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A NOTE ON MURTHY'S CONJECTURE 

Abstract . In this paper, we consider a conjecture made by Murthy to the effect that 
a CQ f"l Qo matrix is positive semidefinite (PSD) and show that the conjecture is true for 
n x n matrices of rank 1 or 3 x 3 matrices that are not in Q. We also consider the class 
of Pi-matrices which is a subclass of Qo and obtain the following: for A 6 Pi , if A S CQ 
and A £ Q, then A is PSD; if A 6 C{ and A € Q, then A is PSD for n < 3 and A isn't 
PSD for n > 3. 

1. Introduction 
The linear complementarity problem (LCP) with data A G Rnxn and 

q € Rn involves finding a vector z E Rn such that 

z > 0, q + Az > 0 and zT(q + Az) = 0. 
LCP has numerous applications, both in theory and practice, treated by 
vast literature (see[l]). A number of matrix classes have been defined in 
connection with LCP. We shall briefly introduce the concepts and notation 
required for presentation of the results of this paper. For A € Rnxn, q € Rn, 
le t F{q,A) = {Z£R1» : Az+q> 0}, S(q, A) — {Z£ F(q, A) : zT{Az+q) = 0}. 
For most of other notion, we shall follow that used in [1]. 

For any positive integer n, write n = {1,2, • • •, n}, and for any subset a 
of n, write a = n\a. Consider A £ Rnxn. If a C n such that detAa a ^ 0, 
then the matrix M defined by 

= (Aaa) , Maci = MaaAaa, 

M-otct ~ A^QL^-ocoti Maa — Aaa ^^act-^-cxa 

is known as the principal pivotal transform (PPT) of A with respect to a 
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and will be denoted by pa(A). Note that a PPT is defined only with respect 
to those a for which det.Aaa ^ 0. By convention, when a = 0, detAQa = 1 
and M = A (see[l]). Whenever we refer to PPTs, we mean the ones which 
are well defined. 
DEFINITION 1. Let A G Rnxn. Then A is called: 

(1) a Q-matrix, if S{q, A) ± 0 for all q G Rn; 
(2) a Qo-matrix, if for all q G Rn, F(q, A) ± 0 => S(q, A) ± 0; 
(3) a Q0-matrix , if Aaa is a Qo-matrix for all a C n; 
(4) a Po-matrix, if detA a a > 0 for all a C n; 
(5) a Pi-matrix, if the principal minors of A are nonnegative, exactly 

one of which is zero; 
(6) a PSD-matrix (positive semidefinite matrix), if xTAx > 0 for every 

x G .Rn; 
(7) a Co-matrix, if xTAx > 0 for every x > 0; 
(8) a CQ-matrix, if every PPT of A is a Co matrix. 
By ft we denote the set of all f2-matrices, where fI denote a class of 

matrix in Definition 1. 

REMARK 1 (see [1], [2]). If A belongs to any of Cff, Q0, Q, PSD, Pi, then 
every PPT of A is also in the same class. 

Murthy (see [2]) introduced the class of CQ-matrices and obtained that 
CQ n Qo-matrices are Po-matrices which contain PSD-matices. In [3, 4], 
Murthy proved that bisymmetric CQ PI Qo-matrices as well as 2 x 2 CQ H QQ-
matrices are PSD and raised the following conjecture. 

Murthy's conjecture: Suppose A G CQ fl Qo, then A is PSD. 

In [5], Murthy showed that CQ fl Qo-matrices are sufficient. This belongs 
to a series of results showing that CQ fl Qo-matrices and PSD matrices have 
many properties in common. So they raised the conjecture as an open 
problem. In [6], Mohan presented a counterexample to this conjecture. In 
this article, we present some sufficient conditions to this conjecture, settle 
the open problem. 

2. Main results 
In [3], Murthy proved the conjecture is true when n = 2. In this article, 

we assume n > 3. For the sake of completeness, we state relevant portions 
of some known theorems. 
LEMMA 1 (see [3]). Suppose A G Rnyn n CQ , then the following conditions 
are equivalent: 
(a) A G Qo; 
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(b) for every PPT M of A, ma = 0 =>• rriij + rriji = 0 Vi, j G n; 
(c) A e Qo-

Le m m a 2 (see [7]). Suppose A G Rnyn n Pi. The following statements hold: 
(a) There exists a unique a such that pa(A) G P i and detpa(A) = 0. 
(b) A is in Qo-

Le m m a 3 (see [1]). Let A € Rnxn n Co, if there exists a vector x > 0 such 
that XTAX = 0, then A is PSD. 

Le m m a 4 (see [5]). If A € PO, then A G Q if and only if A € Rq, where 
A G RO if and only if 5(0, A )= {0 } . 

Now we prove the following theorem. 

T h e o r e m 1. Suppose A G RnxnnQo, rankA=l, then A is PSD if and only 
ifAeC$. 

Proo f . The 'only if' part is obvious. We shall prove the 'if' part. If 
a%i = 0, \/i G {1,2, • • •, n} , then from Lemma 1 it follows that aij + aji = 
0, Vi, j G {1,2, •••,« } . Thus, rankA=0 or rank/1 > 2. This contradicts 
the assumption that rankyl=l. There then exists an index i, 1 < i < n, 
such that an > 0 . Suppose A = abT, where a = (ai, <22, • • •, an)T, bT = 
(61,62, • • •, bn), then there must exist an index i such that â  / 0 and bi / 0. 
Without loss of generality, we may assume i = 1 , then an = a\b\ > 0. 
Take a = {1}, M = pa(A). Then 

/_ i_ -ki ... 
a±bi b\ 61 

V % 0 ••• 0/ 

From A G C^nQo, M G C^nQ0- It follows from Lemma 1 that + = 0 
for alH = 2,3, • • •, n. For an arbitrary x G Rn, xTMx — ̂ ¡ -x f >0 . So M 

is PSD. It follows that A is PSD. 1 1 • 

T h e o r e m 2. Suppose A e R3x3 n Qo and A Q, then A is PSD if and 
only if A G Cq . 

Proo f . It suffices to prove the 'if' part. Here we consider two cases: A 
has a zero diagonal entry or A has no zero diagonal entry. 

Case (1): A has a zero diagonal entry. Without loss of generality, we 
may assume that i = 1 is such that an = 0. From Lemma 1 it follows 
that aij + aji = 0 for j / 1. Take a = {1} . Then Aaa G R2x2 and 
Aaa G Cq H Qo, from Theorem 4.9 in [3], AqqÌs PSD. For an arbitrary 
x G R3, xTAx = x^Aaaxa > 0, so A is PSD. 
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Case (2): all diagonal entries of A are positive. Here we consider two 
subcases: (a) all principal minors of order two are positive, (b) A has a zero 
principal minor of order two. 

Consider case (a): Since diagonal entries of A and its principal minors of 
order two are positive, then det-A=0(otherwise if detA > 0, then A G P C Q. 
It contradicts to that A £ Q). So A G Pi \ Q and detA = 0, there exists 
a vector p > 0 such that Ap = 0 (it follows from Theorem 3.1 of [8] and 
Lemma 4.1 of [9]). Thus we have pTAp = 0,p > 0. Moreover, A e CQ c C0. 
From Lemma 3, it follows that A is PSD. 

Consider case (b): Without loss of generality, we may assume a = {1, 2} 
such that detAaoi = 0, i.e. ana22 = 012021- Let /? — {1} , M = pp{A). Then 

/ J -
a n 

«12 
a n 

ai3 
a n 

\ 
«21 
a n 022 

a12«21 
a n «23 

«21 «13 
a n 

\ a n «32 
a12«31 

a n «33 
«31«13 

a n ) 
a n 

ai2 
a n 

013 
a i l 

\ 
221 
a n 0 G23 

a 2 1 a 1 3 

a n 

, £31 
\ a n <2,32 

a12a31 
a n «33 

a31°13 
a n ! 

So M has a zero diagonal entry 77*22 = 0, and M G i ? 3 x 3 n CQ D QO \ Q-
Prom the proof of case (1) , we conclude that M is PSD. Hence A is PSD. 

• 

REMARK 2. Theorem 2 is not true for n > 3. Consider the example 

0 0 
0 1 0 0 
0 0 1 0 

1 - 2 

It is easy to verify that A € PO and A ^ RQ (because (1, 0 , 0 , 0 ) T G 5(0, v4)). 
Prom Lemma 4, we know that A ^ Q. 

We now show that A G CQ n Qo-
Note that there are two distinct PPTs of A. One is the matrix A itself. 

It is the P P T of A corresponding to 

a = 0 , { 2 } , { 3 } , { 2 , 3 } . 
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Another PPT is 
(0 0 0 

0 1 0 0 
0 0 1 0 

- 1 2 

It is the PPT of A corresponding to 

a = {4}, {2,4}, {3,4}, {2,3,4}. 

The copositivity of matrices A and M can be demonstrated by an analysis 
of the corresponding quadratic forms which can be rewritten as follows: 

(1) XTAX = + X2X4 + (xs — X4) 2 , 

(2) xTMx = (x2 - 5X4)2 +x\ + 2x3x4 + \x\. 
Hence A £ CQ fl Qo and A £ Q . But selecting x T = (1,1, —2, —2), we 

have xTAx = - 1 < 0, so A isn't PSD. 

Now, considering the class of Pi-matrices which is a subclass of Qo (from 
Lemma 2). We have: 

THEOREM 3. If A £ R3x3 n Pi, then A £ PSD if and only if A £ c£. 
P r o o f . The 'only if'part is obvious. We shall prove the 'if' part. Here we 
consider two cases: A £ Q or A € Q . 

Case (1): A £ Q . Since A £ P i Q Q o , from the proof of Theorem 2, it 
concludes that A is PSD. 

Case (2): A £ Q . Here we consider three subcases: (a) A has a zero 
diagonal, (b) A is sigular , and (c) A is nonsigular with positive diagonal 
entries . 

Consider case (a). Without loss of generality, we may assume that i = 1 
is such that an = 0. Since From Lemma 1, it follows 
that a i j + aj i - 0 for j ± 1. Take a = {1}. Prom A £ P i , A a a £ P C Q . So 
A*« £ R2x2 

and A a a £ CQ fl Q C fl Q o , from Theorem 4.9 in [3], ^4aais 
PSD. For an arbitrary x £ R3, xTAx = x^Aaaxa > 0 . So A is PSD . 

Next, consider case (b): Take a = {1,2}. Since A £ Pi, detAaa ^ 0 . 
Let M — pa(A), then 

^ j (-^aa) (-^att) -^aa j 
(A aa ) 1 P J 

where p = A&a — Aaa{Aaa)~lAaa is a number. Since detA=detAaQdetp=0, 
p = 0. So M has a zero diagonal entry 77133 = 0, and M £ 
From the proof of case (a) , we conclude that M is PSD. Hence A is PSD. 
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Last, consider case(c): From Lemma 2, there exists a unique a such that 
pa(A) G Pi and detpa(A)=0. Then pa(A) G R3x3 N C}Q D PI n Q, and 
detpa(A) — 0. From the proof of case (b), it follows that pa(A) is PSD. 
Therefore A is PSD. • 

THEOREM 4. Let A G RnXn, n > 3 . If A e Pi and A $ Q, then A G PSD 
if and only if A £ Cq . 

Proof . It suffices to prove the 'if' part. Here we consider two subcases: 
(a) A is sigular, and (b) A is nonsigular. 

Consider case (a): Since A G Pi \ Q and detA = 0, there exists a vector 
p > 0 such that Ap = 0 ( it follows from Theorem 3.1 of [8] and Lemma 4.1 
of [9]). Thus we have pTAp = 0, p > 0. And A G Cq C CQ. From Lemma 
3, it follows A is PSD. 

Next, consider case (b): From A 6 Pi and Lemma 2, there exists a 
unique a such that pa(A) G Pi and detpQ(^l)=0. Since A £ Q, pa{A) £ Q. 
So pa(A) € Pi \ Q and detpa(A) = 0. From the proof of case (a), it follows 
that pa(A) is PSD. Therefore A is PSD. • 
R E M A R K 3. When n > 3, if A e Q, then Theorem 4 is not true. Consider 
the example 

/ O i l - 2 \ 

A = 
-1 

- 1 
1 
0 

0 
1 

V 2 1 - 2 1 j 

and Pi C P0. From Lemma 4, we know It is easy to verify A G Pi fl Ro 
that A £ Q . 

We only need to prove A G Cq. 
XTAX = x\ + X2X4 + ( X 3 — X 4 ) 2 . 

So A G Co- For other fourteen PPTs of A, we can verify them in turn 
and obtain that every PPT of A is a Co-matrix. So A G C}Q n Pi n Q. But 
selecting xT = (1,1, - 2 , - 2 ) , then xTAx = - 1 < 0. A isn't PSD. 
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