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A RESIDUAL SKEWAFFINE PLANE OF A MOBIUS
OR MINKOWSKI PLANE

Abstract. For Mobius and Minkowski planes of characteristic different from 2 a
residual skewaffine plane associated with any point p is constructed. Following the con-
struction given by Andre (cf. [1]) we obtain the residual plane as the group space of some
normally transitive group of automorphisms fixing p. This is a skewaffine plane without
straight lines in the Mobius case and with two families of straight lines in the Minkowski
case.

Introduction

There is a well known construction of a derived affine plane associated
with a fixed point p of any Benz plane. The lines are induced by circles
through p and generators (not through p) in the case of Minkowski and
Laguerre planes. Therefore Benz geometries are partially characterized by
properties of affine planes. However, in this construction we loose the set of
circles not passing through p. This set (possibly extended by generators not
through p) to the points joinable! to p defines the so called residual plane
at p. It is a natural idea to characterize it by some linear structure. A con-
venient tool is the notion of a skewaffine plane introduced by J. Andre (cf.
[1]). It is a noncommutative linear structure. In [16] H. Wilbrink presented
some conditions for Minkowski planes to define a so called residual nearaffine
plane which is a special case of skewafline plane with two families of straight
lines (associated with generators). In [13] the present author gave a con-
struction of a residual skewaffine plane in a Laguerre plane. This result used
the general construction of the so called group space given by J. Andre in [1].

In this note we adopt the J. Andre construction to obtain a residual
skewaffine plane at any point p of a miquelian M6bius or Minkowski plane
of characteristic different from 2 as a group space (cf. Theorem 3.1). The
"~ 2000 Mathematics Subject Classification: 51B20.
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base of the construction is the group of displacements associated with p, i.e.
compositions of two symimetries with respect to circles through p. If the
circles are tangent or have two common points the displacement is called a
translation or a rotation respectively. Following the construction of a group
space any circle not through p is the orbit of a point y under the subgroup
of rotations with center z joinable to x and forms together with z the line
of the residual skewaffine plane with basepoint z (denoted by z U y) (cf.
Proposition 3.1). In a Minkowski plane we additionally get straight lines in
case y is joinable to z. A class of parallel lines of the residual skewaffine
plane is the orbit of a line under the subgroup of translations. In the last
section we define the harmonic relation and give some applications of the
residual skewaffine plane to characterizing pencils of circles of Mobius and
Minkowski planes.

1. Preliminaries

Let P be a nonempty set elements of which are called points. Let
G1,Go, ..., Gk be disjoint subfamilies of P, called generators, such that the
following axioms hold:

(N1) For every point p and every i € I := {1,...,k} there exists at most
one generator F with x € F € G;.
(N2) Ifi,j€l,i# 3, E€G;, Feg;, then E meets F in a unique point.

We set G := ;e G, [pls = E with z € E € G; and [p] := ;¢ ;[p)s-

A subset M C P is called joinable if VX € G : |M N X| < 1. A maximal
joinable set of points is called a circle. It is easy to check that a subset
C C P is a circle iff the following condition is satisfied:

(N3) Every element X € G intersects C in exactly one point.

Let (P, G) be any structure satisfying axioms (N1), (N2) and provided with
a family C of circles. The structure M = (P,C,G, €) is a circle plane if G
contains at most two families of generators and the following axioms hold:

(C1) Through three distinct joinable points p, g, 7 there is a unique circle K
with p,q,r € K (notation K := (p,q,7)°).

(C2) For any circle K and joinable points p, ¢ such that p € K, g ¢ K there
is a unique circle L such that ¢ € L and K N L = {p}.

(C3) There is a circle R with at least three points such that P\ R # 0.

A circle plane is called a Mobius plane or a Minkowski plane if it has 0 or 2
families of generators, respectively.

For any circle K and points z,y of a Minkowski plane we write xy :=
[z]1 N [y]2, zK = [z]; N K, Kz := [z]2 N K. Additionally we put [p] := {p}
for any point p of a Md&bius plane.
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Let p be any point of a Mobius or Minkowski plane. We define A, :=
(PP,CP, €) where PP =P\ [p] and

{KNPP|K € P,pec K} for a Mdbius plane,
CP={{KNPP|KcP,pc K}YU{ENPP|E€cG,p¢E}
for a Minkowski plane.

Then A, is an affine plane called the derived plane at the point p. We denote
its projective extension by A_p. The order of A, at any point is the same and
is called the order of the Mobius (or Minkowski) plane, denoted by ord M.

An automorphism of a Mdbius or Minkowski plane is a permutation of
the point set which maps circles to circles and generators to generators. A
symmelry with respect to a circle K is an involutory automorphism which
fixes K pointwise. For any circle K there exists at most one symmetry
denoted by Sk. If p € K then Sk induces a homology of }Tp with improper
axis, hence there exists a circle L passing through p such that S (M) = M
for any circle M tangent to L at p.

In the case of a plane for which every symmetry exists we can introduce
the notion of the characteristic of the plane. It is the characteristic of A_p at
any point p (cf. [5], [14]).

A circle K of a Mobius or Minkowski plane is called orthogonal to a circle
L, in symbols K | L, if Sx(L) = L. This condition defines a symmetric
relation on the set C (cf. [4]). In particular, if a plane is of characteristic
different from 2 and K 1 L, then K is nontangent to L.

For joinable points p,q and a circle K passing through p we define
(pK) ={LeC|LnK = {p}}U{K}, {p,q) :={L €C|pqe€L}
and call them the parabolic pencil with vertexr p and direction K and the
hyperbolic pencil with vertices p, q respectively. For any set S € C we define
St ={LcC|VYMcS: L1 M}. Wehave (p,K)* = (p, L) where
L1 K,pe KNL and {(p,q)* = (pq,qp) for a Minkowski plane. The set
{K, L}* will be called an elliptic pencil if K N L =  for Minkowski planes,
and if |[K N L| = 2 for Mébius planes (cf. [17], [3]).

A translation or a homothety of a Minkowski or Mdbius plane is an
automorphism ¢ which has at least one fixed point p and ¢ induces a trans-
lation or a homothety resp. of the derived affine plane A,. For Mébius and
Minkowski planes there exist translations with fixed pencil (p, K') for some
p€eP, K e, pe K. In the case of a Minkowski plane there is one more
type of automorphism: translations with one pointwise fixed generator.

A homothety fixes two distinct joinable points p,q and the hyperbolic
pencil (p,q). In the case of a Minkowski plane M with ord M > 3 any
homothety preserves the sets G; and Gs.
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The Miquel Theorem describes the classical class of Mdbius and Minko-
wski planes:

(M) For any eight different and pairwise joinable points a, b, ¢, d, e, f, g, h if
the quadruples {a, ¢, b,d}, {a,e,b,h}, {a,g,d,h}, {b, f,c,e}, {c,9,d, f}
are joinable then the quadruple {e, g, f, h} is joinable.

Miquelian Mobius and Minkowski planes satisfy the so called three reflection
theorem in any parabolic and hyperbolic pencil (cf. [11], [14]):

THEOREM 1.1. If Ly, Ly, L3 € (p, K) or Ly, La, L3 € (p,q) where p,q, K are
fized joinable points and circle resp. with p € K, then there exists a circle
M e (p,K) (M € (p,q) resp.) such that Sp, oSy, oSy, =Sum.

In the remainder of the paper we will consider only miquelian Mdbius
and Minkowski planes of characteristic different from 2. Such planes are
isomorphic to chain geometries X(K,L) where K is a field (charK # 2)
and L = K(¢) is an extension of K to a commutative algebra such that
dimg L. = 2 (cf. [3]). In the case of a Mobius plane, L is a field and the
element 1 satisfies the condition 2 = —k for some k € K (k # 0, —1). In the
case of a Minkowski plane, i2 = 1 and L is a commutative algebra with two
maximal ideals.

THEOREM 1.2. For any circles K, L. of a parabolic pencil there exist exactly
one circle M of this pencil such that Spr(K) = L.

We remark that this is not true for hyperbolic and elliptic pencils: some
stronger restrictions on the field are needed.

According to the general description of a geometry ¥(K,L) points of
a miquelian Minkowski and Mobius geometry are elements of P(L) and
C ={P(K)" |y € PGL(2,L)}. It can be proved that any circle of a Mé6bius
(Minkowski resp.) plane is the set

{[21,22] [21,22] M [f_i] = O}
z2

for some M € Mayo(L) such that M-T = M and det M € —D in the Mé&bius
case (resp. det M is invertible in the Minkowski case). The bar denotes the
involutory automorphism of L such that z + iy = z — iy (z,y € K) and
D:={z? +ky? | z,y €K, (z,v) # (0,0)}. In a standard way we define

x2 + ky? for a Mobius plane,

N(z +iy) == (z +iy)(z —y) =
( y) = ( y)( v) { z? — y? for a Minkowski plane.

For any a,b € L we have N(a-b) = N(a) - N(b) and hence the set D is closed
under multiplication.
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The following analytical description of the derived plane at a point p =
[1,0] is convenient. The points have representation [z+iy, 1] where z,y € K.
The lines are sets of points of equations mz + ny +t¢t = 0 (m,n,t € K,
(m,n) # (0,0)) (and generators z = n, y = k in the case of a Minkowski
plane).

Because we will describe the structure of circles not passing through the
point p = [1,0] we will use their explicit equations. The points [z + iy, 1] of
a circle satisfy the equation

(1.1) 22+kyf*+mz+ny+d=0 (m,n,deK,4d—m2—%—D)
in the Mobius case, and
(1.2) 22—y 4+mz+ny+d=0 (m,n,deK,4d—m?+n?+#0)

in the Minkowski case.

Any automorphism of a Mébius or Minkowski plane can be determined
by a bijection ®]; of the form ®7; : [z1,22] — [2], 2]]M where 7 € Aut(K)
and M € PGL(2,L). In particular, I'(L) := {&m | M € PGL(2,L)} <
Aut(M), where @y := did.

Symmetries with respect to a circle have the following analytic represen-
tation:

(13) (21, 22) — 77,72 [ "_’]
si @
where ;s € K, a € L and N(a) + krs # 0 in the Mobius case (resp.
N(a) — rs # 0 in the Minkowski case).
A skewaffine space (cf. [1]) is an incidence structure S = (X, U, ||), where
X is a nonempty set of points, denoted by small Latin letters, and

U: {(z,y) € X* |z #y} - 2%

is a function. The sets of the form z Liy (z # y) are called lines. They will
be denoted by capital Latin letters. The symbol || denotes an equivalence
relation among the lines. The following axioms must be satisfied:

(L1) z,y € zUy,

(L2) ze zUy\ {z} implies z Uy = x U z (exchange condition),

(P1) given any line L and any point = there exists exactly one line z Uy
parallel to L (Euclid’s axiom),

(P2) Vz,o',y,y : (z#y,a' #y AzUy || 2'Uy") — yUz || y'Ua’ (symmetry
condition),

(T) if z,y, z are pairwise different points such that zlly || z'Uy’, then there

exists a point 2’ such that Uz || 2’U2’" and yUz || ¥’ U2’ (Tamaschke’s
condition).
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If we assume z = z’ in axiom (T), then the axiom is called the affine Veblen
condition (V).
We will consider additional conditions for a skewafline space:

(Pgm) Vz,y,z € X, {z,y,2}xFwe X: zUy || 2UwAzUz | yUw,
(Des) Vou 2,4, 2 € X, {2,521 - @' € wliz\ {u} — 3y € uliy\ {u},
Zeuwlz\{u}withzUy| Uy, ,zUz| 2 Uuz,yuz|y U2

A skewaffine plane satisfying the condition (Des) is called desarguesian.

If a line L has the form z |y then the point « is called a basepoint of L.
It is a simple consequence of the axioms that any line has either exactly
one basepoint or all its points are basepoints (cf. [15]). A line all of whose
points are basepoints is called a straight line. A line which is not straight
(and hence has exactly one basepoint) is called a proper line.

A group G acting on a set X is called normally transitive if G is transitive
and G; \ Gy # 0 for any z,y € X with z # y (G, denotes the stabilizer of
the point & with respect to G). For any group acting on a set X one can
construct a group space V(G) = (X, U, ||) with

e rly= Gz{l'yy} = {:E} U Ggy,
e for any lines L, L/, L || L' if there exists g € G such that gL = L'.

The following theorem will be the basis of our construction ([1, p. 5], cf.
also [15, Proposition 6.5, p. 94}).

THEOREM 1.3. The group space V(G) with respect to a normally transitive
group G is a desarguesian skewaffine space.

A more detailed discussion of the properties of the group space V(G)
can be found in [15].

A bijection v : X — X is called an automorphism of a skewafline plane
S = (X, U, ]|) with the set £ of lines if the following axioms are satisfied:

(Al) Vr,y € X,z #y: y(zUy) =v(z) Uy (y),
(A2) VL, L' € £: L || L' = (L) || v(L').

An automorphism « is called a dilatation if additionally
(D) VLe L: L | ~(L).

PROPOSITION 1.1. For every g € G the map 74 : X — X, v4(z) =gz, is a
dilatation of the skewaffine plane V(G) (cf. [1]).

The group of all dilatations of a skewaffine plane S will be denoted by Dil S.
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2. The group of displacements associated with a point of a M&bius
or Minkowski plane

Let p be a fixed point of a Mébius or Minkowski plane.

DEFINITION 2.1. An automorphism ¢ € (Aut M), is called a displacement
associated with p if ¢ is the composition of two symmetries with respect to
circles containing p.

From Theorem 1.1 it follows that the set G := {Sx oS. | K,L€C, p€
KN L} of all displacements associated with p forms a subgroup of the group
(Aut M),,. The group G contains only automorphisms of the following two
kinds. If K N L = {p} then Sk o S (M) = M for any circle M such
that p € M and M 1 K. It is a translation in the direction of the circle
M. If KN L = {p,q} for some joinable points p,q then Sk o Sy, has the
fixed pencil (p,q)*. We will call this automorphism a rotation. The group
T:={SkoSr | K,LeC, KNL={p}}is a transitive (on P \ [p]) normal
subgroup of G by Theorem 1.1. Hence we obtain

LEMMA 2.1. For any point p of a Méobius or Minkowski plane the group G
is normally transitive. The elements of G without fized points (on P \ [p])
are translations. They form a transitive normal subgroup T 1 G.

We remark that the group G is of type IITA in the Hering classification
of automorphism groups of Mébius planes (cf. [7]) and of type 17 of the
analogous Klein-Kroll classification for Minkowski planes (cf. [9], [10]).

To get the analytical representation of the group G we assume that
p = [1,0). Any symmetry with respect to a circle passing through p has
the matrix | 0 where m € L*, ¢ € K. Hence G = {&y € I'(L) |

c m

0 10
{p 1:],pGlL*,cEK,N(p):1}andT:{<I>M€I‘(IL)| [ ll,ceL}.
C C

0
We get Gyo ) = {PuM | [p ] , N(p) = 1}.

0 1
Direct calculations show that the condition N(p) = 1 implies p = %z;—zz;
—= ?f:u i for some (u, v) # (0,0) in the Mobius case and p = —szzrz - vzf’; i

for some u,v with u # +v in the Minkowski case.

One can present any element of the group Gyo ) as the composition of
the symmetry with respect to the line ux + vy = 0 and the symmetry with
respect to the line z = 0. Thus we obtain an interpretation of the parameters
u,v in the representation of elements of Gyg q) (cf. [3]).
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In the case K = R we get the groups of Euclidean and pseudoeuclidean
rotations.

3. Residual plane of a Mdébius or Minkowski plane

In the previous section we defined the normally transitive group G as-
sociated with any point p of a Mbius or Minkowski plane as a subgroup of
(Aut M),. Now we will investigate the group space V(G).

PRrROPOSITION 3.1. For any circle K of a Mobius or Minkowski plane with
p ¢ K there exists a point q such that Gp(z) = KN (P \ [p]) for any
z € K\ ([p]Ulg]). Dually for any g € P\ [p] and z € P\ ([p] U [q]),
Gp(z) =K N (P\[p]) forsome Ke€C,p¢ K.

Ifz € [q]; \ [p] then Gg(z) =g} \ [g] (¢ = 1,2 for a Minkowski plane).

Proof. Let K be any circle such that p ¢ K and ¢ := S(p). In the
Minkowski case assume that z,2’ € K and L € (p,q), z,2’ ¢ L. If a :=
(zL)(Lz) then the points p, ¢, ax’, 2’a are concyclic. If M := (p, ¢, az’,z'a)°
then S, o Sk (z) = 7'. O

According to Lemma 2.1 and Theorem 1.3 the group space V(G) is a
skewaffine plane. It will be called the residual plane at the point p of a
Mébius or Minkowski plane and denoted by MP? (cf. [16]). By the definition
and Proposition 3.1, MP = (PP LP L}, ||, €) where

e PP.=P\[p|, LP:={({Sk(p)}UK)NPP | K €C,p¢ K,}U{ENPP |
EegG,p¢ E},

e zUy:={p(y) | € Gz} U{z} for any z,y € PP, z # y,

o [ || L2<=>3(p€G:(p(L1)=L2.

From the construction it follows that any circle K, not through p, induces
a line z Ly of MP where z = Sk (p) and y is any point of K \ [p]. The point
z will also be called the basepoint of the circle K.

We get

THEOREM 3.1. For any miquelian Mobius or Minkowski plane M with
char M # 2 and ord M > 3 and a point p € P the residual plane MP is
a desarguesian skewaffine plane. MP does not contain any straight lines in
the case of a Mobius plane and contains two classes of parallel straight lines
in the case of a Minkowski plane. Classes of parallel lines are orbits of the
subgroup of translations of the group G.

Proof. It is sufficient to prove the last statement because the rest follows
from Theorem 1.3, Lemma 2.1 and Proposition 3.1.

Let ¢ € Gp and L := aUb for some a,b € PP. Then ¢(L) = ¢(a)Up(b).
If 7 € G is a translation such that 7(a) = ¢(a) then =17 € G, hence
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@ 7(L) = L and 7(L) = ¢(L). This shows that any line parallel to L is of
the form 7(L) for some translation 7. g

4. Harmonic quadruples and properties of pencils

LEMMA 4.1. For any distinct joinable points a, b, c there exists exactly one
circle K through ¢ such that Sk (a) = b.

Proof. Let L, M be circles orthogonal to N := (a,b,c)° through a,c and
b, ¢ respectively. Then L, M are tangent at c. By Theorem 1.2, there exists
exactly one circle K’ such that Sk/(L) = M. We also have Sg/(N) = N,
hence Sks(a) = b. If Sk(a) = b and Sk(c) = ¢ then Sk interchanges the
circles of the pencil (c, N)* through a, b resp., hence K = K'. d

DEFINITION 4.1. We call distinct points ¢, d harmonic conjugate with respect
to distinct points a, b if there exist pairwise orthogonal circles K, L, M such
that a,b,c,d€e K, a,be L, c,d e M.

From the definition it follows immediately that c,d are harmonic conju-
gate to a, b iff a, b are harmonic conjugate to ¢, d. From Lemma 4.1 it follows
that there exists exactly one point harmonic conjugate to ¢ with respect to
a, b for any distinct joinable points a, b, c.

LEMMA 4.2. Let q be a point of MP and let E be the set of circles with
basepoint q.

(i) If M is a Minkowski plane then E = (p,q)~ .
(ii) If M is a Mobius plane then E is an elliptic pencil.

Proof. (i) By the construction of a basepoint for any circle K with base-

point ¢, Sk (p) = ¢. Hence pq,qp € K and E = (pq,qp) = (p, )™
(ii) follows from the fact that (p,¢)* is an elliptic pencil. O

COROLLARY 4.1.

(i) A rotation of a Minkowski plane is a homothety.
(ii) A rotation of a Mébius plane is a homothety iff it is an involution.

Proof. Let KNL = {p,q}.

(i) The rotation Sk o Sy, fixes the circles of the pencil (pq, gp).

(if) 7 = ” If the rotation S oSy, is a homothety then it fixes the circles of
the pencil (p,q). Let z # p,q, M := (p,q,x)° and N be the circle through
z orthogonal to the circles K, L. Then N | M and N, M have another
common point 2’ by the assumption that the characteristic is different from
2. It follows that Sg o Sy (z) = 2’ and Sk o Sy (') = x since it fixes M, N.

? «<” If Sk oSy, is an involution then K 1 L and the assertion follows
from [8, Lemma 4.22, p. 101]. O



922 A. Matra$

According to Proposition 1.1 every translation and rotation of a Mobius
or Minkowski plane induces a dilatation of the residual plane at any fixed
point. We prove that the group Dil V(G) is larger.

LEMMA 4.3. Every symmetry with respect to a circle passing through p
induces a dilatation of the residual plane MP.

Proof. Any automorphism ¢ of the plane M fixing p induces an automor-
phism of MP since according to Proposition 3.1 it maps a pair (Si(p), L)
where p ¢ L € C to a pair (S,z)(p), ¢(L)). If additionally ¢ = Sk where
p € K € C we have

Sk(L) =Sm oSk(L) and Sk(Si(p)) =Sm o Sk(Sr(p)),

where M := (p,SL(p), Sk (SL(p))°, hence the displacement Sys o Sk realizes
parallelity of the lines associated with the circles L, Sk (L). Thus Sg induces
a dilatation. ad

PROPOSITION 4.1. Circles of any hyperbolic and parabolic pencil of a Mébius
or Minkowski plane have basepoints on a circle passing through p.

Proof. Let {a,b) be any hyperbolic pencil of a Mébius or Minkowski plane
where a,b are joinable to p and let ¢ be harmonic conjugate to p with
respect to a,b. If L denotes the unique circle of the pencil (p,q) orthogonal
to (a, b, p)°, then Sy, fixes the circles of {a,b). By Proposition 4.1, Sy, induces
an automorphism of the residual plane MP. Hence Sy, fixes the basepoints
of the circles of the pencil (a, b). It follows that they belong to the circle L.

The proof in the case of a parabolic pencil is similar. (]

Any elliptic pencil of a Mobius plane determines one of the two different
possibilities for a residual plane. If E = (a,p)" then in MP the pencil E
determines the set of lines with basepoint a. The circles of E are disjoint
and form a partition of the set PP\ {b}. This is a generalization of the set
of concentric Euclidean circles. The second case is obtained if p # a, b.

PROPOSITION 4.2. Let E = (a,b)" be an elliptic pencil of a Mébius plane
and p # a,b. The set of basepoints in MP of the circles of E is the circle

(p,a,b)°.

Proof. Let L := (a,b,p)°. By Proposition 4.1, St induces an automorphism
of MP. Tt fixes the circles of E, hence preserves their basepoints. Thus the
basepoints of the circles of E belong to L. D

PROPOSITION 4.3. The basepoints of parallel lines associated with circles
tangent to a circle with basepoint q form a line after adding q as the base-
point.
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Proof. Let K, L be tangent circles with basepoints ¢, q’ respectively. By
Proposition 3.1 and Theorem 3.1, the orbit of ¢’ under the group of rotations
with center ¢ is a circle with basepoint q. The orbit of L under this group
is the set of circles tangent to K associated with parallel lines of MP. [

Finally, we give a generalization of the classical theorem about bisectrices
for the configuration of circles of a miquelian Mobius or Minkowski plane
of characteristic different from 2. It can be treated as a construction of the
basepoint of a line of the residual plane MP by means of symmetries with
respect to lines of the derived plane AP.

PROPOSITION 4.4. Assume that the points a,b,c are joinable; p ¢ K :=
(a,b,0)°, A := (p,b,¢)°, B := (p,a,c)°, C := (p,a,b)°; the points a’, b,
are harmonic to p with respect to (b,c), (a,c), (a,b) resp.; and the circles
A B',C’ are the circles of the pencils (p,a’), (p,V'), (p,c) orthogonal to
A,B,C resp. Then A',B’,C’ belong to one hyperbolic pencil. The second
point of intersection of these circles is symmetric to p with respect to K.

Proof. The circles A’, B’ cannot be tangent, since otherwise B’ is orthogo-
nal to A, hence Sp/(c) = a € A, a contradiction with the assumption p ¢ K.
Let g be the second common point of the circles A', B', Q := (p,q,c)°. By
Theorem 1.1 there exists a circle R such that S4s0SgoSp = Sg. It is easy
to check that Sg(a) = b. By Lemma 4.1, R = C". O
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