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A NOTE ON MURTHY’S CONJECTURE

Abstract. In this paper, we consider a conjecture made by Murthy to the effect that
a Cf N Qo matrix is positive semidefinite (PSD) and show that the conjecture is true for
n X n matrices of rank 1 or 3 X 3 matrices that are not in . We also consider the class
of P;-matrices which is a subclass of @}y and obtain the following: for A€ P, ,if A€ C({
and A ¢ @, then A is PSD; if A € Cg and A € Q, then A is PSD for n < 3 and A isn’t
PSD for n > 3.

1. Introduction

The linear complementarity problem (LCP) with data A € R™*™ and
g € R"™ involves finding a vector z € R™ such that

2>0,q+A2>0 and 2T(q+ Az)=0.

LCP has numerous applications, both in theory and practice, treated by
vast literature (see[l]). A number of matrix classes have been defined in
connection with LCP. We shall briefly introduce the concepts and notation
required for presentation of the results of this paper. For A € R"*", q € R",
let F(g,A) = {z€ R : Az+q>0}, S(¢g,A)={2€ F(q, A) : 2T(Az+q)=0}.
For most of other notion, we shall follow that used in [1].

For any positive integer n, write @ = {1,2,---,n}, and for any subset a
of 7, write @ = t\a. Consider A € R™*™. If o C 7 such that detA,q # 0,
then the matrix M defined by

Maa = (Aaa)_l, Ma& = —MaaAaEa
Mgo = AaaMaaa Mz = Am - MEaAaE
is known as the principal pivotal transform (PPT) of A with respect to a
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and will be denoted by p,(A). Note that a PPT is defined only with respect
to those a for which detA,, # 0. By convention, when o = ), detAyq = 1
and M = A (see[l]). Whenever we refer to PPTs, we mean the ones which
are well defined.

DEFINITION 1. Let A € R™™". Then A is called:

(1) a Q-matrix, if S(q, A) # 0 for all g € R™;

(2) a Qo-matrix, if for all ¢ € R™, F\(q, A) # 0 = S(q, A) # 0;

(3) a Qy-matrix , if Anq is a Qo-matrix for all a C 7;

(4) a Py-matrix, if det Ay > 0 for all a C 7;

(5) a Pi-matrix, if the principal minors of A are nonnegative, exactly
one of which is zero;

(6) a PSD-matrix (positive semidefinite matrix), if 7 Az > 0 for every
z € R™;

(7) a Co-matrix, if T Az > 0 for every z > 0;

(8) a Cg -matrix, if every PPT of A is a Cp matrix.

By © we denote the set of all 2-matrices, where {2 denote a class of
matrix in Definition 1.

REMARK 1 (see [1], [2]). If A belongs to any of C({ , Qo, Q, PSD, P;, then
every PPT of A is also in the same class.

Murthy (see [2]) introduced the class of C({ -matrices and obtained that
C’g N Qo-matrices are Pp-matrices which contain PSD-matices. In [3, 4],
Murthy proved that bisymmetric Cg N Qp-matrices as well as 2 x 2 Cg NQo-
matrices are PSD and raised the following conjecture.

Murthy’s conjecture: Suppose A € C’({ N Qo, then A is PSD.

In [5], Murthy showed that Cg NQo-matrices are sufficient. This belongs
to a series of results showing that Cg N Qo-matrices and PSD matrices have
many properties in common. So they raised the conjecture as an open
problem. In [6], Mohan presented a counterexample to this conjecture. In
this article, we present some sufficient conditions to this conjecture, settle
the open problem.

2. Main results

In [3], Murthy proved the conjecture is true when n = 2. In this article,
we assume 71 > 3. For the sake of completeness, we state relevant portions
of some known theorems.

LEMMA 1 (see [3]). Suppose A € R™™N C({ , then the following conditions
are equivalent:

(a) A € Qo;
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(b) for every PPT M of A, my =0 = my; + mj; =0Vi,j €W;

(c) A € Qo.

LEMMA 2 (see [7]). Suppose A € R**™ N Py. The following statements hold:
(a) There exists a unique o such that po(A) € P1 and detpy(A) = 0.

(b) A is in Q.

LEMMA 3 (see [1]). Let A € R™™ N Cy, if there exists a vector x > 0 such
that T Az = 0, then A is PSD.

LEMMA 4 (see [5]). If A € Py, then A € Q if and only if A € Ry, where
A € Ry if and only if S(0, A)={0}.

Now we prove the following theorem.

THEOREM 1. Suppose A € R™*™"NQy, rankA=1, then A is PSD if and only
if A€ Co

Proof. The ’only if’ part is obvious. We shall prove the ’if’ part. If
a;; =0, Vie{l,2,---,n}, then from Lemma 1 it follows that a;; + a;; =
0, Vi,j € {1,2,---,n}. Thus, rankA=0 or rankA > 2. This contradicts
the assumption that rankA=1. There then exists an index i, 1 < i < n,
such that a; > 0 . Suppose A = ab?, where a = (a1,az,--+,a,)%, b7 =
(b1,ba, -+, by), then there must exist an index 7 such that a; # 0 and b; # 0.
Without loss of generality, we may assume ¢ = 1 , then a1; = ai1b; > 0.

Take o = {1}, M = p4(A). Then

A bk by

a1b1 b1 bl

a 0o --- 0

M= o

o 0 .- 0
From A € anQo, M e CgﬁQo. It follows from Lemma 1 that -Qi+9* =0
for all i = 2,3,---,n. For an arbitrary z € R*, 2T Mz = W > 0. So M
is PSD. It follows that A is PSD. O

THEOREM 2. Suppose A€ R™NQo and A ¢ Q, then A is PSD if and
only if A e C’O

Proof. It suffices to prove the ’if’ part. Here we consider two cases: A
has a zero diagonal entry or A has no zero diagonal entry.

Case (1): A has a zero diagonal entry. Without loss of generality, we
may assume that ¢ = 1 is such that a; = 0. From Lemma 1 it follows
that a1; + aj; = 0 for j # 1. Take o .= {1}. Then Anq € R?*? and
Aje € Cg N Qo, from Theorem 4.9 in [3]|, Aneis PSD. For an arbitrary
ze R T Az = :ngaaa:a >0, so A is PSD.
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Case (2): all diagonal entries of A are positive. Here we consider two
subcases: (a) all principal minors of order two are positive, (b) A has a zero
principal minor of order two.

Consider case (a): Since diagonal entries of A and its principal minors of
order two are positive, then det A=0(otherwise if detA > 0, then A € P C Q.
It contradicts to that A ¢ Q). So A € P1 \ @ and detA = 0, there exists
a vector p > 0 such that Ap = 0 (it follows from Theorem 3.1 of [8] and
Lemma 4.1 of [9]). Thus we have pT Ap = 0,p > 0. Moreover, A € Cg c Cp.
From Lemma 3, it follows that A is PSD.

Consider case (b): Without loss of generality, we may assume a = {1, 2}
such that detAy,q =0, i.e. a11a22 = aj2a21. Let 8 = {1}, M = pg(A). Then

( 1 _a12 _ai3 \
ail ail ail
M= e __aj2a9) __agiai3
ann %22 an 923 a1l
a3l __ ga12a3) _ a3no13
all a32 alt a33 all
1 _aiz _ a3 \
aill aili ail
= | en _ 821413
a1 0 a23 a1t
a3l _ a1pa3 _ azglaig /
as2 ass o

aii a1l

So M has a zero diagonal entry moy = 0, and M € R33N Cg NQo\ Q.
From the proof of case (1) , we conclude that M is PSD. Hence A is PSD.
g

REMARK 2. Theorem 2 is not true for n > 3. Consider the example

0 0
1 0
0 1
1 -2

oS O O O
—-_ o O O

It is easy to verify that A € Py and A ¢ Ry (because (1,0,0,0)7 € S(0, 4)).
From Lemma 4, we know that A ¢ Q.

We now show that A € Cg N Qo-.

Note that there are two distinct PPTs of A. One is the matrix A itself.
It is the PPT of A corresponding to

a=0,{2},{3},{2,3}.
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Another PPT is

0 0 0 o0
M= 0 1 0 0
0O 0 1 o
0o -1 2 1

It is the PPT of A corresponding to

a = {4}’ {27 4}, {3’ 4}a {2’ 3, 4}-
The copositivity of matrices A and M can be demonstrated by an analysis
of the corresponding quadratic forms which can be rewritten as follows:

(1) 2T Az = 22 + z9z4 + (23 — T4)2,
(2) g7 Mz = (32 — 374)? + 22 + 22324 + 323

Hence A € Cg NQo and A ¢ Q. But selecting 7 = (1,1,-2,-2), we
have T Az = —1 < 0, so A isn’t PSD.

Now, considering the class of Pj-matrices which is a subclass of Qo (from
Lemma 2). We have:

THEOREM 3. If A € R3NPy, then A € PSD if and only if A € CJ.

Proof. The ’only if’part is obvious. We shall prove the ’if’ part. Here we
consider two cases: A¢ Q or A € Q.

Case (1): A ¢ Q. Since A € P, C Qy, from the proof of Theorem 2, it
concludes that A is PSD.

Case (2): A € Q. Here we consider three subcases: (a) A has a zero
diagonal, (b) A is sigular , and (c) A is nonsigular with positive diagonal
entries .

Consider case (a). Without loss of generality, we may assume that i = 1
is such that a; = 0. Since A € Cg N C Cg NQp. From Lemma, 1, it follows
that a1;+aj = 0 for j # 1. Take o =m. From Ae Py, Aqo € PC Q. So
Ago € R?*? and A, € C’g NQ C Cg N Qo, from Theorem 4.9 in [3], Agqis
PSD. For an arbitrary z € R3, 27 Az = L Ay0zo > 0. So A is PSD .

Next, consider case (b): Take a = {1,2}. Since A € Py, detApa # 0 .
Let M = pqo(A), then

— (Aaa)_l _(Aaa)_lAaE
Aaa(Aaa)_l p ’
where p = Agg — Aga(Aaa) Az is a number. Since detA=detAyqdetp=0,

p = 0. So M has a zero diagonal entry mgs =0, and M € R3"3ﬂC(’;ﬂP1 nQ.
From the proof of case (a) , we conclude that M is PSD. Hence A is PSD.
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Last, consider case(c): From Lemma 2, there exists a unique « such that
pa(A) € P; and detp,(A)=0. Then p,(A) € R33N C({ NP NQ, and
detpo(A) = 0. From the proof of case (b), it follows that p,(A4) is PSD.
Therefore A is PSD. (|

THEOREM 4. Let A€ R™", n>3. IfA€ P, and A ¢ Q, then A€ PSD
if and only if A € be.

Proof. It suffices to prove the ’if’ part. Here we consider two subcases:
(a) A is sigular, and (b) A is nonsigular.

Consider case (a): Since A € P; \ @ and detA = 0, there exists a vector
p > 0 such that Ap = 0 ( it follows from Theorem 3.1 of [8] and Lemma 4.1
of [9]). Thus we have pTAp =0, p> 0. And A € C’{; C Cp. From Lemma
3, it follows A is PSD.

Next, consider case (b): From A € P, and Lemma 2, there exists a
unique « such that p,(A) € P, and detgp,(A)=0. Since A ¢ Q, pa(A) ¢ Q.
So pa(A) € P1\ Q and detp,(A) = 0. From the proof of case (a), it follows
that p(A) is PSD. Therefore A is PSD. d

REMARK 3. When n > 3, if A € @, then Theorem 4 is not true. Consider
the example

0 1 1 -2
-1 1 0 O
-1 0 1 0

2 1 -2 1

It is easy to verify A € PPN Ry , and P, C Py. From Lemma 4, we know
that A € Q.

We only need to prove A € C’g .

eT Az = 23 + zom4 + (73 — 74)? .

So A € Cy. For other fourteen PPTs of A, we can verify them in turn
and obtain that every PPT of A is a Cy-matrix. So A € C’g NPNEQ. But
selecting T = (1,1, -2, —2), then T Az = —1 < 0. A isn’t PSD.
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