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A RESIDUAL SKEWAFFINE P L A N E OF A MÖBIUS 
OR MINKOWSKI P L A N E 

A b s t r a c t . For Möbius and Minkowski planes of characteristic different from 2 a 
residual skewaffine plane associated with any point p is constructed. Following the con-
struction given by Andre (cf. [1]) we obtain the residual plane as the group space of some 
normally transitive group of automorphisms fixing p. This is a skewaffine plane without 
straight lines in the Möbius case and with two families of straight lines in the Minkowski 
case. 

Introduction 
There is a well known construction of a derived affine plane associated 

with a fixed point p of any Benz plane. The lines are induced by circles 
through p and generators (not through p) in the case of Minkowski and 
Laguerre planes. Therefore Benz geometries are partially characterized by 
properties of affine planes. However, in this construction we loose the set of 
circles not passing through p. This set (possibly extended by generators not 
through p) to the points joinable1 to p defines the so called residual plane 
at p. It is a natural idea to characterize it by some linear structure. A con-
venient tool is the notion of a skewaffine plane introduced by J. Andre (cf. 
[1]). It is a noncommutative linear structure. In [16] H. Wilbrink presented 
some conditions for Minkowski planes to define a so called residual nearaffine 
plane which is a special case of skewaffine plane with two families of straight 
lines (associated with generators). In [13] the present author gave a con-
struction of a residual skewaffine plane in a Laguerre plane. This result used 
the general construction of the so called group space given by J. Andre in [1]. 

In this note we adopt the J. Andre construction to obtain a residual 
skewaffine plane at any point p of a miquelian Möbius or Minkowski plane 
of characteristic different from 2 as a group space (cf. Theorem 3.1). The 
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1A point x is joinable to p if there exist a circle through x, p. 
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base of the construction is the group of displacements associated with p, i.e. 
compositions of two symmetries with respect to circles through p. If the 
circles are tangent or have two common points the displacement is called a 
translation or a rotation respectively. Following the construction of a group 
space any circle not through p is the orbit of a point y under the subgroup 
of rotations with center x joinable to x and forms together with x the line 
of the residual skewaffine plane with basepoint x (denoted by x U y) (cf. 
Proposition 3.1). In a Minkowski plane we additionally get straight lines in 
case y is joinable to x. A class of parallel lines of the residual skewaffine 
plane is the orbit of a line under the subgroup of translations. In the last 
section we define the harmonic relation and give some applications of the 
residual skewaffine plane to characterizing pencils of circles of Möbius and 
Minkowski planes. 

1. Preliminaries 
Let V be a nonempty set elements of which are called points. Let 

QI,Q2, • • • ,QK be disjoint subfamilies of V, called generators, such that the 
following axioms hold: 

(Nl) For every point p and every i G I := { 1 , . . . , k} there exists at most 
one generator E with x G E G Qi. 

(N2) If j, E G Qi, F G Qj, then E meets F in a unique point. 

We set G := U i e J Qi, \p}i = E with x G E G Qi and [p] := \Jiej\p\i-
A subset M c V is called joinable if VX e Q : \M n X\ < 1. A maximal 

joinable set of points is called a circle. It is easy to check that a subset 
C C V is a circle iff the following condition is satisfied: 

(N3) Every element X G Q intersects C in exactly one point. 

Let (V,Q) be any structure satisfying axioms (Nl), (N2) and provided with 
a family C of circles. The structure M. = (V,C,Q, e) is a circle plane if Q 
contains at most two families of generators and the following axioms hold: 

(Cl) Through three distinct joinable points p, q, r there is a unique circle K 
with p,q,r G K (notation K := (p, q, r)°). 

(C2) For any circle K and joinable points p, q such that p G K, q £ K there 
is a unique circle L such that q G L and K n L = {p}. 

(C3) There is a circle R with at least three points such that V \ R ^ 0. 

A circle plane is called a Möbius plane or a Minkowski plane if it has 0 or 2 
families of generators, respectively. 

For any circle K and points x,y of a Minkowski plane we write xy := 
[x]i n [y]2, xK = [x]i n K, Kx := [x]2 fl K. Additionally we put [p] := {p\ 
for any point p of a Möbius plane. 
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Let p be any point of a Möbius or Minkowski plane. We define Ap := 
{VP,CP, e) where Vp = V \ [p] and 

' {K n Vp | K G V, p G K} for a Möbius plane, 
Cp = {K n vp | K e v,p e K} u {E n vp \ E e g,P <£ E} 

for a Minkowski plane. 

Then Ap is an affine plane called the derived plane at the point p. We denote 
its projective extension by Ap. The order of Ap at any point is the same and 
is called the order of the Möbius (or Minkowski) plane, denoted by ord A4. 

An automorphism of a Möbius or Minkowski plane is a permutation of 
the point set which maps circles to circles and generators to generators. A 
symmetry with respect to a circle K is an involutory automorphism which 
fixes K pointwise. For any circle K there exists at most one symmetry 
denoted by S/f. If p € K then SK induces a homology of Ap with improper 
axis, hence there exists a circle L passing through p such that SK(M) = M 
for any circle M tangent to L at p. 

In the case of a plane for which every symmetry exists we can introduce 
the notion of the characteristic of the plane. It is the characteristic of Ap at 
any point p (cf. [5], [14]). 

A circle K of a Möbius or Minkowski plane is called orthogonal to a circle 
L, in symbols K _L L , if SK{L) = L. This condition defines a symmetric 
relation on the set C (cf. [4]). In particular, if a plane is of characteristic 
different from 2 and K _L L, then K is nontangent to L. 

For joinable points p, q and a circle K passing through p we define 
{p,K} := {L G c I L n K = M } U {K}, (p,q) := {L G C \ p,q G L} 
and call them the parabolic pencil with vertex p and direction K and the 
hyperbolic pencil with vertices p, q respectively. For any set <S G C we define 
S1- := {L G C | VM G <S : L _L M}. We have (p,ii)± = (p,L) where 
L±.K,p£Kr\L and (p, q)L = (pq, qp) for a Minkowski plane. The set 
{K, L}1- will be called an elliptic pencil if K fl L = 0 for Minkowski planes, 
and if \K n L\ = 2 for Möbius planes (cf. [17], [3]). 

A translation or a homothety of a Minkowski or Möbius plane is an 
automorphism tp which has at least one fixed point p and ip induces a trans-
lation or a homothety resp. of the derived affine plane Ap. For Möbius and 
Minkowski planes there exist translations with fixed pencil (p, K) for some 
p G V, K G C, p G K. In the case of a Minkowski plane there is one more 
type of automorphism: translations with one pointwise fixed generator. 

A homothety fixes two distinct joinable points p, q and the hyperbolic 
pencil {p, q). In the case of a Minkowski plane M with ord M. > 3 any 
homothety preserves the sets Q\ and Q̂ -
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The Miquel Theorem describes the classical class of Möbius and Minko-
wski planes: 

(M) For any eight different and pairwise joinable points a, b, c, d, e, / , g, h if 
the quadruples {a, c, b, d}, {a, e, b, h}, {a, g, d, h}, {b, / , c, e}, {c, g, d, / } 
are joinable then the quadruple {e, g, / , /i} is joinable. 

Miquelian Möbius and Minkowski planes satisfy the so called three reflection 
theorem in any parabolic and hyperbolic pencil (cf. [11], [14]): 

THEOREM 1.1. If Li, 1,2,1,3 e {p,K) or L\, L2,Lz € {p,q) where p,q,K are 
fixed joinable points and circle resp. with p G K, then there exists a circle 
M € (p,K) (M € (p,q) resp.) such that Sl3 ° SL2 ° S^ = Sm-

In the remainder of the paper we will consider only miquelian Möbius 
and Minkowski planes of characteristic different from 2. Such planes are 
isomorphic to chain geometries S(K, L) where IK is a field (charK / 2) 
and L = K(i) is an extension of K to a commutative algebra such that 
dimjcL = 2 (cf. [3]). In the case of a Möbius plane, L is a field and the 
element i satisfies the condition i2 = —k for some fceK(fc/0, —1). In the 
case of a Minkowski plane, i2 = 1 and L is a commutative algebra with two 
maximal ideals. 

THEOREM 1.2. For any circles K,L of a parabolic pencil there exist exactly 
one circle M of this pencil such that Sm(K) = L. 

We remark that this is not true for hyperbolic and elliptic pencils: some 
stronger restrictions on the field are needed. 

According to the general description of a geometry E(K, L) points of 
a miquelian Minkowski and Möbius geometry are elements of P(L) and 
C = {P(K) 7 | 7 <E PGL(2, L)}. It can be proved that any circle of a Möbius 
(Minkowski resp.) plane is the set 

[zi,z2] [zi,z2] M 
Z2 

= 0 

for some M € _M2x2(L) such that MT = M and det M 6 - D in the Möbius 
case (resp. detM is invertible in the Minkowski case). The bar denotes the 
involutory automorphism of L such that x + iy = x — iy (x, y € K) and 
D := {x2 + ky2 \ x, y £ K, (x, y) ^ (0,0)}. In a standard way we define 

x2 + ky2 for a Möbius plane, 
x2 — y2 for a Minkowski plane. 

N(x + iy) := (x + iy)(x-iy) = , 2 2 

For any a, b € L we have N(a • b) = N(a) • N(6) and hence the set D is closed 
under multiplication. 
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The following analytical description of the derived plane at a point p = 
(1.0) is convenient. The points have representation [x+iy, 1] where x, y G K. 
The lines are sets of points of equations mx + ny + t — 0 (m, n,t G IK, 
(m,n) / (0,0)) (and generators x = n, y = k in the case of a Minkowski 
plane). 

Because we will describe the structure of circles not passing through the 
point p = [1,0] we will use their explicit equations. The points [x + iy, 1] of 
a circle satisfy the equation 

(1.1) x2+ ky2+ mx + ny + d = 0 {m, n, d € K, Ad - m2 - ^ - D) 

in the Möbius case, and 

(1.2) x2-y2+ mx + ny + d = 0 (m,n,d G K,4d - m2 + n2 ± 0) 

in the Minkowski case. 
Any automorphism of a Möbius or Minkowski plane can be determined 

by a bijection of the form : [z\, Z2} —> [z^z^] M where r € Aut(K) 
and M € PGL(2,L) . In particular, T(L) := I M € PGL(2 ,L)} < 
Au t (X) , where ^m-

Symmetries with respect to a circle have the following analytic represen-
tation: 

where r, s G K, a G L and N(a) + krs ± 0 in the Möbius case (resp. 
N(a) — rs 0 in the Minkowski case). 

A skewaffine space (cf. [1]) is an incidence structure § = (X, U, ||), where 
X is a nonempty set of points, denoted by small Latin letters, and 

is a function. The sets of the form x U y (x ^ y) are called lines. They will 
be denoted by capital Latin letters. The symbol || denotes an equivalence 
relation among the lines. The following axioms must be satisfied: 

(LI) x,y G xUy, 
(L2) z € x L l j / \ {x} implies xUy = xU z (exchange condition), 
(PI) given any line L and any point x there exists exactly one line x U y 

parallel to L (Euclid's axiom), 
(P2) Vx,x',y,y' : (x ^ y, x' y'/\xUy || x'Uy') —> yUx || y'Ux' (symmetry 

condition), 
(T) if x, y, z are pairwise different points such that xUy || x'Uy', then there 

exists a point z' such that xUz || x'Uz' and yUz || y'Uz' (Tamaschke's 
condition). 

(1.3) M - M a 

si a 

U:{(x,y)EX2\x¿y}^2 ,x 
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If we assume x = x' in axiom (T), then the axiom is called the affine Veblen 
condition (V). 

We will consider additional conditions for a skewaffine space: 

(Pgm) Vx, y,z G X, {x , y, z}^3w G X: xUy || zUw A xU z || y U to, 
(Des) Vu, x,y,z G X, {u, x, y, z}^ : x' G u U x \ {u} —• 3y' G u LI y \ {u}, 

z ' G t i U z \ { t i } with xUy\\x'Uy',xUz\\x'Uz,,yUz\\y'U z'. 

A skewaffine plane satisfying the condition (Des) is called desarguesian. 
If a line L has the form xUy then the point x is called a basepoint of L. 

It is a simple consequence of the axioms that any line has either exactly 
one basepoint or all its points are basepoints (cf. [15]). A line all of whose 
points are basepoints is called a straight line. A line which is not straight 
(and hence has exactly one basepoint) is called a proper line. 

A group G acting on a set X is called normally transitive if G is transitive 
and Gx \ Gy ^ 0 for any x, y G X with x ^ y (G^ denotes the stabilizer of 
the point x with respect to G). For any group acting on a set X one can 
construct a group space V(G) = (X , U, ||) with 

• x U y = G ^ X , y} = { X } U G x y , 
• for any lines L, L', L || L' if there exists g G G such that gL = L'. 

The following theorem will be the basis of our construction ([1, p. 5], cf. 
also [15, Proposition 6.5, p. 94]). 

THEOREM 1.3. The group space V(G) with respect to a normally transitive 
group G is a desarguesian skewaffine space. 

A more detailed discussion of the properties of the group space V(G) 
can be found in [15]. 

A bijection 7 : X —> X is called an automorphism of a skewaffine plane 
S = (X, U, ||) with the set C of lines if the following axioms are satisfied: 

( A l ) Vx, y G X , x ± y : T(xUy) = j ( x ) U 7 (y) , 
(A2) VL, L' G C : L || V 7 (L) || j(L'). 

An automorphism 7 is called a dilatation if additionally 

(D) VL G C : L || 7 ( L ) . 

PROPOSITION 1.1. For every g G G the map : X —> X, 7S(X) = gx, is a 
dilatation of the skewaffine plane V(G) (cf. [1]). 

The group of all dilatations of a skewaffine plane S will be denoted by Dil §. 
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2. The group of displacements associated with a point of a Möbius 
or Minkowski plane 
Let p be a fixed point of a Möbius or Minkowski plane. 

DEFINITION 2.1. An automorphism tp G (Aut A4)p is called a displacement 
associated with p if ip is the composition of two symmetries with respect to 
circles containing p. 

From Theorem 1.1 it follows that the set G := {SK o SL \ K, L G C, p G 
K f lL} of all displacements associated with p forms a subgroup of the group 
(Aut M.)p. The group G contains only automorphisms of the following two 
kinds. If K n L = {p} then SK o SL(M) = M for any circle M such 
that p G M and M J_ K. It is a translation in the direction of the circle 
M. If K fl L = {p,Q} for some joinable points p,q then Sk 0 Sl has the 
fixed pencil (p,q)±• We will call this automorphism a rotation. The group 
T := {Sk O S l I K, L G C, K n L = {p}} is a transitive (on V \ \p\) normal 
subgroup of G by Theorem 1.1. Hence we obtain 

LEMMA 2.1. For any point p of a Möbius or Minkowski plane the group G 
is normally transitive. The elements of G without fixed points (on V \ \p}) 
are translations. They form a transitive normal subgroup T < G. 

We remark that the group G is of type IIIA in the Hering classification 
of automorphism groups of Möbius planes (cf. [7]) and of type 17 of the 
analogous Klein-Kroll classification for Minkowski planes (cf. [9], [10]). 

To get the analytical representation of the group G we assume that 
p = [1,0]. Any symmetry with respect to a circle passing through p has 

° ' where m G L*, c € K. Hence G = {$m G T(L) the matrix 
m 

m 

, p G L*, c G X, N (p) = 1} and T = {$ M € T(L) 
1 

, c G L}. 

We get G[0ji] = {$m , N(p) = 1}. 

2 J 2 Direct calculations show that the condition N (p) = 1 implies p — 

- ^ t ? 1 f o r s o m e v ) ± ( °»°) i n t h e Möbius case andp = ^¡i 
for some u, v with u / ± u in the Minkowski case. 

One can present any element of the group G[0ji] as the composition of 
the symmetry with respect to the line ux + vy = 0 and the symmetry with 
respect to the line x = 0. Thus we obtain an interpretation of the parameters 
u,v in the representation of elements of G[0)i] (cf. [3]). 
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In the case K = R we get the groups of Euclidean and pseudoeuclidean 
rotations. 

3. Residual plane of a Möbius or Minkowski plane 
In the previous section we defined the normally transitive group G as-

sociated with any point p of a Möbius or Minkowski plane as a subgroup of 
(Aut M)v. Now we will investigate the group space V(G). 

PROPOSITION 3.1 . For any circle K of a Möbius or Minkowski plane with 
p £ K there exists a point q such that Gp(x) = K fl (V \ [p]) for any 
x E K \ ([p] U [9]). Dually for any q E V\\p] and x E V \ ([p] U [?]), 
Gp(s) = K n (V \ [p]) for some K &C,p<£K. 

If x E [q]i \ [p] then Gq(x) = [q]i \ [g] (i = 1,2 for a Minkowski plane). 

Proof . Let K be any circle such that p £ K and q := S(p). In the 
Minkowski case assume that x,x' E K and L E (p,q), x,x' £ L. If a := 
(xL)(Lx) then the points p, q, ax', x'a are concyclic. If M := (p, q, ax', x'a)° 
then Sm o S/c(x) = x'. • 

According to Lemma 2.1 and Theorem 1.3 the group space V(G) is a 
skewaffine plane. It will be called the residual plane at the point p of a 
Möbius or Minkowski plane and denoted by MP (cf. [16]). By the definition 
and Proposition 3.1, Mp = (Vp, Cp, U, ||, e) where 

• VP :=V\\p], CP := {({SK(p)}UK)DPP \ K E C,p £ K,}U {EnVp \ 
EEQ,p$E}, 

• x U y := {tp(y) | <p E G x } U {a ; } for any x, y E Vp, x ± y, 
• Li || L2 3<p E G : <p(Li) = L2-

From the construction it follows that any circle K, not through p, induces 
a line x U y of MP where x = SK(P) and y is any point of K \ [p]. The point 
x will also be called the basepoint of the circle K. 

We get 

THEOREM 3.1 . For any miquelian Möbius or Minkowski plane M with 
char M 2 and ord M > 3 and a point p E V the residual plane Mp is 
a desarguesian skewaffine plane. MP does not contain any straight lines in 
the case of a Möbius plane and contains two classes of parallel straight lines 
in the case of a Minkowski plane. Classes of parallel lines are orbits of the 
subgroup of translations of the group G. 

Proof . It is sufficient to prove the last statement because the rest follows 
from Theorem 1.3, Lemma 2.1 and Proposition 3.1. 

Let tp E Gp and L := a U b for some a,b E Vp. Then ip{L) = ip(a) U ip(b). 
If r E G is a translation such that r(a) = (p(a) then ip~lr E Ga , hence 
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ip lr(L) = L and r (L ) = ip(L). This shows that any line parallel to L is of 
the form r (L ) for some translation r. • 

4. Harmonic quadruples and properties of pencils 

LEMMA 4.1. For any distinct joinable points a,b,c there exists exactly one 
circle K through c such that SK{O) = b. 

Proo f . Let L, M be circles orthogonal to N := (a, b, c)° through a,c and 
b,c respectively. Then L,M are tangent at c. By Theorem 1.2, there exists 
exactly one circle K' such that SK ' (L ) = M. We also have SK ' (N ) = N, 
hence SK'{O) = b. If SA: (a) = b and SK(C) = C then S^ interchanges the 
circles of the pencil (c, N)-L through a, b resp., hence K = K'. • 

DEFINITION 4.1. We call distinct points c, d harmonic conjugate with respect 
to distinct points a, b if there exist pairwise orthogonal circles K, L, M such 
that a, b,c,d € K, a,b E L, c,d G M. 

From the definition it follows immediately that c, d are harmonic conju-
gate to a, biff a, b are harmonic conjugate to c, d. From Lemma 4.1 it follows 
that there exists exactly one point harmonic conjugate to c with respect to 
a, b for any distinct joinable points a, b, c. 

LEMMA 4.2. Let q be a point of Mp and let E be the set of circles with 
basepoint q. 

(i) If M. is a Minkowski plane then E = (p,q)±-
(ii) If M. is a Möbius plane then E is an elliptic pencil. 

Proo f , (i) By the construction of a basepoint for any circle K with base-
point q, SK{P) — Q• Hence pq, qp G K and E = (pq, qp) = (p, q)1-. 

(ii) follows from the fact that (p, q)'L is an elliptic pencil. • 

COROLLARY 4.1. 

(i) A rotation of a Minkowski plane is a homothety. 
(ii) A rotation of a Möbius plane is a homothety iff it is an involution. 

Proo f . Let KnL = {p,q}. 

(i) The rotation SK ° SL fixes the circles of the pencil {pq, qp). 

(ii) " => " If the rotation S^OSL is a homothety then it fixes the circles of 
the pencil {p,q). Let x / p,q, M := (p,q,x)° and N be the circle through 
x orthogonal to the circles K, L. Then N _L M and N, M have another 
common point x' by the assumption that the characteristic is different from 
2. It follows that SK °SL(X) = x' and SK ° SL(X') = x since it fixes M, N. 

" <= " If S/c o Sl is an involution then K J_ L and the assertion follows 
from [8, Lemma 4.22, p. 101]. • 



922 A. Matras 

According to Proposition 1.1 every translation and rotation of a Möbius 
or Minkowski plane induces a dilatation of the residual plane at any fixed 
point. We prove that the group DilV(G) is larger. 

LEMMA 4.3. Every symmetry with respect to a circle passing through p 
induces a dilatation of the residual plane MP. 

Proof . Any automorphism tp of the plane M fixing p induces an automor-
phism of MP since according to Proposition 3.1 it maps a pair (SL(P),L) 
where p ^ L G C to a pair (S v ^(p) , ip(L)) . If additionally (p — SK where 
p € K G C we have 

S K(L) = S m ° S K(L) and SK(S L{p)) = S M o SK(SL(p)), 

where M := (p, SL(J>), SK{SL(P))° , hence the displacement SM ° SK realizes 
parallelity of the lines associated with the circles L, SK(L). Thus SK induces 
a dilatation. • 

PROPOSITION 4.1 . Circles of any hyperbolic and parabolic pencil of a Möbius 
or Minkowski plane have basepoints on a circle passing through p. 

Proof . Let (a, b) be any hyperbolic pencil of a Möbius or Minkowski plane 
where a, b are joinable to p and let q be harmonic conjugate to p with 
respect to a, b. If L denotes the unique circle of the pencil (p, q) orthogonal 
to (a, b,p)°, then SL fixes the circles of (a, b). By Proposition 4.1, SL induces 
an automorphism of the residual plane MP. Hence SL fixes the basepoints 
of the circles of the pencil (a, b). It follows that they belong to the circle L. 

The proof in the case of a parabolic pencil is similar. • 

Any elliptic pencil of a Möbius plane determines one of the two different 
possibilities for a residual plane. If E = (a,p)-L then in Mp the pencil E 
determines the set of lines with basepoint a. The circles of E are disjoint 
and form a partition of the set Vp \ {6}. This is a generalization of the set 
of concentric Euclidean circles. The second case is obtained if p ^ a, b. 

PROPOSITION 4.2 . Let E = (a, b)1- be an elliptic pencil of a Möbius plane 
and p a, b. The set of basepoints in MP of the circles of E is the circle 
(p,a,b)°. 

Proof . Let L := (a,b,p)°. By Proposition 4.1, SL induces an automorphism 
of MP. It fixes the circles of E, hence preserves their basepoints. Thus the 
basepoints of the circles of E belong to L. • 

PROPOSITION 4.3. The basepoints of parallel lines associated with circles 
tangent to a circle with basepoint q form a line after adding q as the base-
point. 
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P r o o f . Let K,L be tangent circles with basepoints q,q' respectively. By 
Proposition 3.1 and Theorem 3.1, the orbit of q' under the group of rotations 
with center q is a circle with basepoint q. The orbit of L under this group 
is the set of circles tangent to K associated with parallel lines of A4P. • 

Finally, we give a generalization of the classical theorem about bisectrices 
for the configuration of circles of a miquelian Möbius or Minkowski plane 
of characteristic different from 2. It can be treated as a construction of the 
basepoint of a line of the residual plane A4P by means of symmetries with 
respect to lines of the derived plane Ap. 

P R O P O S I T I O N 4 . 4 . Assume that the points a, b, c are joinable; p £ K := 
(a,b,c)°, A := (p,b,c)°, B := (p,a,c)°, C := (p,a,b)°; the points a!,b',d 
are harmonic to p with respect to (b,c), (a,c), (a,b) resp.; and the circles 
A',B',C' are the circles of the pencils (p,a'), (p,b'), (p, d ) orthogonal to 
A, B, C resp. Then A', B', C' belong to one hyperbolic pencil. The second 
point of intersection of these circles is symmetric to p with respect to K . 

P r o o f . The circles A', B' cannot be tangent, since otherwise B' is orthogo-
nal to A, hence Sß'(c) = a € A, a contradiction with the assumption p ^ K. 
Let q be the second common point of the circles A',B', Q := (p,q,c)°. By 
Theorem 1.1 there exists a circle R such that S^/ OSROSB' = SR. It is easy 
to check that SR(Ü) = b. By Lemma 4.1, R = C'. • 
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