) + 'U(m) . (7'(37")).
In particular, all points of ™) have the same degree.

As an immediate corollary we can note

PROPOSITION A.2. The only connected graph & which satisfies rg = reo-
is a cycle, i.e. a closed polygon C, with n = vg. Consequently, G = &* iff
G = C, for some integer n.

Proof. It suffices to note that the only solution of (™) = p(m+l) = 2.
rm —2is r(M =2, g

Solving the system (4) we obtain
COROLLARY A.3. Under assumptions of A.1 we have

(5) vl =2m.pO@ _N"9i=om.pO 0™ 1) =2m(r® —2) +2.

i=1

1
(6) bm*D = plm). (’"("; )>; s0

(2i—1)
pm) — {b(O) . i'c=1 (1' 2 ) Jorm =2k

AR ) (T(;i)) form=2k+1"
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m—1 (9)
7 rm =70 4 v (r )
(7) g 3

Note that iteration of the construction of the line graph leads to graphs
such that their Desarguesian horizon may contain points with different de-
grees. Let us begin with somehow evident

FACT A.4. Let & be an arbitrary graph and h = {A, B} be an edge of &2,
Then A = {a,b}, B = {a,c} for some edges a,b,c of & and one of the
following holds:
(1) a,b,c yield a triangle in S, i.e. there are points x,y,z of & such

that a = {z,y}, b={y,z}, and c = {2,z};

(ii) a,b,c have one common edge so, a = {z,t}, b = {y,t}, and ¢ =
{z,t} for some points z,y,z,t of 6;

(i) b,a,c are consecutive sides of a path in S, i.e. b = {u,z}, a =
{z,y}, and c = {y, 2z} for a path u,zx,y, z with pairwise distinct vertices.
In the cases (i) and (ii) it holds 0(A,B) = 1, and 0(A,B) = 0 in the
case (iii).

Consequently, the horizon H(6(2)) has Te« = Te+D_4cq (TG3(E)) points
{A, B} with o(A,B) = 1.
Proof. In the cases (i) and (ii) we set C = {b, c}; then C is an edge of G()
which completes A, B to a triangle. If there were such a completion in the
case (iii) then C' = {b, ¢} would be an edge of (1) and then bN¢ # @, which
is impossible. 0O

From A 4, as a consequence of 1.3(iii) and A.3 we obtain

LEMMA A.5. Let S be a graph with the following properties:

(i) every point of & has the same degree > 3;

(ii) & contains a not closed path of length 4.
Then © = 6@ has points p, q with To(p) # ro(q).

The horizon of ® contains Tex = Te + Ve - (r36) points {A, B}*° with
o(A, B) = 1. Consequently, the horizon of G has T +vea- (rf) points with
degree 2rs — 3, and the remaining points have degree 2rs — 4.

Proof. [Computation] Let ¢ = h*°, h = {4, B}, where A, B are points

of 6@ ie. edges of G*. Let a = AN B and a = {z,y}. Then rp(q) =

re@>(h) =rgw(a) —2+0(4,B) = (re(z) +re(y) —2) - 2+0(4,B). O
As a consequence of A.3 we obtain

COROLLARY A.6. Let us substitute © = K, in A.1 and let us write xslm) =
X p(m) for x = v, b, 7, 7. For every integer n with n > 3 and arbitrary m it
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holds .
('2‘) (2 (n 3)+2) for m =2k

(n) 1,_0 (Zzz(n 3 +2) form=2k+1 ’

o = (5) + sz (P22,

vi™ = b;’"—l), r;m) =2™(n —3) + 2.

COROLLARY A.7. Let ® = D(KS™) for m > 2 and HS™ be the horizon of
. Then the parameters of H,(,m) are as follows:

b{m™ =

g = o =B, by = B = 7l
H,(,m) has
rﬁ{’“l) points with degree 2r$lm_2) -3,
bﬁlm) — ‘r;m_l) points with degree 2r(m Dy
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