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LINE GRAPHS, THEIR DESARGUESIAN CLOSURES, 
AND CORRESPONDING GROUPS OF AUTOMORPHISMS 

Abstract. The notion of Desarguesian closure of an arbitrary graph was introduced 
in [7], and basic properties of Desarguesian closure of complete graphs were also presented 
in [7]. Then, in [4], the Desarguesian closure of binomial graphs (cf. [5]) was studied. In 
this paper we shall be mainly concerned with the line graphs associated with complete 
graphs, their Desarguesian closure, horizon, and automorphisms. 

Introduction 
The notion of Desarguesian closure of a (complete) graph was introduced 

in [7]. Roughly speaking, the construction of such a closure consists in adding 
to every edge of a graph an "improper point", and collecting new points into 
new improper lines, determined by triangles ("planes") of the underlying 
graph. The resulting structure, which is a partial Steiner triple system, 
can be considered as a "generalized Desargues configuration" representing a 
perspective of two simplices. As an interesting feature of a generalized De-
sargues configuration we can note that it satisfies the (projective) Desargues 
axiom: every Desargues configuration contained in it closes, and every trian-
gle in such a structure can be completed to a Desargues configuration. Some 
basic properties of generalized Desargues configurations were established in 
[7], in particular, their automorphisms were described. 

Clearly, the construction of Desarguesian closure can be applied to an 
arbitrary graph. In [4] it was applied to binomial graphs, and then the 
resulting geometry was studied. The aim of this paper is to characterize the 
geometry which arises when we apply our construction to line graphs. For 
a given graph 6 its line graph &* (cf. [8]) describes the structure of the 
neighborhood of edges of 6 . Evidently, the construction of the line graph 
can be iterated, and on every level we can apply the construction of the 
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Desarguesian closure. What are then the resulting geometries, and what 
relationships between them may hold? For an arbitrary graph & the family 
of improper objects of its Desarguesian closure yields a substructure, called 
the horizon of &. One can note a similarity between the construction of the 
horizon of 6 and the construction of the graph &* - how can this similarity 
be formally stated? In this paper we try to solve these questions. 

Section 1 consists, primarily, of definitions of the notions investigated 
in this paper. Then, in section 2 we remind some general properties of 
(generalized) Desargues configurations, called Desargues spaces. In what 
follows, we show that the horizon of every graph can be embedded into the 
projective space over GF{2) (2.4(iv)). In section 3 we examine in some 
details horizons of graphs. After some preliminary observations (which can 
be also of some interest on their own, e.g. in 3.3 we characterize the cliques 
on the horizon of an arbitrary graph) we determine the geometry of the 
horizon of the line graph associated with a complete graph (3.7) and then 
in section 4 we determine the group of its automorphisms (4.6, 4.7). More 
general, proposition 4.2 characterizes the groups of automorphisms of the 
horizons of the line graphs associated with a wider class of graphs. In the 
appendix (section A) we give recursive and direct formulas for parameters 
of iterated line graphs and Desarguesian closures of such graphs. 

1. Definitions and preliminary results 
Let X be an arbitrary set. We write Pfc(X) for the family of all fc-element 

subsets of X. Then a graph is a structure @ = (S, £) with 0 / £ C P2{S), i.e. 
a partial linear space with 2-element lines (in this context lines are usually 
called edges). 

With an arbitrary graph & = (S, £) we associate its Desarguesian closure 
defined as follows. With every edge a G £ we associate an element a°° in 
such a way that a°° ^ S and ai°° / <2200 for distinct ai,a2 € £. Set 
S°° - {a°°: a G £} and S = S U 5°°. For a € £ we put a = a U {a00}. A 
subset Z € P3(S) is a triangle of 6 if P2(Z) C £; let T = Te be the set 
of all triangles of ©. Then for any Z e i we define a new "line" Z°° = 
{a°°: a € P2{Z)}. Finally, we define C = {a: a € £} U {Z°°: Z G T}. The 
Desarguesian closure of & is the structure 

D ( 6 ) := (S,C) 
(cf. [7]). It is seen that D(@) is a partial linear space with line size equal 
to 3, i.e. it is a partial Steiner triple system (cf. [1, 2, 6]). Elements of the 
set S°° are frequently called improper points of D(6) , and elements of the 
set 5 are proper points. Similarly, lines of the form a are proper, and those 
of the form Z°° are improper. Note that the set of improper points yields a 



Desarguesian closure of line graphs 973 

subspace of D ( 6 ) , which will be referred to as the (Desarguesian) horizon 
of&, and will be denoted by H ( 6 ) . 

Let, as above, 6 = (S, £) be an arbitrary graph. With 6 we associate 
its line graph &* as follows. For any two edges a,b £ £ we say that a and b 
are neighbors if a fl b ^ 0 and a ^ £>; in such a case we write a ~ b. Then we 
put S* = £ and £* = {{a,b} GP2(£): a ~b}. Finally (cf. [8, 2]), 

6* := (S*, £*). 

For an arbitrary finite partial linear space Tl = {X , £) with £ C P(X) 
we use the following notation: 

• v = vgji = |X| is the number of points of 5PT; 
• b = bfjji = |£| is the number of lines of 9JI; 
• r = TOT is the number of triangles in 971; 
• rm(x) = r(x) for x G X is the number of lines of VJt which pass through 

x; if r(x) = r(y) for all x, y € X we write simply r = r^jt = 
• = for Z G £ is the number of points of SDT which are on Z; if 

k(l) = fc(m) for all l,m G C we write simply fc = fcgn = fcgjt(Z). 
If X is an arbitrary set, two disjoint families C\ and £2 of subsets of X 

yield a partial net if 

for every x € X there is exactly one ¿1 € C\ and there is exactly 
one Z2 G £2 with x € l\, I2; 

note that then the structure (X, C\ U £2) is a partial linear space, and ele-
ments of Li are pairwise disjoint, both for i = 1 and for i — 2. 

LEMMA 1.1. Let & = (S,£) be an arbitrary graph. Then the parameters of 
&* are calculated as follows: 

(i) v&* = be-

( " ) b & = E x , s ( r i x ) ) -

(111) If a = {x, y} G S* then r&* (a) = r6(x) + r6(y) - 2. 
(iv) r e - r e + ^ f f ) . 

P r o o f , (i) is evident. 
(ii): Every edge {a, 6} of 6* can be uniquely associated with the pair (x, Z) G 
S x P2(S) such that x E ail b and {x, t} G £ for t G Z. Thus Z is a subset 
of the set of all points collinear with x in 6 so, Z can be chosen in ( r s

2 ^ ) 
ways. 
(iii): Let p G S* be arbitrary. From definition, a ~ p iff, either p goes 
through x, or p goes through y, and p ^ a. This justifies our formula. 
(iv): Note that a triple of points of &* is a triangle in 6* if, either, it has 
the form {{x,y}, {y, z}, {z, x}}, or it has the form {t,y}, {t, z}} for 
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some x, y,z,t £ S. Triangles of the first type correspond to triangles of 6 -
there are r@ triangles of this type. Triangles of the second type are formed 
(point after point) by edges of © with one end fixed. • 

To avoid some trivial cases, we assume the following condition 

Cx : Every connected component of & has at least 3 elements. 

As a consequence of Cx, no edge of & is its connected component. It is seen 
that Cx states, equivalently, that 6* has no isolated (i.e. degree 0) point. 

Immediately from definition we get parameters of the Desarguesian clo-
sure of a graph. 

FACT 1.2. Let 6 be an arbitrary graph, set 2) = D ( 6 ) . 

(i) The number VQ of improper points of 2) is be; consequently, v® = 

« 6 + » e = + 
(ii) The number b^ of improper lines ofTs is the number T© of triangles 

of &, and then b© = 6© + 6© = 6© + r©. 
(iii) If q is a proper point, then r^(q) = r©(g); if q = a°°, where a = 

{x,y} is an edge of&, then r^)(q) — f©(a) + 1, where fg(a) = rH(e)(<z) is 
the number of points z of 6 such that {x,y, z} is a triangle in &. 

(iv) The size of every line I of D is kj)(l) = 3. 

Combining 1.1 with 1.2 we obtain the following. 

COROLLARY 1.3. Let 6 = (S,£) be an arbitrary graph, let 2) = D (6* ) . 

(i) ^ = « e . + b& =b6 + £ies (r%{x)) • 

(ii) bv = b&* + fr£ = Exes Cf^) + ^e + £*es f 6 ^ ) • 

(iii) If A — {a,b} € £*, then = rg.(A) + 1 and r%,(A) = 
r©(afl6) — 2 + a(a, b), where a(a,b) = 1 ifa,b can be completed to a triangle 
in &, and a (a, b) = 0 otherwise. 

Proo f , (i) and (ii) are evident. To prove (iii) it suffices to determine, with 
the same reasoning as in the proof of l. l ( iv), all the triangles of &* with one 
fixed side A. • 

The construction of the line graph can be, evidently, iterated. For an 
arbitrary graph 6 we define inductively: = 6 , = @(m) for 
m = 0,1, In section A we shall show some properties of this iteration. 

2. Complete graphs 
Recall that the complete graph on n vertices is the structure Kn = 

(X, P2(X)), where X is any set with |X| = n. In the sequel, for short 
we write K^ = For convenience, we take X = {0 , . . . ,n — 1}. 
The following is evident 
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FACT 2.1. For every integer n with n > 2 it holds 

vKn = n, bKn = Q > rKn = Q , rKn = n - 1, 

<r(a, b) = 1 /or every pair (a, b) of neighbor edges of Kn. 

As an immediate consequence of 2.1 and 1.3 we obtain 

COROLLARY 2.2. Let D = D ( K n * ) and Sj = H ( K n * ) . 

(i) 2) has (n — 1) (2) points, (n + l ) ^ ) lines, its proper points have 

degree 2n — 4, and improper points have degree n — 1. 

(ii) Sj has n ( n 2 p o i n t s , (n — 2) (3) lines, and its points are of the degree 

ra-2. 

P r oo f . We have in turn: vv = bKjl + vKn • ( r f " ) = (™) + n(n~1) = 

(n - I ) ® . Then bv = vKn • + rKn + vKn • ( * » = n ^ " 1 ) + Q ) + 

A proper point a = {x, y} of D has degree 2 • rKn(x) — 2 = 2(n — 1) — 2. 
An improper point has degree r ^ — 2 + cr + l = (n — l ) + 0. • 

Complete graphs and their Desarguesian closures are, in a sense, most 
important. We write Dn = D { K n ) and we call D n the Desargues space (of 

dimension n — 1). It is seen that D n can be visualized as the perspective 
with center 0 of the simplex { 1 , . . . , n } onto { { 0 , : i = 1 . . . , n } . This 
observation yields 

FACT 2.3. Let n > 4 and let be an at least (n — 1)-dimensional projec-

tive space. Every independent set XQ with |Xo| = n of points o/^J can be 

completed to a closed configuration T) in ty such that D = D n . 

P r oo f . From assumption, can be considered as a projective completion 
of an affine space 21, defined over a vector space ¥ with dim(V) = m > n. 

Without loss of generality 
we can assume that Xq — {eo, e i , . . . , e n } , where 

eo is the zero vector of V, and thus Xo \ {eo} is an independent set of vectors 
of V. Let us consider a map /': X —> XQ defined by f'(i) = el. Clearly, no 
two lines of 21 determined by points in Xo are mutually parallel. For i,j € X, 
i j let f"({i,j}°°) be the direction of the line of 21 which joins f'(i) and 
f ' ( j ) . The map f embeds Kn into 21, and f = f U f" is an embedding of 
T>(Kn) onto a closed configuration in • 
PROPOSITION 2.4. 

(i) Let <5 be an arbitrary graph on n vertices. Then & is a subgraph 

of Kn. 

(ii) If & 1 is a subgraph of 62, then = D ( 6 i ) is a subspace ofD2 = 

D(@2); and the horizon of & 1 is a subspace of the horizon of &2. 
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(iii) Let n > 4. Then the (n — 1)-dimensional Desargues space D n can 

be embedded into the projective (n — 1)-dimensional space over GF(2), and 

the horizon of Kn, isomorphic to D n _ i can be embedded into the projective 

(n — 2)-space over GF(2). 

(iv) Let 6 be as in (i). Then the horizon of & is a partial Steiner triple 

system embedable into the projective (n — 2)-space over GF(2). 

Proo f , (i) and (ii) are evident. 
(iii): By 2.3, D n is isomorphic to a closed configuration in the (n — 1)-
dimensional projective space over GF{2). Since lines of have the same 
size as lines of D n , we obtain a required embedding. 

To close the proof of this statement it suffices to recall that the map 

i i—• {0 , i } ° ° i—>i for i e X \ {0} ; 0«—>0 

determines an automorphism of Dn , which maps the set of improper points 
o fD ( i r n ) onto D(© ' ) , where & is the complete graph on the vertices X\ {0 } . 
(iv) is an immediate consequence of (i), (ii), and (iii). • 

The observations of 2.4, of a pure theoretical importance (comp. e.g. 
problems on embedability examined in [1]), can not be directly used to de-
termine the geometry of the Desarguesian closure of particular graphs and 
their horizons. 

3. Desarguesian horizon 
Note the following 

PROPOSITION 3.1. Let 6 = (S,£) be a connected graph with constant point 

degree. Then the following conditions are equivalent. 

(i) All points o/D (© ) have the same degree. 

(ii) © = Kn for some n, and thus D(<5) = D n is a Desargues space. 

Proo f . The implication (ii) =>• (i) is evident. Assume that (i) holds. Let 
a = {x, y} € £ and q — a°°. In accordance with 1.2, t*d(s)(9) = re ( a ) + l = 

rg(aO, which means that {y,t} £ £ whenever { x , t } G £ and t^y. Thus © 
is determined by a transitive relation, which proves that £ — P2(S). • 

In view of 3.1, in general, the geometry of the Desarguesian closure of a 
graph and the geometry of its horizon may differ. Therefore, in the sequel, 
we shall be mainly concerned with Desarguesian horizons of graphs. 

To get an idea, how the horizon of a graph looks like let us note the 
following observation. Let 6 = (S, £) be a graph and K be the family 
of the maximal cliques in 6 . Every K E K determines in © a complete 
subgraph = Ks for s = \K\, and, by 2.4, K determines a subspace K°° = 

{a°°: a £ P ' l iK ) } of the horizon H ( 6 ) , which is isomorphic to D s_i . Let us 
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write /C°° = {K°°: K G /C}. Since every edge of 6 is contained in at least 
one clique we get that /C°° is a covering of H( (5 ) by a family of Desargues 
spaces. Therefore, to characterize the geometry of the horizon of & it suffices 
to determine the structure of cliques in (5. 

To this aim the following observation is useful. 

FACT 3.2. Let & be an arbitrary graph and (K-i: i = 1 , . . . , s) be a partition 

of the family K, of all the maximal cliques of @ such that 

(i) if K\,K2 G ICI for some i, then \K\ f i l ia l < 1; 
(ii) if Kr G Kir for r — 1,2 and i\ / i2, then K\ fl K2 is at most an edge 

ofG. 

Then the family (/Q°°: i — 1,..., s) has the following properties: 

(iii) Let q G ML, M 2 G JCi°° for some i. Then M i = M 2 . 
(iv) Let Mr G ICi,.00 for r = 1,2 and ix ± i2. Then |Mi n M2| < 1. 
(v) Let q G Mr G K.ir°° for r = 1,2 and ± h, and qi e M{\ M^-i. 

Then q\ and q2 are not collinear in H ( S ) . 

P r o o f . The statement (iii) is an immediate consequence of (i), and (iv) 
follows by (ii). 

Let Mr = Kr°° and Kr G ¡Cir, and let q = a°° with a = {x, y} G P 2 (K r )\ 

by (ii), a = K\ fl Consider qr = a r°°, where ar = {xr, yr} G P2{Kr)-, 

then qr G M r . Suppose that q\ and q2 are collinear in H ( 6 ) , then a\,a2 are 
sides of a triangle in 6 so, without loss of generality, we can assume that 
xi = x2 and c = {y\,y2} is an edge of 6 . Since x\ G K\ n K2 we infer that 
x\ G a, say: x\ = x. Since q,qi,q2 are pairwise distinct, the edges a, ai,a2 

are pairwise distinct as well. The set Z = {x,y,y\,y2} is a clique in & so, 
it can be extended to a maximal clique KQ. Note that \K$ n KR\ > 3 so, by 
(i),(ii), KQ = K\ = K2, which is impossible. This proves (v). • 

The covering )C°° is determined entirely by the geometry of H ( 6 ) . 
Namely, we have the following 

FACT 3.3. Let 6 = (S,£) be an arbitrary graph, we write 3 = J ( H ( 0 ) ) for 

the graph of collinearity of points of H ( 6 ) . 

(i) Every line o / H ( S ) is a maximal clique in 3-
(ii) Let H be a maximal clique in 3- Then there is a clique K in & such 

that K°° is the subspace of H ( S ) spanned by H. If no three points of H are 

collinear in H ( 0 ) , then K is maximal. 

(iii) Let K be a maximal clique in &. Then there is a maximal clique H 

in 3 such that K°° is the subspace of H(<5) spanned by H. 

P r o o f . Note that, directly from definition, if qi = ai°° for â  G £ (i = 1,2), 
qi ^ <72, and qi,q2 are collinear in H ( 6 ) , then a\ fl a2 ^ 0 and a\ Ua2 G 7g. 
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(i): Let L be a line in H((5), then L = T°°, where T is a triangle in 
6 . Clearly, L is a clique in Let q = a°° with a G £ and suppose that q 
is collinear with all points on L. Then a fl c ^ 0 for every side c E P<i (T), 
which yields a C T so, q G L. 

(ii): If H is a line of H(<3), the claim is evident (cf. (i)). Assume that 
no three points in H are collinear and let qi,q2 G H. Then there are vertices 
y,x\,X2 of 6 such that {y,x 1,^2} G Tq and qi = a,i°° with ai = {y, Xj} for 
i = 1,2. We set K = |J{a: y G a G £, a°° G H}. Evidently, K is a clique 
in ©. Suppose that KQ = K U {z} is a clique and z £ K. Then {y, z}°° is 
collinear with all the points in H, which contradicts the maximality of H. 
Clearly, K°° is a (desarguesian) subspace of the horizon of 6, and H C K°° ; 
it is seen that it is the smallest subspace of H ( 6 ) that contains H. 

(iii): If K is a triangle, the claim follows directly from (i); therefore we 
assume \K\ > 3. From 2.4(iii) we know, that K°° is a Desargues space, so 
it can be presented in the form D(3') for some complete subgraph of 
The point is to show the vertices of explicitly. 
Let y G K, we set H — {a°°: y G a G P2{K)}. Clearly, H is a clique in 
3 and, as in the proof of 2.4, we prove that the elements of K°° can be 
identified with the points of the set D(H) which, in turn, is the subspace of 
H ( S ) spanned by H. It remains to show that H is maximal. Let (as in (i)) 
q = a°° be collinear with all the points in H. There are at least three edges 
of (3 passing through y and contained in K; since a crosses them all, y G a. 
Thus a = {y, z} for some z. Now, the requirement that q is collinear with 
every q' G H yields that {z, z'} G £ for every z' G K \ {z} and, since i i is a 
maximal clique, we get 2 G K so, finally, q G H. • 

Let 6 = (X,£) be an arbitrary graph and t G X. We write £(() = {a G 
£: t G a}. As we already noted in the proof of 1.1, the family 7g* of triangles 
of &* can be divided into two sets 

T & := (P2(Z): Z e T e j , 

Ve* := | J P3(£(t)), 
tex 

and thus the family of lines of H(©*) is divided into the following two: 

^ : = { r ° ° : T G }, a n d V g . : = { r ° ° :TeVe*}. 

Moreover, we have evident 

FACT 3.4. Let & = (S, £) be an arbitrary graph and t be one of its vertices 
with r&(t) > 3. Then is a maximal clique in 6 * . Moreover, ifti / ¿2; 
then £(tl) (note: Cx is used here!). 
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If K is a maximal clique in &*, then either K G FQ* or K = £(t) for 

some vertex t of &. 
Let us write 

n& := {£(,) : t G S, r e ( t ) > 2 } . 

If KI,K2 G T& or KUK2 G He*, and Kx / K2, then \Ki n K2\ < 1. 
If K\ G and K2 G He*, then K\ fl K2 is at most an edge of &*. 
Therefore, &* satisfies conditions (i) and (ii) of 3.2. Consequently, we have 
the following. 

Let T G Ve*- Then T is contained in a (unique) clique K in &*, and 
K G He*- Therefore, lines contained in £(t)°° are members of V|?». Put 
Hq, — { M ° ° : M G We*}- From previous considerations, elements of Hq. 
are (Desargues) subspaces of H(<S*). Distinct lines in TQ, are pairwise 
disjoint, and distinct subspaces M°° with M G He* are pairwise disjoint as 
well. If L G TQ* and M G HQ, then L H M is at most one element set. I f , 
moreover, q\ G L\M and q2 € M\L then q\, q2 are not collinear in H ( S * ) . 

As a consequence of 3.4 we note the following observation: 

FACT 3 .5 . Let © = (S, £) be an arbitrary graph and t be one of its vertices. 
Let r = r@(i) > 4. Consider a pair C = {a, 6} of edges of 6 with t = a Ob 
and set q = C°°; then q is a point of Sj = H(©*). Ifa(a, b) = 1 then there is 
(exactly one) line of ID which passes through q and belongs to TQ, . Let 
be the (remaining) lines through q; they are in V@i. Then points ofV%° span 
a (r — 2)-dimensional Desargues subspace of Sj which coincides with £(t)°°• 

P r o o f . The only non trivial part of the statement consists in the fact that 
points of span £(t)°°• 

Let y, z be vertices of & with a = {i , y}, b = {t, z}, and let { x i , . . . , £7—2} 
be the set of the remaining vertices joinable with t; we put di = {t,Xi} 
and then T> := {d\,..., dr~2} Ç £çty, in particular, every two edges in T> 
are neighbor. Then every line Li of Sj through q which belongs to Vg?» is 
determined by a triangle (a, b, di) of &* and consists of the points q, Ui = 
and Vi = Bf°, where Ai = {a,di}, Bi = {6, di}. Every two points Ui,Uj are 
on a line of f j determined by the triangle (a ,d i ,d j ) , the third point of this 
line is a;j j = {di,dj}°°, points Vi,Vj,u>ij are on the line determined by the 
triangle (b, du dj), and for every triple ( i , j , k ) the points uJij, a n d u)i,k 
are on a line of Sj determined by the triangle (di, dj, df.). This proves that 
the set {q , Uij, Ui, Vj : i, j = 1 , . . . , r — 2, i j} is a subspace of Sj, spanned 
by £>°°, and equal to £ { t )°°. • 

Directly from 3.5 we obtain 

COROLLARY 3 .6 . Let & be a graph with the degree of every point at least 4, 
let Sj be the horizon of &* and let g be a line of Sj. We write V°° = 
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H°° = HQ*, and J-°° = J-Q, . The following conditions are equivalent: 

(i) 9 G V°°; 
(ii) for every (equivalently: for some) point q G g there are lines <71,52 of 

Sj such that q G g\ and (5,51,52) are sides of a triangle in Sj. 
If the condition (ii) is not satisfied, then g € . 

Consequently, the families and V°° are intrinsically distinguishable. 
Elements ofH°° are at least 2-dimensional Desargues spaces. The families 

and 7i°° yield in Sj a partial net. 

In particular, we obtain 

COROLLARY 3.7 . Let 6 = Kn and ft be the horizon of <5*. 
(i) Let n = 4. The families and V°° of lines of Sj yield a partial 

net. 
(ii) Let n > 4. The horizon S) can be considered as a union of pairwise 

disjoint (n — 3)-dimensional Desargues spaces formed by the lines from V°°. 
The family H°° of these configurations together with the family J-°° yield a 
partial net. 

4. Automorphisms 
With every automorphism / of a graph & = (S, S) we associate the map 

/*: 5 —• £ defined by the condition f*{{x, y}) = {f(x), f(y)} and the map 
f°° defined on the set S°° by the condition /^(a0 0) = /*(a)°° for a e£. 

PROPOSITION 4 .1 . The two maps 

Aut(S) 3 f 1—• /* € Aut(©*) and Aut(6) B f 1—• f°° € Aut(H(©)) 

are group monomorphisms. 

Proof . It is evident that /* e Aut(©*) and f°° 6 Aut(H(©)) for every 
/ € Aut(6). Suppose that f*{a) = a for every a G E\ take a = {x,y}. Let 
S0 be the connected component of x, we can assume that TQ(X) > 1. From 
assumption, either 

a) f(x) = x and f(y) = y, or 
b) f(x) = y and f(y) = x. 

In the case (a) we obtain that f(z) = z for every 2 joinable with x and 
therefore, / is the identity on SQ. In the case (b) we consider any 2 such that 
a b = {x, z} € £. Since f*(b) = b we get f(z) = x and z = y. Similarly, x 
is the only point joinable with y. Finally, So = a, which contradicts Cx. 
Now, let us assume that f°° - id, i.e. /*(a)°° = /^(a0 0) = a°° for every 
edge a of ©. This yields f* — id and, by the above, / = id. • 
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Proposition 4.1 enables us to associate with every / 6 Sn = Aut(Kn) an 
automorphism f ^ of K{nm) defined inductively: /(°) = /, /(m+1) = f^*. 
Recall that Aut(Kn) = Sn and Aut(D(Kn)) = Sn+1 (comp. [7]). 

We are going to prove that, with one exception (cf. 4.6) every automor-
phism of Aut(H(Kim })) is determined by a permutation in Sn. Note, first, 
an evident observation. Let 6 be an arbitrary graph. If / G Aut(@) then /* 
leaves invariant the families TQ* and V©» of triangles of 6 * . Consequently, 
f*°° leaves invariant the families of lines TQ, and V@l of the horizon H(S*) . 

To determine the automorphism group of the horizon of Kn* for n > 4 
we shall prove a more general fact. 

PROPOSITION 4 .2 . 

(i) Let 6 be a graph such that the degree of each of its vertices is at 
least 3. Then the graph &* satisfies the following: 

(a) the degree of each of vertices of this graph is at least 4. 

(b) every edge of the graph is a side of a triangle of it. 

(ii) Let & satisfy (a) and (b), and let F be an automorphism of the 
horizon Sj of &*. Then F = f*°° for some f G Aut(6). Consequently, from 
4.1 we get that Aut(£) ^ Aut(6). 

Proof , (i): Prom 1.1 (iii) and assumptions, (3* satisfies (a). Now, let A be 
an edge of 6 * , then A C £(t) for some point t of &. Since r@(i) > 3, from 
3.4 we can complete A to a triangle in &*, which proves that this graph 
satisfies (b). 
(ii): In view of 3.6, every automorphism F of Sj must preserve the families 
jroo _ r̂oo a n c j yoo _ yoo Moreover, F must preserve the partition of the 
set of points of S) into suitable subconfigurations £(t)°° ='• Ht, t - a point of 
(S, as defined in 3.4. 

Thus F determines a permutation / of the vertices of & such that F 
maps Ht onto To close the proof we must show that / G Aut(S) and 
p = 

Let ao = {ti,£2} be an edge of 6 ; we complete it with to to a triangle 
in 6 and set ai = {¿2,^0}, «2 = {¿i,io}, M = {«0,^2}, M = {a0 , ax}, 
A® = {01,02}, and qi — Ai°° for i = 0,1,2. Then points go, <?i, <72 are 
one one line in T00. Under our assumptions, qt G Htz is transformed onto 
q[ := F(qt) G Hf(ti) f°r i — 1,2, moreover the points q[ and q'2 must lie 
on a line in Jroc. Therefore, there exists in © a triangle t'0, t'x,t'2 such that 
q', = A!?0, ^ - { a > ; > , a\ = {t^t's} ({h3,s} = {0 ,1,2}) . Then ^ G Ht, 
so, t\ = f{ti) and thus f(t\) and f{t<i) must be joinable in &. This proves 
that / G Aut(<5). 
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Let G = F~l o/*°°, then G G Aut(ij) and G preserves every subconfigu-
ration Ht. Let g be a line in then g is determined by a triangle (x ,y , z ) 
of & under the rule 

g = {{{^,2/}, {{y.sMy.z}} 0 0 , {{z,x}, {2,3/}}°°}. 

Note that g crosses Hx, Hy, and Hz. Then the image G(g) must be in 
and must cross the same subconfigurations Hx, Hy, and Hz. It is seen 

that this yields G(g) = g i.e. G leaves every line in JF°° invariant. Since 
through every point of Sj there pass exactly one line in J700 and exactly one 
subconfiguration of the type Ht, we get G = id, and thus F = f*°°, as 
required. 
In view of (i) above, ©* satisfies Cx as well. Applying 4.1 we get that the 
map Aut(0) 3 f h-> f*°° G Aut(6) is an isomorphism. • 

COROLLARY 4.3. Let & be a graph satisfying (a) and (b) of 4-2, and F € 
Aut(6*). Then F = f* for some f G Aut(6). Consequently, Aut(6*) = 
Aut(6). 

P roo f . We set F' = F°°. By 4.2(ii), there is f E Aut(6) such that 
F°° = F' = f*°°. From 4.1 we infer that F = /*, which is our claim. • 

Directly from 2.1 and 4.2(i) we obtain 

COROLLARY 4.4. Let, either n > 4 and m > 0, or n = 4 and m > 0. Then 
K^ satisfies the conditions (a) and (b) of 4-2. 

One particular case is left: T)(K4*). Its horizon has a slightly different 
geometry. 

For arbitrary integer n we consider X = {1, . . . , n}; let S = X x X. Then 
we define the cartesian net on S: 

(1) l'i = Xx{i}, l? = {i}xX for i = l , . . . , n , 
(2) £ = {l'i: i = l,...,n},£" = {l?: i = 1,... ,n}, £ = £'U £". 

Finally, from the incidence structure (S, £) we remove the diagonal A = 
{(¿, j) € S: i = j}, and the obtained structure (S \ A, £) we denote by N°. 

PROPOSITION 4.5. Let n be an integer with n > 3. 

(i) The map // defined by fi(i, j) = ( j , i) is an involutory automorphism 
of N°, which interchanges families £' and £". 

(ii) For every permutation a G Sn there is exactly one Fa G Aut(N°) 
such that Fa{l") = l'^ for every i = 1 , . . . , n. Moreover, F „ o / i = / i o F a . 

(iii) If f G Aut(N°), then there is a G Sn such that f = Fa or f = fioFa. 
Consequently, Aut(N°) = C2 © Sn. 
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Proof , (i) is evident, since /z is a reflection in the diagonal A of the structure 
defined by (1), (2). 
(ii) Let a G Sn. We set 

(3) FQ(i,j) = (a(i),a(j)). 
It is seen that Fa is an automorphism of the cartesian net defined by (1), 
(2), and Fa preserves A so, Fa G Aut(N°). Evidently, Fa(l") = and 
Fa and /i commute. 

To close the proof, we consider / € Aut(N°) such that f(l") = l'( for 
every i = 1 , . . . , n. Note that for every i there is exactly one j such that I" 
and l'j have no point in common, we simply take j = i. Therefore, / leaves 
invariant every line l'p and thus / = id. 
(iii) Let / G Aut(N°), and let q = (1, n) G S \ A. If / maps l'n (passing 
through q) onto a line in we set / ' = / ; if / maps l'n onto a line in 
£", then we set / ' = /i o / . Let p = (¿o, jo) = f'(q) G 5 \ A. Therefore, 
io jo and thus there exists a G Sn with a ( l ) = io, a(n) = jo. From (3) we 
obtain Fa(q) = p; let G = (F a ) _ 1 o / ' . Then G G Aut(N°), G{q) = q, and 
G(l'n) € C! so, G{Vn) = l'n and G(l'{) = l'{. The lines crossed by l'n are with 
j ^ 1, and thus G must leave this family invariant; similarly we note that 
G leaves invariant the family l'j with j ^ n and, finally, G leaves invariant 
families £ ' and C". Thus G determines a permutation f3 G Sn such that 
G{1'() = l"m (note: (3(1) = 1 and /3(n) = n), From (ii) we obtain Fp = G, 
which closes the proof. • 

Note, as an interesting fact, that N§ is a hexagon CQ - it is trivial that 
Aut(N§) = C2 © S3 (see any standard textbook, e.g. [3]). More important 
observation is (cf. 3.7(i)) that the horizon of K4* is N4. 

To justify this observation more directly we give two tables. The first of them shows 
the incidence matrix of points are 1, 2,3,4, and lines (edges) are a, b, c, d, e, f . Then we 
present how the points of H ( / i V ) are grouped into lines (T, is obtained from the triangle 
without the point i\ Li is obtained from the edges passing through i, for i = 1,2,3,4): 

a b c d e / 
1 • • • LI 

2 • • • L2 

3 • • • 

4 • • L3 

¿4 = 

TR 
11 

T2 

11 
T3 

11 
TT 
11 

K 6 T , ( M F , G T ) 

{ { e , / r , {f,d}°°, {d,e}°°} 

{ c , a T , {a,e}°°} 

{{ / , c ; r , - M r , { 6 , / r , , ,} 

Now it is seen that H(K 4 ) = N4. 
As an immediate consequence of 4.5 we get 
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COROLLARY 4 .6 . Let f) be the horizon of . Then Aut(fj) = C2 © S4. 

COROLLARY 4.7. Let n>4 andm>0, and let ij be the horizon ofD(K^). 
Then A u t ( K ^ ) = Sn and, consequently, Aut(fj) = Sn. If m > 0, then 
Aut(H(ii:Jm))) s Aut(irim)) 2* Aut(K4*), where the latter was described in 4.6. 

Proof . By 4.2 and 4.4, Aut(5) = A u t ( ^ m _ 1 ) ) , which, by 4.3 closes the 
proof. • 

A. Iteration of the construction of line graphs 
In this appendix we shall apply the results of previous sections to compute 

explicit formulas for basic parameters of the Desarguesian closures and of 
Desarguesian horizons of iterated line graphs. Let us begin with the following 
general observation, which follows immediately from 1.1. 
FACT A . l . Let & be a graph with constant point degree. We denote v^ = 
v&(m>, = 6@(m), r(m) = rS(m) , and r = r S ( m ) . Then the following 
recursive formulas are satisfied: 

r ( m + l ) _ 2 . r {m) _ 2 ; 

v(m+1) _ ¿(m^ 

( 4 ) 6 ^ + 1 ) = V M - ( r ( 2 m ) ) , 
T(m+1) = T(m) + v(m) . (T^y 

In particular, all points of @(m) have the same degree. 
As an immediate corollary we can note 

PROPOSITION A . 2 . The only connected graph & which satisfies re = r& 
is a cycle, i.e. a closed polygon Cn with n = v@. Consequently, & = &* iff 
Q = Cn for some integer n. 
Proof . It suffices to note that the only solution of r = r(m + 1) = 2 • 
r M _ 2 is r(m) = 2. • 

Solving the system (4) we obtain 
COROLLARY A . 3 . Under assumptions of A.l we have 

m 
(5) r ( m ) = 2m • r ( 0 ) - ^ 2i = 2m • r ( 0 ) - 2(2m - 1) = 2m(r ( 0 ) - 2) + 2. 

¿=1 
,(m+l)N 

(6) b ^ = b<™> • ( r ^ S 0 

,(m) = f " n<U m A ™ = 2* 
U ( 0 ) • r i l o ( T ) / 0 rm = 2fc + r 
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m—1 , (j\\ 
(7) T<™>=r<°> + 5 > W ( r ) . 

¿=o ^ ' 

Note that iteration of the construction of the line graph leads to graphs 
such that their Desarguesian horizon may contain points with different de-
grees. Let us begin with somehow evident 
FACT A.4. Let & be an arbitrary graph and h = {̂ 4, B} be an edge of &&. 
Then A = {a,b}, B = {a, c} for some edges a,b,c of & and one of the 
following holds: 

(i) a,b,c yield a triangle in &, i.e. there are points x,y,z of & such 
that a = {x, y}, b = {y, z}, and c = {z, x}; 

(ii) a,b,c have one common edge so, a — {x,t}, b = {y,t}, and c = 
{z, t} for some points x, y, z, t of &; 

(iii) b,a,c are consecutive sides of a path in &, i.e. b = {u,x}, a = 
{x, y}, and c = {y, z} for a path u, x, y, z with pairwise distinct vertices. 
In the cases (i) and (ii) it holds cr(A,B) = 1, and a(A,B) = 0 in the 
case (iii). 

Consequently, the horizon H(©(2)) has TQ* = TQ + YlxeS (rs3^-)) points 
{^4,5}°° with a(A,B) = 1. 

Proof . In the cases (i) and (ii) we set C = {6, c}; then C is an edge of (Ŝ 1̂  
which completes A, B to a triangle. If there were such a completion in the 
case (iii) then C = {6, c} would be an edge of G ^ and then b fl c ^ 0, which 
is impossible. • 

Prom A.4, as a consequence of 1.3(iii) and A.3 we obtain 

LEMMA A.5. Let & be a graph with the following properties: 
(i) every point of & has the same degree > 3; 

(ii) (5 contains a not closed path of length 4. 
Then 2) = has points p, q with r%)(p) ̂  r^(q). 

The horizon of 2) contains T@. = TQ + VQ • (R3E) points {A,B}°° with 
cr(A,B) = 1. Consequently, the horizon of & has TQ + VQ- ( r 3 e) points with 
degree 2r@ — 3, and the remaining points have degree 2 r e — 4. 

Proof . [Computation] Let q = h°°, h = {A, B}, where A, B are points 
of 6<2> i.e. edges of &*. Let a — A fl B and a = {x ,y j . Then r^(q) = 
r&(2)°°(h) = r@(i) (a)-2 + a(A, B) = ( r e ( z ) + r e ( y ) - 2) - 2 + a(A, B). • 

As a consequence of A.3 we obtain 

COROLLARY A .6 . Let us substitute 6 = Kn in A. 1 and let us write x^ ^ — 
xis(rn) for x = v,b,r,T. For every integer n with n > 3 and arbitrary m it 
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holds 

B M _ I (2) • N T X r I ( R 3 ) + 2 ) for m = 2k 
N L ( ? ) - N L 0 R V ) + 2 ) YBRM = 2 F C + R 

= ( 3 ) + S VN • ( 2 I ( N ~ 3
S ) + 2 ) ' 

yW = b^-V, rM = 2m(n - 3) + 2. 

COROLLARY A .7 . Le i 5) = D ( K ^ ) form> 2 a n d i i ^ 6e the horizon of 
(TYI} 

2). T/ ien f/ie parameters of Hn are as follows: 
v u(m) — Vn — Un , B„(m) — — T n , 

•"n -"n 

H ^ has 

ri™-1' points with degree — 3, 

— ri"1-1' points with degree — 4. 
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