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ON THE ¢4-SUMMABILITY AND ¢“4)-CORE

Abstract. In [6] and [9], the concepts of o-core and statistical core of a bounded
number sequence z have been introduced and also some inequalities which are ana-
logues of Knopp’s core theorem have been proved. In this paper, using the concept
of U(A)-summa.bility introduced by Savag, we characterize the matrices of the classes
(m, V), (¢, Vo), (Vo, V,ay) and (SNm, V(4 )reg and determine necessary and suffi-
cient conditions for a matrix B to satisfy 04 —core(Bz) C K —core(z), 0'*) —core(Bz) C
o — core(z) and o — core(Bz) C st — core(z), for all z € m.

1. Introduction

Let K be a subset of N, the set of positive integers. The natural density
6 of K is defined by

1
0(K)=lim=|k<n:ke€K]|
non

where the vertical bars indicate the number of elements in the enclosed
set. The number sequence x = (zj) is said to be statistically convergent
to the number [ if for every €, 6({k : |zx — €] > €}) = 0 (see [6]). In this
case, we write st — limx = £. We shall also write S and Sy to denote the
sets of all statistically convergent sequences and of all sequences statistically
convergent to zero. The statistically convergent sequences were studied by
several authors (see [1], [6] and others).

Let m and c be the Banach spaces of bounded and convergent sequences
z = (zx) with the usual supremum norm. Let o be a one-to-one mapping
from N into itself. A continuous linear functional ¢ on m said to be an
invariant mean or a o-mean if (i) ®(z) > 0 when the sequence z = (zx) has
zj > 0 for all k, (i) ®(e) = 1, where e = (1,1,1,...), (iili) ®((z,x))) = ®(z)
for all z € m.
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Throughout this paper we consider the mapping o such that o?(k) # k
for all positive integers £ > 0 and p > 1, where oP(k) is the pth iterate of
o at k. Thus, a o-mean extends the limit functional on ¢ in the sense that
®(z) = limz for all = € ¢ (see [10]). Consequently, ¢ C V, where V, is the
set of bounded sequences all of whose o-means are equal.

In case o(k) = k + 1, a o-mean is often called a Banach limit and V, is
the set of almost convergent sequences, introduced by Lorentz (see [7]). If
T = (zn), write Tz = (T2n) = (To(n)). It can be shown [13] that

Vo = {z € m: limtp,(z) = s uniformly in n, s = o — limz}
)

where
ton(T) = (Tn + TTn + - +TPx,)/(p+ 1), t_1a(z)=0.

We say that a bounded sequence z = (xi) is o-convergent if z € V.
By Z, we denote the set of o-convergent sequences with o-limit zero. It is
well known [12] that £ € m if and only if Tx — z € Z.

A matrix A called Cesaro matrix if ap, = 1/nif 1 <k < mn; apy = 0 if
k > n (see [8]).

It is known that [14], a bounded sequence z is said to be o4)_convergent
(or 0{4)-summable) to £ if

lglnz amnTen(p) = £ uniformly in p.
n

The space of all 0{4)- convergence and o{4)- convergence to zero sequence
are denoted by V_c4) and Vj(a), respectively.

In case of A of matrix being taken into Cesaro matrix, the space V_(4)
is reduced to the space V.

Let A be an infinite matrix of real entries a,; and z = (zx) be a real
number sequence. Then Az = ((Ax)n) = (}_, ank®k) denotes the trans-
formed sequence of z. If X and Y are two non-empty sequence spaces, then
we use (X,Y) to denote the set of all matrices A such that Az exists and
Az €Y for all £ € X. Throughout, ), will denote summation from k = 1
to oo.

A matrix A is called (i) regular if A € (¢,¢)reg and lim Az = limz, (ii)
o-regular if A € (c,V5)reg and o — lim Az = limz for all z € ¢, and (iii)
o-coercive if A € (m,V,). The necessary and sufficient conditions for A to
be regular, o-regular and o-coercive are well-known [8] and [13].

For any real number A\ we write A\~ = maz{-),0}, At = maz{0,\}.
Then A = AT — A~. We recall (see [9]) that a matrix B is said to be
o-uniformly positive if
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Iimz b~ (p,n,k) =0 uniformly in n
P
k

where

1 &
b(p,n,k) = ——= > byitn)-
(p,n, k) p+1i§=0 i (n)
It is known [9] that a o-regular matrix B is o-uniformly positive if and only
if
li b(p,n, k)| =1 iformly in n.
im Ek |b(p, n, k)| uniformly in n

Let us consider the following functional defined on m:

¢(z) =liminfz, L(z) =limsupz, ¢o(z)=limsupsupip,(z),
P n

1 p
L*(z) = limsupsu Trti-
( ) o P npp'i‘l; n+1

In [9], the o-core of a real bounded number sequence = has been defined
as the closed interval [—g,(—z), ¢,-(x)] and also the inequalities ¢,(Az) <
L(z) (o-core of Az C K-core of z), ¢,(Az) < go(x) (o-core of Az C o-core
of z), for all z € m, have been studied. Here the K-core of z (or Knopp
core of x) is interval [{(z), L(z)] (see [2]).

When o(n) = n + 1, since ¢,(z) = L*(x), o-core of z is reduced to
the Banach core of z (B-core) defined by the interval [—L*(—z), L*(x)] (see
11)).

The concepts of B-core and g-core have been studied by many authors
4, 5,9, 11].

Recently, Fridy and Orhan [6] have introduced the notions of statistical
boundedness, statistical limit superior (st — limsup) and inferior
(st — liminf), defined the statistical core (or briefly st-core) of a statist-
cally bounded sequence as the closed interval [st — liminf z, st — lim sup z|
and also determined necessary and sufficient conditions for a matrix A to
yield K-core(Az) C st-core(z) for all z € m.

DEFINITION 1.1. Let z € m. Then, o{4)-core of z is defined by the closed
interval [—g,(4)(—2), ¢, (1) ()], where

4,(4) () = limsupsup Z AmnTgn(p)-
m Y4 n

From the definition, it is easy to see that ¢(4)- core z = {¢} if and only if
o) —limz = ¢. In case of A matrix being taken into Cesaro matrix, since

g, (z) = go(z), the 0(4-core of z is reduced to the o-core of z.



862 K. Kayaduman, H. Cogskun

2. Main results

The proofs of the following theorems are entirely analogous to the proof
of Theorem 2.4. So, we omit the proofs.

THEOREM 2.1. Let ||A|| < 0o. Then B € (m,V_ ) tf and only if
(2.1) |IB| =sup Y _ |bukl < o0,
n
k

(2.2) h#lnz amnbon(p)k = o  uniformly in p, for each k,
n

(2.3) lim > | 3 amnbon sz — o] = 0.
k n

If the conditions (2.1)~(2.3) hold, then ‘4 — lim By,(z) = 3" axzy, for all
T €m.

THEOREM 2.2. Let ||A|| < co. Then B € (¢, V_(a)) if and only if the
conditions (2.1) and (2.2) hold, and

(2.4) llglngk: Z Amnbon(p)k = & uniformly in p .
n

If the conditions (2.1), (2.2) and (2.4) hold, then
o —lim By (z) = Z o Zr + (o — Zak)
k k

forallz € c.

In the cases of matrix A being taken into Cesaro matrix Theorem 2.1
and Theorem 2.2, we respectively have Theorem 2, and Theorem 3 of Schae-
fer, [13].

THEOREM 2.3. Let ||A|| < co. Then B € (Vy,V_(a)) if and only if the
conditions (2.1) and (2.4) hold and B(T — I) € (m,V_(4)).

THEOREM 2.4. Let ||A|| < co. Then, B € (SNm,V_(a))reqg if and only if
B € (¢, V_ (4))reg and

(2.5) livgl ,;;JZ a’m’nba"(p),k‘ =0 uniformly in p,
c n

for every E C N with 6(E) =0.

Proof. First, suppose that B € (SNm,V_ca))reg. Then, B € (¢, V_(a))reg
immediately follows from the fact that ¢ C S N'm. Now, define a sequence

t = (tg) for z € m as
r, k€EE,
it =
0, k¢E,
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where E is any subset of N with §(E) = 0. By our assumption, since ¢ € Sy,
we have Bt € Vo). On the other hand, since Bt = ZkeE bukTr, the
matrix D = (d,) defined by

bok, k€ E,
dnk =
0, k¢E,

for all n, must belong to the class (m,V_ ). Hence, necessity of (2.5)
follows from Theorem 2.1.

Conversely, suppose that B € (c, V_(4))reg and (2.5) holds. Let z be any
sequence in S Nm with st — limz = £. Write E = {k : |zx — ¢| > ¢}
for any given € > 0, so that §(E) = 0. Since B € (c,V, (4))reg and
oA — lim Yk bak = 1, we have

@ _lim(Bz) = 0™ — lim (Z bz — ) +£> bnk)
k k

=0l —lim Y " bpx(ze — £) + £

k
= linrmn Xk: Z amnba"(p),k(l'k —f) +£.

On the other hand, since

33" amnbonn (@ = O] < H2ll S| 3" amnbongo| + el All 1B,
k n

keE n
the condition (2.5) implies that

lim E E amnbon(p)(Tk — £) = 0  uniformly in p.
m
k n

Hence, 0(4) — lim(Bz) = st — limx; that is, B € (SN m, V_(4))reg, Which
completes the proof. m

In case of A matrix being taken into Cesaro matrix, Theorem 2.4 is
reduced to following theorem:

THEOREM 2.5 ([3]). B € (SNm, Vy)req if and only if B is o-regular and

: 1 <
hII)n Z m g bai(n)

keE
for every E C N with natural density zero.

=0 wuniformly in n,

3. Core theorems for infinite matrices
We need the following lemma, given by Das for the proof of next theorem:
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LEMMA 3.1. Let ||C = (cmk(p))|| < 0o and limy, sup, [cmk(p)| = 0. Then,
there is a y € m such that ||y|| <1 and

lim sup sup Z Emk(P)yx = lim sup sup Z lemk(P)|-
m Pk m Py
THEOREM 3.2. Let ||A|| < co. Then (4 — core(Bz) C K — core(x) for all
z € m if and only if B € (¢, V_(a))reg and

(3.1) li%nsupz Zamnba"(p),k‘ =1.
r 5

Proof. Suppose first that ¢{4) — core(Bz) C K — core(z) for all x € m. If
z € V_(a), then we have g_4)(Bz) = —q, ) (—Bz). By hypothesis, we get
—L(—z) € —q,(—Bz) < g, (Bz) < L(z).
If £ € ¢, then L(z) = —L(—x) = limz. So we have ¢(4) — limBz =
4,4 (Bzx) = —q,(a)(—Bz) = limz which implies that B € (c, V,(4))reg-
Now, let us consider the sequence C = (cmi(p)) of infinite matrices
defined by

cmk(p) = Zamnbgn(p),k for all n,k,p € N.
n

Then, it is easy to see that the conditions of the Lemma 3.1 are satisfied for
the matrix sequence C. Thus, by using the hypothesis, we can write

1< liminfsup 3 emk(p)] < limsupsup 3 leme(p)]
m p m P
k k

= limsupsup Y _ cmi(p)¥k = ot (By) < L(y) < [lyl| < 1.
Pk

This gives the necessity of (3.1).

Conversely, assume B € (¢, V,(4))reg and (3.1) holds for all z € m. Then,
for any given € > 0, there is a ko € N such that zx < L(x)+¢ for all k£ > ko.
Now, we can write

Zcmk Pz = Y cmk®P)zk+ Y _ (cme@)Tzr — D (cmk(p)) "z

k<ko k>ko k>ko

<l=ll Y lemn(p)] + (L +5)Z|cmk(p

k<ko

+ 1211 D (lem(@)] = cmi())
k

Thus, by applying the lim,, sup sup, and using hypothesis, we have
g, (Bz) < L(z)+¢

This completes the proof since ¢ is arbitrary and for all z € m. =
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In case of A matrix being taken into Cesaro matrix, Theorem 3.2 is
reduced to following theorem:

THEOREM 3.3 ([9]). o-Core of Bx C K-Core of z, i.e., ¢;(Bz) < L(z) for
all x € m if and only if B is o-regular and o-uniformly positive.

THEOREM 3.4. Let ||Al| < co. Then o4 — core(Bz) C o — core(z) for all
z € m if and only if B € (V5,V_(4))reg and (3.1) holds.
Proof. Let ¢{4) — core(Bz) C o — core(zx) for all x € m. Then, since
4,4 (Bz) < g-(z) and ¢o(z) < L(z) for all z € m, the necessity of (3.1)
follows from Theorem 3.2.

One can also easily see that

—go(~2) < —qy)(—Bz) < g, (Bz) < ¢s(),
i.e,
o —liminfz < —q_4)(—Bz) < g ) (Bz) < 0 —limsupz.
If r € V,, then ¢ — liminfz = 0 — limsupz = o — limz. Thus, the last
inequality that ¢ — limz = —q_ ) (—Bz) = ¢, (Bz) = 04 — lim(Bxz),
that is, A € (V, VG(A)),-eg.

Conversely, suppose that (3.1) holds. In this case, since ¢ C V;, by using
Theorem 3.2, we have g, 4)(Bz) < L(z) for all z € m. Thus, we write

. i < i = .

(32) f gyn(Ble+2)) < inf Lz+2) = w(a)

On the other hand, we have

(3.3) inf g, (B(z+2)) 2 inf [g,c4(Bz)+ (—¢-(—Bz)] = ¢, (Bz),
2€V9o 2EVho

since —g,(4)(—Bz) = ¢,4)(Bz) = 0 for all z € V| (4). Now, combining (3.2)
and (3.3), we obtain that g () (Bz) < w(z) for all z € m which completes
the proof, since g,(z) = w(z), [9]. =

In case of A matrix being taken into Cesaro matrix, Theorem 3.4 is
reduced to following theorem:

THEOREM 3.5 ([9]). For an infinite matriz B = (byy), o-Core of Bx C o-
Core of z, i.e., ¢-(Bz) C o(z) for all x € m, if and only if B is strongly
o-regular and o-uniformly positive.

THEOREM 3.6. Let ||A|| < co. Then o(4) — core(Bzx) C st — core(x) for all
z € m if and only if B € (SNm,V_(a))reg and (3.1) holds.

Proof. Assume that o(4) — core(Bzx) C st — core(z) for all z € m. Then
g, (Bz) < B(z) for all £ € m where 3(z) = st — limsupz. Hence, since
B(xz) = st — limsupz < L(z) for all z € m (see [6]), we have (3.1) from
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Theorem 3.2. Furthermore, one can also easily see that

—B(—z) < —¢,4)(—Bz) < ¢,4)(Bz) < B(z),
ie.,
st — liminfx < —q ) (—Bz) < g, 4 (Bz) < st — limsupz.

If £ € SNm, then st — liminfx = st — limsupz = st — limz. Thus,
the last inequality implies that st — limz = —q_4)(—Bz) = ¢, (Bz) =
o(4) —lim Bz, that is, B € (S N'm, V, (4))reg-

Conversely, assume A € (SNm), V_(4))reg and (3.1). If 2 € m, then (z)
is finite. Let E be a subset of N defined by E = {k : 2 > B(z) + ¢} for a

given € > 0. Then it is obvious that 6(E) =0 and z, < f(z) +eif k ¢ E.
Now, we can write

> emk®)Te =Y cok(D)Th + Y cmi(p)Tk
P

k<ko k>ko
=Y k@i + Y hp@zh— D D)k
k<ko k>ko k>ko
<llgll Y leme®) + Y chi@ze+ Y chi(p)zk
k<ko k>ko k>ko
k¢E k€E
+lzll Y (emr(®)] — emi(@)) < il D lemi(@)]
k>ko k<ko
+(B)+€) D lemr®)| + Izl Y lemr ()]
k>ko k>ko
kgE kcE
il Y (emk(®)] — cmi(P)) -
k>ko

Applying the operator lim,, supsup, and using hypothesis, it follows that
4,4 (Bz) < B(z) + e. This completes the proof since ¢ is arbitrary. m

In the special case A = (C,1) of Theorem 3.6, we have the following
theorem:

THEOREM 3.7 ([3]). o — core(Az) C st — core(z) for all x € m if and only
if Be (SNm,Vy)reg and B is o-uniformly positive.
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Naseer Shahzad

A BEST PROXIMITY PAIR THEOREM

Abstract. The aim of this note is to obtain a best proximity pair theorem which
contains a recent result of Kirk, Reich and Veeramani ( Numer. Funct. Anal. Optim., 24
(2003), 851-862) as a special case.

1. Introduction and preliminaries

Let A and B be nonempty closed convex subsets of a Hilbert space H.
We denote by K(B) the family of all nonempty compact subsets of H. The
Hausdorff metric is defined by

D(C,G) = max {sup dist(c,G), supdist(g, C)}
ceC geG
for nonempty closed bounded subsets C' and G of H, where dist(c,G) =
infgeq ||c — g||- Throughout P4 will represent the nearest point projection
of H onto A. It is well-known that P4 is nonexpansive. Let f: A — A.
A mapping T : A — K(B) is called f-Lipschitz if there exists k > 0 such
that D(Ta,Tb) < k||fa — fb|| for any a,be A. If 0 <k <1 (resp. k =1),
then T is called an f-contraction (resp. f-nonexpansive mapping). A point
a € A is called a coincidence point of f and T if fa € Ta. The set of
coincidence points of f and 7' is denoted by C(f,T). A point a € A is called
a coincidence point of f (resp. T') if a = fa (resp. a € Ta). The set of fixed
points of f (resp. T') is represented by F(f) (resp. F(T")). The mapping
f is called weakly continuous if {a,} converges weakly to ag implies {fan}
converges weakly to fag. The notion of R-subweakly commuting multimaps
was introduced by Shahzad [3]. Let f: A — Aand T : A — K(A). Suppose
p € F(f). Then the pair {f, T} is said to be R-subweakly commuting if for
all a € A, fTa is a nonempty closed subset of A and there exists R > 0 such

2000 Mathematics Subject Classification: 41A65, 46B20.
Key words and phrases: Best proximity pair, nearest point projection, Hilbert space.
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that D(Tfa, fTa) < Rdist(fa,[Ta,p]), where [Ta,p] = {Tha : A € [0,1]}
and Tz := ATa + (1 — A)p. It is clear that commuting mappings on A
are R-subweakly commuting. However, the converse is not true in general
(see [3]).

We recall the following notations (see [1]). For any nonempty subsets
A, Bof E,

dist(A,B) = inf{||la — b|| : a € A,b € B}
Ag:={a € A: ||la — b|| = dist(A, B) for some b € B}
By :={b€ B :||la—b|| = dist(A, B) for some a € A}.

A pair (ag,bg) € Ap x By is called a best proximity pair for A and B. In
particular, d(ag,bp) = dist(A,B). A mapping T : A — K(B) is said to
have a best proximity pair solution if there exists a best proximity pair
(ao0,bo) € Ag x By such that by € Tao.

Fixed point theory is a useful tool for solving various types of operator
equations and operator inclusions. The well-known approximation theorem
of Fan yields the existence of approximate solutions; however, it does not
give optimal solutions. On the other hand, best proximity pair theorems
guarantee approximate solutions which are also optimal. Recently, Kirk,
Reich and Veeramani [1] obtained the following remarkable best proximity
pair theorem for nonexpansive mapping.

THEOREM 1.1. Let H be a Hilbert space. Let A and B be nonempty closed
conver subsets of H with A bounded. Let T : A — K(B) be such that

(a) T(Ag) € Bo

(b) T is nonezxpansive on A.

Then there exists o € A such that

dist(ag, Tag) = dist(A, B) = inf{dist(a,Ta) : a € A}.

More recently, O’'Regan and Shahzad [2] extended Theorem 1.1 to f-non-
expansive mappings with an assumption that {f, P4 o T} be R-subweakly
commuting on Ag.

THEOREM 1.2. Let H be a Hilbert space. Let A and B be nonempty closed
convez subsets of H with A bounded. Let f : A — A be continuous and
affine such that f(Ag) = Ao and T : A — K(B) be such that

(a) T(Ao) C By

(c) {f,PaoT} is R-subweakly commuting on Ag

(d) T is f-nonexpansive on Ap.

Then there exists ag € A such that

dist(fag, Tap) = dist(A, B) = inf{dist(fa,Ta) : a € A}.
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In this note, we show that Theorem 1.2 remains valid if R-subweak com-
mutativity of the pair {f, P4 o T} is dropped and also affineness and conti-
nuity of f are relazed. Thus we obtain a natural extension of Theorem 1.1
to f-nonexpansive mappings. For this we need the following results.

The following results are due to Kirk, Reich and Veeramani [1].

LEMMA 1.3. Let A be a nonempty closed conver subset of a Hilbert space
H. Then if B and C are nonempty closed bounded subsets of H,

D(Pa(B), P4(C)) < D(B, ().

LEMMA 1.4. Let A be a nonempty closed bounded convex subset of a reflexive
Banach space E and B a nonempty closed convex subset of E. Then Ay and
By are nonempty and satisfy

Pg(Ap) C By and P4(Bp) C Ap.
The following lemma follows from a result in [4].

LEMMA 1.5. Let (X,||.||) be a normed space, f : X — X and T :
X — K(X) such that T(X) C f(X). If f(X) is complete and T is an
f-contraction, then C(f,T) # 0.

2. Main results

LEMMA 2.1. Let A be a nonempty closed bounded convex subset of a Hilbert
space H and f : A — A be weakly continuous such that f(A) = A. As-
sume that T : A — K(A) is an f-nonezpansive map. Then C(f,T)N A is
nonempty.

Proof. Choose p € A and a sequence {k,} with 0 < k, < 1 such that
kn, — 1 as n — oo. For each n, define T;, by

Tha=(1—kp)p+knTa
for all @ € A. Then, for each n, T, : A — K(A), T,(A) C A= f(A), and
D(Tpa, Tub) = knD(Ta, Th)
< kn|fa — fbl]

for each a,b € A. This implies that each T,, is an f-contraction. Notice that
f(A) is complete. Now Lemma 1.5 guarantees that, for each n, C(f,T,) is
nonempty, i.e., there exists a, € A such that fa, € Tha,. This implies
that fan, —cn = (1 — kp)(p — ¢n) for some ¢, € Ta,. It then follows that
fan —cn — 0 as n — oo. By weak compactness of A, we can find a
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subsequence {an,} of the sequence {a,} such that {a,,} converges weakly to
ap € A as m — oo. By weak continuity of f, {fan,} converges weakly to
fao € A as m — oo. Using the standard arguments, it can be shown that
0 € (f — T)(ap). Hence C(f,T) N A is nonempty.

THEOREM 2.2. Let H be a Hilbert space. Let A and B be nonempty closed
conver subsets of H with A bounded. Let f : A — A be weakly continuous
such that f(Aog) = Ao and T : A — K(B) be such that

(a) T(4o) C By

(b) T is f-nonezpansive on Ag.

Then there erists ag € A such that

dist(fag, Tag) = dist(A, B) = inf{dist(fa,Ta) : a € A}.

Proof. By Lemma 1.4, Ay is nonempty. Let a € Ag. We claim that
Ps(Ta) C Ao. Indeed, let ¢ € P4(Ta). Then ¢ € Pa(b) for some b €
Ta C By and so ||c — b|| = dist(b, A). Since b € By, it follows that |ja —
b|| = dist(A, B) for some a € A. Thus ||c — b|| = dist(b,A) < |la —b|| =
dist(A, B). On the other hand, dist(A, B) < ||c—b||forallc€ Aand b € B.
Consequently, [|c — b|| = dist(A, B). This proves our claim.

Since Py is nonexpansive and so continuous, P4(Ta) is compact. As a result,
P4oT: A9 — K(Ap). By Lemma 1.3, for any a,c € Ag, we have

D(P4(Ta), P4(Tc)) < D(Ta,Tc) < ||fa— fc|-

Now Lemma 2.1 guarantees that C(f, P4 o T') N Ag is nonempty, that
is, there exists agp € Ag such that fag € Pa(Tap). Consequently, for some
b € Tag C By, we have

l|fao — b|| = dist(b, A).

Since b € By, it follows that {|a — b|| = d(A, B) for some a € A. This implies
that

[|fao — b|| = dist(b, A) < ||a — b|| = dist(A, B)
and so
dist(fag, Tag) < ||fao — y|| = dist(b, A) < dist(A, B).
Since dist(A, B) < ||fa — b|| for all a € A and b € Ta, it follows that
dist(A, B) < inf{||fa — b|| : b € Ta} = dist(fa,Ta) for alla € A

and so
dist(A, B) < inf{dist(fa,Ta) : a € A}.
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But
inf{dist(fa,Ta) : a € A} < dist(fag, Tag)-

Therefore
dist(fag, Tag) < dist(A, B) < inf{dist(fa,Ta) : a € A} < dist(fao, Taop)-
As a result,
dist(fag, Tao) = dist(A, B) = inf{dist(fa,Ta) : a € A}.

It is well-known that every continuous and affine mapping defined on a
closed convex subset of a Hilbert space is weakly continuous. So we have
the following corollary, which contains Theorem 1.1 (due to Kirk, Reich and
Veeramani [1]) as a special case. It is worth mentioning that we do not
require R-subweak commutativity of the pair {f, P4 o T'} as in [2].

COROLLARY 2.3. Let H be a Hilbert space. Let A and B be nonempty
closed convex subsets of H with A bounded. Let f : A — A be continuous
and affine such that f(Ag) = Ap and T : A — K(B) be such that

(a) T(Ao) C Bo

(b) T is f-nonexpansive on Ag.

Then there exists ag € A such that

dist(fag, Tap) = dist(A, B) = inf{dist(fa,Ta): a € A}.

EXAMPLE 2.4. Let X =R?2 with the Euclidean norm, A={(1,y) : 0<y<1}
and B = {(2,y) : 0 <y < 1}. Then Ay = A and By = B ([1]). Define
T:A—-Band f: A— Aby

T(Ly) =(2,1-%%) and f(1,y) = (L, °).

Then all hypotheses of Theorem 2.2 are satisfied. Note that ap = (
satisfies

1
1, k)

||fao — Tap|| = dist(A, B) = inf{||fa — Tal| : a € A}.

Note also that Theorem 1.1 and Theorem 1.2 can not be used here.
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A NOTE ON SOME SUBSPACES OF AN FK-SPACE

Abstract. The purpose of this paper is to give the properties of some distinguished
FK spaces and to solve the problem of characterizing matrices A such that Y4 is Cesaro
semiconservative space (for a given Y).

1. Introduction

In summability theory conservative spaces and matrices play a special
role in its theory. However in [9], [11] Snyder and Wilansky shown that the
results depend on a weaker assumption, that the spaces be semiconservative.
First came conservative matrices, those for which ¢y D ¢. When attention
widened to F K spaces it was very natural to define one to be conservative if
it includes ¢. Snyder and Wilansky studied the properties of any A matrix
such that X4 is semiconservative space and shown that there is no FK
space X such that X4 is semiconservative space if and only if A € (X, X).

In this paper we studied Cesaro semiconservative spaces which has
weaker assumption then semiconservative space and shown that there is
no FK space X such that X 4 is Cesaro semiconservative space if and only
if Ae (X, X).

2. Notations and definitions

Let w denote the space of all real or complex-valued sequences. It can be
topologized with the seminorms p;(z) = |z;|, (¢ = 1,2,...), and any vector
subspace of w is called a sequence space. A sequence space X, with a locally
convex Hausdorff topology will be called a locally convex sequence space.
A K space is a locally convex sequence space in which the inclusion mapping
I X - w, I(z) = z is continuous. An FK space is a Frechet K-space.
An F'K space whose topology is normable is called a BK space. The basic
properties of such spaces can be found in [11}, [12] and [13]. By m,co we

1991 Mathematics Subject Classification: 46A45, 40G05, 40HO5.
Key words and phrases: F K —Spaces, Conservative Spaces, Semiconservative Spaces.
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denote the spaces of all bounded sequences, null sequences, respectively.
These are F K spaces under ||z|| = sup |z,|. By ! we shall denote the space

n
of all absolutely summable sequences. The sequences spaces

h = {1: Ew: li§nzj =0, and ij|Aa:j| < oo},
j=1

oo
g= {a: € w: sup|z;| < oo and ZjIAzwj| < oo},
j pt

n k
abz{xe'w:sup—l—zz:vj <oo},
gt
1 n
as={m€w:lim—22m]~ <oo}
i gy
and "
L1
Uo—{wa.h}LnE;mk —O}

are BK spaces with the norms

oo
lzll, = j1Az;| + sup |,
=1 ’

(o)
lzlly =D 5 |A%;] + sup |1,
=1 ’
1 n k
=07

k=1 j=1

1 n
- Z T
"=
respectively, where Az; = x; — xj41, Azxj = Azx; — Az;y,. The space
gNco is denoted by go. Under the norm ||.||,, go is a BK space ([1], [2]).

[l = sup
n

and

|5, = sup

o0
In addition bv = {x € w: Y |z; — zj41]| < 0o}, bvg :=bvNcy .
j=1
Throughout the paper e denotes the sequence of ones, (1,1,...,1,...);
87 (j = 1,2,...), the sequence (0,0,...,0,1,0,...) with the one in the j—th
position. Let ¢ := [.hull {5" 1k e N} and ¢1 = ¢ U {e}. The topological

dual of X is denoted by X’. The space X is said to have AD if ¢ is dense in X
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and an FK space X is said to have AK or be an AK space, if X D ¢ and for

n

each z € X, ™ — z in X, where (™ = ¥ z46% = (21, 29,...,25,0,...).
k=1

In addition an FK space is said to have o K space if X D ¢ and for each

n
e X iy z®) = z (n — 00). Every AK space is a 0K space. For
k=1
example w, h, ¢y are AK spaces while qg, 0s are 0K spaces ([1], [2], [8]).
In addition, every o K space is an AD space.

Let X be an F K space containing ¢. Then
X ={{f(" }:rex"}.
In addition

o0
XA = {w : kayk exists for every y € X},
k=1

k
1 n
o __ e B TP i
X7 = {a: : hTIlnn ;Z:lmjy] exists for every y € X},
— J:

n k
SO iy

1
X = {x:sup—
n P =

< oo for every y € X}.

Let E, Ey be sets of sequences. Then for k = f, 3, o, gy
(a) E C EF* (b) E¥* = E*  (¢)if E C E, then E¥ c EF

holds ([4], [8])-
It is easy to prove that X# c X% ¢ X°® ¢ X/ and if X is oK space
then X/ = X and if X is an AD space then X7 = X%,

Let A = (a;;) be an infinite matrix. The matrix A may be considered
as a linear transformation of sequences (zj) by the formula y = Az, where

e .
¥i =Y aizj, (i=1,2,...).
i=1

For an FK space (E,u) we consider the summability domain E4 :=

{z ew: Az € E}. Then E4 is an FK space under the seminorms p; =
m
@il (i = 1,2,...), hi(z) = sup| 3 iy, (i = 1,2,...) and (uo A)(z) =
m j:l
u(Az) [11].

3. Some subspaces of an F'K spaces

Let we recall some important subspaces of an F' K space which introduced
by Goes in [4].
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DEFINITION 3.1. Let X be an F'K space containing ¢. Then

oW =W (X) = {:c : E Zz(k) — ¢ (weakly) in X}
n k=1

n k
= {x:f(a:) =1i£n%22xjf(5f), for allfeX’},

k=1j=1

1 n
@ —_— —_— . (k) —_ 1
O'S.—O'S(X)—{:L‘. kglx zlnX}

1 n k
= {m:w:li}lnﬁzz%-dj },

k=1j=1

oBt :=oBt (X) = {w : {l Zx(k)} is bounded in X}
n k=1

= {x: {xnf(én)} €obforall f e X'},

n

1 n
oFt :=cFt(X)= {m - Zx(k) is weakly Cauchy in X}
k=1

n k
1 .
= : lim — . J 1 4
{x.hrrlnn E E z; f (67) exists for a,lleX}

k=1 j=1
= {z:{znf(6")} €osforall f e X'}.
Also oF = oFt* N X, 0B = 0BT N X. An FK space is a 0K —space
(respectively SoW —space, o F—space, c B—space) if X = oS (respectively
X=0W,X =0F, X =0B) [1].
It is well known that for an F'K space X

pCoSCoWCoF CoBCX.

THEOREM 3.2. Let X be an FK space containing ¢. Then o BT (X) =
Xt oFH(X) = XI° [4].

THEOREM 3.3. Let X be an FK space containing ¢. Then X has FoK
if and only if X = X° and X has oB if and only if X/ = X® [4].

We note that subspaces oW are closely related to Cesaro conullity of the
FK space X [6].

LEMMA 3.4. Let X be an AD space, then X has FoK if and only if X
has oB.
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Proof. Since X be an AD space then X? = X°® and hence we get the
proof by Theorem 3.3. g

Since oF C 0B, Fo K implies 0 B but not conversely:

EXAMPLE 3.5. q and ob have oB but does not have FoK.
The proof is as follows:

oB* (q) = ¢/* = ob°® = g then 0B (q) = oB" (g) Ng =g,
oF™* (q) = ¢/ = qo then o F (q) = oF™ (q) Nq = qo,
oB* (ob) = ob/°® = ¢°® = b then o B (ob) = b,

oF* (ob) = 6b/% = ¢° = 05 then o F (0b) = os ([1],[2]) .

In this section we give some results which are analogous those given in
[11, Chapter 10].

THEOREM 3.6. 09 C X if and only if 00, C oF™.

Proof. Necessity: We have 0 F't (g¢) C o Ft (X) holds by [5] and therefore
ol? c oF* (X) by [4]. Since 0} = h? = 64, [2] then 0o, C o F* (X).
Sufﬁc1ency We get 0o, C X7 by [4] therefore X/ ¢ Xf° c 02, C
ol = cro (2] . Since g¢ has AK [2] then op C X [11, Theorem 8.6.1.]. Also
we arrive at o F (0.) = 0 F T (00) = 0 F T (09) = 00 by Theorem 3.3. 0O

THEOREM 3.7. Let X be an FK space containing ¢. Then oF C oB
(closure in X) if and only if oF is closed in X. Thus the closedness of oB
implies the closedness of oF.

Proof. Sufficiency is trivial. Now suppose that oF C oB. Fix fex !
and define g : oF — 04 by g(z) = {f (w(”))} Then P,og : oF —

K, where P,(z) = zn, given by P,(g9(z)) = f(z™) = i i f (6%) is

continuous, where oF has the relative topology of X, and K is the scalar
field Ror C. Thus g : 0F — 04 is continuous [11, Theorem 4.2.3], hence
since o, is closed in 0 then g71 (o) is closed in 0F . Because of oF =
N{g~'(oc): fe X'}, oF isclosed in X.

If 0B is closed then oF C oB. 0

4. Matrix domains

In this section we solve the problem of characterizing matrices A such
that Y4 is Cesaro semiconservative space for given Y.

Before the following theorems we give the definition of Cesaro semicon-
servative space.

DEFINITION 4.1. An F'K space X containig ¢ is called Cesaro semiconser-
vative space if X/ C os [7].
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THEOREM 4.2. Let Y be an FK space and A is a matriz. Then Y, is
Cesdro semiconservative space if and only if the columns of A are in'Y and
g(a¥) € os for each g € Y, where a* is the kth column of A, ak = ap.

Proof. Necessity: The columns of A are in Y since Y4 D ¢ by definition of
Cesaro semiconservative space. Given g € Y’ | let f(z) = g(Azx) for z € Yy,
so f € Y} by [11, Theorem 4.4.2.]. Then f(6*) = g(a*) and the result

follows since Yj; C o8.

Sufficiency: We first note that each row of A belongs to os since in
the hyphotesis we may take g = P,. Then{g(a¥)} = {Pa(ak)} = {ans} €
o0

os,(k=1,2,3,...). Hence wa D 0s”. Let f € Y}.Then f(z) = Y apzr +
k=1

g(Az) by [11, Theorem 4.4.2.] with g € Y/, a € wﬁ C 0s?% = gs. Thus
f(6%) = ax, + g(a*). Since oy, € o's and g(a*) € os then {f(6%)} € os. Thus

Yf{ C os and Yy is Cesaro semiconservative space. O

Given A, if there is any Y such that Y, is Cesaro semiconservative space,
then the rows of A belongs to os. It is clear from Theorem 4.2. For giving an
alternative proof; we assume that 7 is a row of A. Then Y4 C wq C 78 C r°.
Hence 77 is Cesaro semiconservative space by [7, Theorem 3.6.].

n

Theorem 4.2 says that Y4 is Cesaro semiconservative space if {% > ak}

k=1
is weakly Cauchy in Y. Also since Y4 is Cesaro semiconservative space then

n

Y4 D qo by [7, Theorem 3.8.]. Hence if {% > ak} is weakly Cauchy then
k=1

YaDqgoie A€ (q,Y).

THEOREM 4.3. If Y, is Cesdro semiconservative space then AT € (Y?,0s),
where AT denotes transpose of matriz A.

PROOF. Since Y4 D qo by [7, Theorem 3.8.] then A € (go,Y). Hence
AT ¢ (Yﬂ,qg) = (Y8, 0b) by [11, Theorem 8.3.8.]. Let z € Y# and define
00

g(y) = zy, where zy = 3, zxyx , y € Y. Then by Banach-Steinhaus Theorem
geY. Let f(z) = g(ﬁl:a:l) so that f € Y} by [11, Theorem 4.4.2.]. Hence
{f(6%)} € os. f(6%) = io:l Znank = (AT2);, so (AT2) € os. O
v

COROLLARY 4.4. Let Y be a BK space and suppose that Y4 is Cesaro
semiconservative space. Then A € (¢, Y8).

Proof. Its clear by using Theorem 4.3. and [11, Theorem 8.3.8.]. [l
EXAMPLE 4.5. Let A=1,Y = q. Then
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A€ (q,q9) = (¢,4°F) but Y4 = q is not Cesaro semiconservative space by
[7]. Thus the converse of Corollary 4.4. is false. Also AT =TI € (0s,08) =
(Y2, 05) so the converse of Theorem 4.3. is false.

We can obtain a converse for Theorem 4.3. in the unimportant case in
which Y has AK.

THEOREM 4.6. Let Y be an FK space with AK. Then Y4 is Cesaro
semiconservative space if and only if the columns of A belong to Y and
AT € (YB, 0s).
Proof. Necessity is trivial by Theorem 4.3.

Sufficiency: Let g € Y’, 2, = g(6"). Then z € Y/ = Y by [11, Theorem
7.2.7.], so ATz € gs. Hence we get

(AT2)y = i Znlnk = 9( i ank5") = g(a*) € os.

n=1 n=1
Then Y, is Cesaro semiconservative space by Theorem 4.2. a
LEMMA 4.7. The following are eqivalent for an FK space X.
(¢) If A€ (X,X) then X4 is Cesdro semiconservative space.
(12) X is Cesdro semiconservative space.
Proof. (i) = (i) : Take A= 1.

(¢3) = (i) : If A e (X,X) then X4 D X , hence X4 is Cesaro semicon-
servative space by [7]. a
LEMMA 4.8. Suppose that an FK space X has the property: (i)'If X4 is
Cesdro semiconservative space then A € (X,X). Then X C gq.

Proof. We assume that os ¢ X°. Because of o0s C X implies X C X7 C
087 =q. Let 2z € 08\ X%, 0 # v € X and a, = ﬂ7’2——1)vnzk,, if1 <

(o o] n
k < n,and 0 otherwise. Since (Ax)n, = Y. ankxk = %’un > w,zkmk =
k=1 k=1

3

1
n

k
spac
¢_ wA.

z;z; then wq = X4 = u?. Since u? is Cesaro semiconservative

k
22
1j=1
e by [7] X4 is Cesaro semiconservative space. But A ¢ (X, X) since X

COROLLARY 4.9. There exists no FK space X such that X4 is Cesdro
semiconservative space if and only if A € (X, X).

By Lemmas 4.7, 4.8. and (7, Theorem 3.5.], ¢ would be Cesaro semicon-
servative space, contradicting 7, Example 3.9.].

However Ince (in [8]) has proved that X4 is strongly Cesaro conull
(Cesaro conull) space if and only if ¢ C X4 and A : ¢ — X (weakly)
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compact. In addition every (strongly) Cesaro conull space is Cesaro semi-
conservative space.

DEFINITION 4.10. A matrix A is called Cesaro semiconservative if c4 is
Cesaro semiconservative space.

The reason for this definition is that summability theory deals with
spaces of the form c4 and with FK spaces whose properties generalize
those of such spaces. If we can extend theorems about conservative spaces
to Cesaro semiconservative spaces so much better.

THEOREM 4.11. A is Cesdro semiconservative if and only if
(i) A has convergent columns, i.e. c4 D ¢,
(i2) a € os where a = {ax},ax = limayg,
n
(i31) AT € (I,03).
PROOF. Necessity:

(2) is clear by Definition 4.10. (i:): Since c4 is Cesaro semiconservative
then we take g := lim in Theorem 4.2. Hence a € os. (m) By Theorem 4.3.

Sufficiency: Let g € ¢. Then g(y) = xlimy + Z taln,t € 1 by [11,

1.0.2.]. If we take y = Aa: x = 6 in here we obtamed g( k) = xlim any +

(tA)r, where (tA)x = Z tnank . Since g(a*) € os from (i7) and (iii) then by
=1

Theorem 4.2. the result is obtained. a

In the following theorems we give simple conditions for the subspaces
oF, 0B in the FK space Y4 .The conditions will depend on the choice of
the FK space Y and the matrix A. However the subspaces 05, cW are
calculated in the FK space Y4 in [6)].

THEOREM 4.12. Let z € w, Y be an FK space and A be a matriz such that
Y4 D ¢ i.e. the columns of A belong to Y. Then the following conditions
are equivalent:

(i) z € 0BT,

T
(i) {% > Az(P)} is bounded in Y,
p=1

(14i) Ya., D go where the matriz A.z is (ank2k),

(iv) {zkg(a*)} € ob for each g € Y’ where a* is kth column of A.

Also these are equivalent: z € 0B, Y4, D q, (1) and z € Yy, (iv) and
z €Yy

Proof. (i) & (ii): z € oBT & 27LY4 D qo, where 271Yy =
{x:2.2€ Y4}, 2.2 ={Tnzn} © Ya,Dgo by 271.Y4 =Y, , and [7].
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(i41) ¢ (iv): Since ¢p is an AD space and by hypothesis then Yiz C qg
by [11, Theorem 8.6.1.]. Hence f(6*) = ay, + g(akz) for each f € Y} , with
a€ wﬁ_z, g €Y' by [11, Theorem 4.4.2.]. Since a € wﬁ_z C Y/f.z - qg =ob
then f(6*) € ob if and only if {zxg(a*)} € ob for each g € Y".

T
(i1) & (iv): (iv) is true if and only if {g(% > Az(p))} is bounded for
p=1
each g € Y’ by [11, Theorem 8.0.2.]. Here

g(%gz‘lz(”)> =g( ZZ%M) = Zzzw

p=1 k=1 p—-l k=1
The second part is trivial because of 2z € Y4 if and only if e€ Y4 ,. 0O

THEOREM 4.13. Let z€ w, Y be an FK space and A be a matriz such that
Y4 D ¢ i.e. the columns of A belong to Y. Then the following conditions
are equivalent:

(i) z€ oFt.

i1) {%pél AZ(P)} is weakly Cauchy in Y i.e.{g(%pél Az(P))} is con-

vergent for each g € Y'.

(m) Ya. is Cesaro semiconservative space.

(iv) {2kg(a*)} € o5 for each g€ Y'.

Also these are equivalent: z € oF, Y4, is bounded convex Cesaro semi-
conservative space i.e. Ya, O q and Y4, Cesaro semiconservative space,
(i3) and z € Yy, (iv) and z € Y4.

Proof. (i) & (ii): z € oFT & 271.Y, is Cesaro semiconservative spaces
Y4, is Cesaro semiconservative space by [7, Theorem 4.2].

(131) < (44) : Since the kth column of A.z is zxa* and by Theorem 4.2.
then, this equivalent is trivial.

(i31) < (iv) : By Theorem 4.2., since the kth column of A.z is zxaF.

The second part is clear as in Theorem 4.12. ]

THEOREM 4.14. Let Y be an FK space such that weakly convergent se-
quences are convergent in the F K topology, letA be a row finite matriz such
that Yo D ¢. Then 0S = oW =oF = oFt in Y.

Proof. Ifz€ oF ™, { Z Az(p)} is weakly Cauchy in Y by Theorem 4.13.,
p=1

hence Cauchy [11, Theorem 12.0.2.], hence convergent say ; Z AzP) 5y,
p=1

T
However % 3z (M) — 2 in wy since this a oK space because of w4 is an
p=1
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T T
AK space (11, 4.3.8). Thus 1 3~ A2®P) — Az in w. But 1 3~ A0 — y
p=1 p=1
in w since Y is an FK space hence y = Az so z € oS by [6].
Also take A = I in Theorem 4.14. then 6S = oW =cF =oF* in Y.

We take Y = [, bug, bv in Theorem 4.14. d

Acknowledgement. I am grateful to the referee for his/her helpful
suggestions.
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Mehmet Sengoniil

ON THE GENERALIZED NAKANO SEQUENCE SPACE

Abstract. The purpose of this note is to define and to investigate the generalized
Nakano sequence space A(p) and to show that the sequence space A(p) equipped with the
Luxemburg norm is rotund and posses property-H when p = (px) is bounded with px > 1
for all k € N.

1. Introduction

By w, we shall denote the space of all real or complex valued sequences.
Each linear subspace of w is called a sequence space. A sequence space A with
linear topology is called a K-space provided each of maps p; : w — C defined
by pi(z) = z; is continuous for all ¢ € N; where C denotes the complex field
and N=1{0,1,2,...}. A K- space A is called an F K- space provided A is a
complete linear metric space. An F'K- space whose topology is normable is
called a BK- space |2, pp. 272-273|. A triangle is a lower triangular matrix
with no zeros on the principal diagonal. A matrix A is called regular if A
is limit preserving over ¢, where c denote the space of convergent sequences.
For a Banach space A, we denote by S(\) and B(\) the unit sphere and unit
ball of A, respectively. A point z¢ € S(X) is called:

a) an extreme point if for every z,y € S()) the equality 2z = z + y
implies x = y;

b) an H-point if for any sequence (z,) in A such that ||z,|| — 1 asn — oo,
the weak convergence of (z,,) to z implies that ||z, — z| — 0 as n — oo.

A Banach space A is said to be rotund, if every point of S()) is an extreme
point. A Banach space A is said to possess H-property provided every point
of S(A) is an H-point.

Let A be an arbitrary vector space over C.

a) A functional m : A — [0,00] is called modular if the following
conditions hold:

2000 Mathematics Subject Classification: 46E20, 46E30, 46E40.
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M1y m(z) =0 =0,

M2) m(az) =m(z) for a € R (or C) with |a| =1, for all z € A,

M3) m(az+By) < m(z)+m(y)ifa, 8>0, a+B=1,forallz,y € A

b) If M3 is replaced by;

M) m(az+ By) = o*m(x)+ Fm(y)ifa, >0, o®*+5° =1, with an
s € [0,1] then the modular m is called an s-convex modular; and if s = 1,
m is called a convex modular. _

¢) A modular m defines the corresponding modular space, i.e, the space
Am given by

Am={z€w:m(tz) >0 as t— o}.

Recall that for given any € > 0, a sequence (zp,) is said to be an e-separated
sequence if

sep(zn) = inf {||z, — x|l : n £ k} > €.

We say Banach space A has (-property if for every € > 0 such that, for each
element z € B()\) and each sequence (z,) € B()\) with sep(z,) > ¢, there
exists an index k such that

T+ Tk

<1-4.

The Nakano sequence space £(p) is defined by
p) ={z = (zx) Ew:m(tx) < oo for some t> 0},

where m(z) = >, |zx|P* and p = (pi) is a sequence of positive real numbers
with p; > 1 for all kK € N. The space £(p) is a Banach space with the norm

| = inf{t >0: m@) < 1}.

If p = (px) is bounded, we have
{(p) = {x Ew: leklpk < oo}.
k

Also, some geometric properties of £(p) were studied in [1] and [3].
For 1 < p < o0, the Cesaro sequence space is defined by
1

(L1)  cesp= {x — (o) € w: (Xn: (% :; |xk|)p> ? < oo}

equipped with the norm

n

= (2 (G2 ml)p)%.

k=1
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This space was introduced by Shue [12]. Some geometric properties of
the Cesaro sequence space ces, were studied by many mathematicians. It
is known that ces,, is locally uniform rotund and posses property-H {5]. Cui
and Hudzik [3] proved that ces, has the Banach- Saks of type p if p > 1,
and it was shown in [4] that cesp, has -property.

2. The sequence space A
The space ces(p) [11] is defined by

(2.1) ces(p) ={r € w: p(tz) < oo for some t > 0},
where p(z) =Y, (2 Sy Izkl)p " . The space ces(p) is a Banach space with

the norm
Hﬂl:hﬂ{t>0:p(%);§1}

and if p = (pn) is bounded then we have

cestp) = {z € - 2(% ; rl) < oo},

Several geometric properties of ces(p) were studied in [11]. Define the se-
quence ¥y = (yn), which will be frequently used, as the A-transform of a
sequence z = (z), i.e.,

(2.2) (Az)n = yn = an Z Tk
k=0
where, A = (ang) is defined by
an, (0<k<n)
2.3 nk = ; , keN),
23 fink {m (k> n) (n )

an > 0 for all n € N, a = (a,) is monotone decreasing and A is regular.

Now, we wish to introduce the generalized Nakano sequence space A(p),
as the set of all sequences such that A— transforms of them are in the space
£(p), that is

(2.4) A(p) = {z = (zx) € w: (Az) € £(p)}
or in another word
A(p) = {z € w: m(tz) < oo for some t > 0},

where m(z) = 3, (an Y 1o lzi|)» < 0o. We consider the space .A(p)
equipped with the so—called Luxemburg norm

llz|| = inf{t >0: m(—f—) < 1}.
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If p = (pn) is bounded, then we have

A(p) = {x Ew: Z (anzn: |xi|)pn < oo}.
n i=0

The purpose of this note is to define and to investigate the generalized
Nakano sequence space A(p) and show that the sequence space A(p) equip-
ped with the Luxemburg norm is rotund and posses H-property when p =
(px) is bounded with py > 1 for all k € N.

Clearly, in the special cases a, = (n+1)~! and a, = 1, we have A(p) =
ces(p) and A(p) = ¢(p), respectively. Also, throughout this paper we assume
that p = (p;) is bounded with p; > 1 for all i € N and K = sup, p;.

Now, we may begin with the following theorem which is essential in the
text:

THEOREM 2.1. The set A(p) is the BK - spaces with the norm ||z|| 4p) =
Azl g(p)-

Proof. Since (2.2) holds and #(p) is the BK —space [10] with respect to its
norm and the matrix A is normal, Theorem 4.3.2 of Wilansky {13, pp. 61]
gives the fact that the space A(p) is BK— space. O

PROPOSITION 2.2. The functional m on the space A(p) is a convexr modular.

Proof. m(z) =0« z =0 and m(az) = m(z) for all scalar a with |a| =1
is clear so, we omit it. Let z,y € A(p) and « >0, f>0witha+(=1.
By the convexity of the function v — |u|P*; n € N, we have:

n

mioz+0y) =3 (en I l(0i+ By)l)

<3 ((on S bl + (en 3 16D
n =0 =0
< aZ(anilmil)pn +ﬁZ(an |yi|)pn

n
1=0 =0

= am(z) + fm(y). O

PROPOSITION 2.3. For z € A(p) the modular m on A(p) satisfies the fol-
lowing properties:

P1. if 0 <1 <1 then r¥m(r~'z) < m(z) and m(rz) < rm(z),

P2. if r > 1, then m(z) < r¥m(r~lz),

P3. ifr > 1, then m(z) < rm(z) < m(rz).
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Proof. It is obvious that P3 is satisfied by the convexity of m. It remains
to prove P1 and P2 For 0 < r < 1, we have

n n
Pn _ Pn
m(z) = Z(anz |a:1|) = Z(M”Z |r 1:cz|)
n =0 n i=0
n Pn n Pn
= Zr”" (aner_lxﬂ) > ZTK(anZh'_lziD
n i=0 n i=0
=K Z(an 1r_1wi|)pn = rEm(r 1),
n =0
and it implies by the convexity of m that m(rz) < rm(z), hence P1I is
satisfied. Note that P2 follows directly from P1. Namely, if r > 1 then 0 <
r~! < 1. Therefore, by P1, (r~1)*m(rz) < m(z), we get m(z) < r¥m(r~1z)
and so P2 is obtained. a

3

Now, we give relationships between the Luxemburg norm and the mod-
ular m on the space A(p).

PROPOSITION 2.4. For any z € A(p), if p = (pn) is bounded, we have
Pf. if|lz|| <1 then m(z) < |||
P5. if||z|| >1 then m(x) > ||zl
P6. |z|| =1 if and only if m(z) =1
P7. |lz|l <1 if and only if m(z) <1
P8 ||z|| > 1 if and only if m(z) > 1
P9. if0<r<1and|z|>r then m(z)>rX
P10. ifr>1 and |z| <r then m(z) <rX.

Proof. P4. Let e > 0 be such that 0 < ¢ < 1 — ||z||. Then we have
|z|| + € < 1. By definition of ||.|| there exists g > 0 such that ||z|| +€ > u
and m(u~!z). From Proposition 2.3 (P1. and P3.), we have

m(z) < m ((lell + eu~ z) < (2]l + e)m (u™'z) <zl +e

which implies that m(z) < ||z||. So P4 is satisfied.

P5. Let € > 0 be such that 0 < € < (||z|| — 1)||=||~* then 1 <
(1—¢)|lz|| < ||z||- By definition of ||.|| and by part PI of Proposition 2.3 we
have

L<m(z[(1 - ellzl]™) <[(1 - ¢)llz]] " m(z).

So (1 — e)||z|| < m(z) for all € € (0, (j|z| — 1)||z||~!). This implies that
llz|| < m(z), hence P5 is obtained.

Pé. We have that m(z) = 1 implies that ||z]| = 1. Now assume
that ||z|| = 1. By the definition of ||z|| we have that for any € > 0 there
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exists g > 0 such that 1 + € > p > ||z|| and m(zp~!) < 1. By part P2 of
Proposition 2.3, we have

m(z) < pEmzpt) < pf < 1+ e)K.

So, (m(z))¥ ™" < 1+ € for all € > 0, which implies m(z) < 1. If m(z) < 1,
then we can choose r € (0,1) such that m(z) < r¥ < 1. By part P! of
Proposition 2.3, we have m(r~'z) < (r¥)~!m(z) < 1 hence ||z|| < r < 1
which is a contradiction. Therefore m(z) = 1.

P7. Follows directly from P4. and P6.

P8. Follows from P6 and P7.

P9. Suppose 0 < r < 1 and ||z|| > r. Then ||zr~1|| > 1. By P5 we have
m(zxr~1) > 1. Hence by part P1 of Proposition 2.3, we obtain that m(z) >
rEm(r~1z) > rK.

P10. Suppose that 7 > 1 and ||z|| < r. Then |zr~!|| < 1. By P7 we have
lzr~1|| < 1. If » = 1, it is obvious that m(z) < 1 = rX. If » > 1, then by
part P2 of Proposition 2.3; we obtain that m(z) < r&m(r~lz) < rK. O

PROPOSITION 2.5. Let (z5,) be a sequence in A(p), where p = (p) is
bounded. Then;

P11. If||zp|| — 1 as n — oo, then m(zy,) — 1 as n — oo.

P12. If m(z,) — 0 as n — oo, then ||z,|| — 0 as n — oo.

Proof. P11. Suppose that ||z|| — 1 as n — co. Let € € (0,1). Then there
exists N € N such that 1 — € < ||z,]| < 1+ € for all n € N. By part P9. and
P10. of Proposition 2.4 we have (1 — €)X < m(z,) < (1+¢)X foralln > N
which implies m(z,) — 1 as n — oo.

P12. Suppose that ||z,|| - 0 as n — oo. Then there is an € € (0,1) and a
subsequence (z, ) of (zy) such that ||z, | > € for all k € N. By part P9. of
Proposition 2.4 we have m(z,, ) > €X for all k € N. This implies m(xy,) -+ 0
as n — oo. a

Now we shall show that A(p) has the H-property but first we give a
lemma:

LEMMA 2.6. Let z € A(p) and (™) C A(p). If lim, m(z™) = m(x) and
lim, 27 = z; for all i € N then lim, z™ = z in A(p), that is ||z — x| — 0
as n — oo.

Proof. Let € > 0 be given. Since m(z) = Y, (an Y1y |2i|)" < 00, there
is ng € N such that

(2.5) Z (anZ|xz|) < e(2K+13)~1,

n=ng+1
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Since _
m(z™) — Zo(an Z |xi|>pn — m(z) — zo:(an Z |ﬂ7i|>pn
n=0 =0 n=0  i=0

as (n — o0) and zf — z; as n — oo as for all 4 € N, there is ng € N such
that

(2.6) m(z") - i(an Xn: |$i|)pn <m(z) - f:(an 2": |131:|)pn + (25+13)~1
n=0 =0 n=0 =0

for all n > ng, and

(2.7) i(an i |z — zil)pn <3t
n=0 =0

for all n > ng. It follows from (2.5), (2.6) and (2.7) that for n > ng

m(z"—z) = Z(ani |:z:§‘—x,~l)l’n
n 1=0
_ ;(anzlx?—“‘)%+ > (an Y lap-ail)”

1=0 n=ngp+1 i=0

< 3 leqpok| Z (anlenl)pn-i- i ( zn:m[)pn]

‘n=ng+1 i=0 n=ng+1 =0

= 3-1c 49K m(a: Z(animl )”"+ i (anihd)pn]

n=ng+1 =0

< 37 le2K m(a:") —Z (an Z |.’Ei|)pn +(2K3)!
- i=0
 $ )]

n=ng+1

0 n

—3_16+2K[ Z (anzml) +(2%3)71e

n=nop+1 1=0

+ 3 (a2l

n=ng+1 =0

— 3-le oK [(2K3)—15+2 i (ani ]$i|)pn]

n='n,0+1 ’L=0
<3 le4+3 le+37 e =
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This show that m(z™ — z) — 0 as n — co. Hence by part P8 of Proposition
2.5, we have that ||z" —z|]| — 0 as n — oo. O

THEOREM 2.7. The A(p) has the H-property.

Proof. Let z € S(A(p)) and (z") C A(p) be such that ||z"|] — 1 and
z" — z weakly as n — oo. From Proposition 2.2, we have m(z) = 1 so
it follows from Proposition 2.3 that m(z") — m(z) as n — oo. Since the
mapping p; : A(p) — R, defined by p;(y) = y; is a continuous linear
functional on A(p) it follows that z} — z; as n — oo for all ¢ € N. Thus, by
Lemma 2.6, we get 2" — = as n — oo. a

THEOREM 2.8. The space A(p) is rotund whenever p = (py) is bounded.

Proof. Let z € S(A(p)) and y,2z € B(A(p)) with z = 271(y + 2). By
Proposition 2.2 and convexity of m, we have

1=m(z) < 27N (m(y) + m(z)) < 271 (1 + 1),
so that m(z) = 271(m(y) + m(z)) = 1. This implies that
k n
(2.8) (a;C Z 127 (s + )| )Pk =271 (ak Z |yi|)plc + 271 (ak Z |zi|)pk
i=0 =0

for all k € N. We shall show that y; = 2; for all ¢ € N. From (2.8), we have

(2.9) |21 = 27 Yya| + |z [P
Since the mapping u — |ufP! is strictly convex, it implies by (2.8) that
y1 = z1. Now assume that y; = z; foralli =1,2,...,n—1. Theny; = z; = z;

forall i =1,2,...,n — 1. From (2.8) we have

(2.10) (aan (wi+2))" = (2 1[anZIyzl+anZIz1I])
(2.11) - 2—1(an2|y,-|)p" +2_1(an2|zi|)pn.
=0 =0

By the convexity of the mapping v — [u[P* it implies that an, Y ;. ( |ys| =
an > 1o lzil. Since y; = z; for all i =1,2,...,n — 1 we get that

(2.12) lyn| = |2al.

If y, = 0, then we have y, = 2z, = 0. Suppose that y, # 0. Then z, # 0. If

YnZn < 0 it follows from (2.12) that y, + z, = 0. This implies by (2.10) and
(2.12)

n—1 p n—1 P
(an > 12il)™ = (an (32 bol + 1) )™
=0 =0
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which is a contradiction. Thus, we have y,z, > 0. This implies that, by
(2.9) yn = 2. Thus, by induction, we have y, = z, for alln € N, so y = z.
O
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NONCOMMUTING MAPS
AND INVARIANT APPROXIMATIONS

Abstract. We obtain common fixed point results for generalized I-nonexpansive
compatible as well as weakly compatible maps. As applications, various best approxima-
tion results for this class of maps are derived in the setup of certain metrizable topological
vector spaces.

1. Introduction and preliminaries

Let X be a linear space. A p-norm on X is a real-valued function || - ||,
on X with 0 < p <1, satisfying the following conditions:

(i) [lall, > 0 and [lall, = 0 & = =0,
(i) llazlly = ozl
(i) [z +yllp < llzllp + 9],

for all z, y € X and all scalars o. The pair (X, ||, ||p) is called a p-normed
space. It is a metric linear space with a translation invariant metric d,
defined by dp(z,y) = ||z — yllp for all z,y € X. If p = 1, we obtain the
concept of the usual normed space. It is well-known that the topology of
every Hausdorff locally bounded topological linear space is given by some
p-norm, 0 < p < 1(see [15]). The spaces I, and Ly, 0 < p < 1 are p-normed
spaces. A p-normed space is not to necessarily a locally convex space. Recall
that dual space X* separates points of X (or equivalently X* is total [18])
if for each nonzero x € X, there exists f € X* such that f(z) # 0. In this
case the weak topology on X is well-defined and is Hausdorff. Notice that
if X is not locally convex space, then X* need not separate the points of
X. For example, if X = L,[0,1], 0 < p < 1, the space of to the power p
integrable functions, or X = S[0, 1], the space of measurable functions, then

2000 Mathematics Subject Classification: 47TH10, 54H25.
Key words and phrases: common fixed point, generalized I-nonexpansive map, weakly
compatible maps, compatible maps, invariant approximation.
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X* = {0}(see [15, 18, 20]). However, there are some non-locally convex
spaces X (such as the p-normed spaces lp, 0 < p < 1) whose dual X*
separates the points of X.

Let X be a metric linear space and M a nonempty subset of X. The
set Py(u) = {z € M : d(z,u) = dist(u, M)} is called the set of best
approximants to u € X from M, where dist(u, M) = inf {d(y,u) : y € M}.
We shall use N to denote the set of positive integers, cl(S) to denote the
closure of a set S. The diameter of M is denoted and defined by §(M) =
sup {|lz —y|| : z,y € M}. A mapping I : X — X has diminishing orbital
diameters (d.o.d.) [13] if for each x € X, §(O(z)) < oo and whenever
4(O(z)) > 0, there exists n = ny € N such that §(O(z)) > 6(O(I™(x))),
where O(z) = {I*(z) : k € N U {0}} is the orbit of I at z and O(I"(z)) =
{I*(z) : k € NU{0} and k > n} is the orbit of I at I"(z) for n € N U {0}.
Let I be a self-map of a topological space X. The orbit O(z) of I at z
is proper if and only if O(z) = {z} or there exists n = n; € N such
that cl(O(I™(z))) is a proper subset of c/(O(z)). If O(z) is proper for each
z € M C X, we shall say that I has proper orbits on M. Observe that in
metric space (X, d) if I has d.o.d. on X, then I has proper orbits [10, 11].
Let I : M — M be a mapping. A mapping T : M — M is called an
I-contraction if, there exists 0 < k < 1 such that d(Tz,Ty) < kd(Iz, Iy)
for any z,y € M. If k = 1, then T is called I-nonexpansive. A mapping
T: M — M is called (1) completely continuous if {z,} converges weakly
to z implies that {T'z,} converges strongly to T'z; (2) demiclosed at O if for
every sequence {z,} € M such that {z,} converges weakly to z and {T'z, }
converges strongly to 0, we have Tx = 0. The mappings I and T are said
to satisfy the condition (A4°) if for any sequence {z,} in M, D € C(M)
such that dist(zn, D) — 0 and d(Iz,,Tz,) — 0 as n — 00, there exists
y € D with Iy = Ty, where C(M) denotes the class of nonempty closed
subsets of M. The set of fixed points of T ( resp. I) is denoted by F(T')
(resp. F(I)). A point z € M is a common fixed (coincidence) point of
Iand T if z = Iz = Tx(Ix = Tz). The set of coincidence points of I
and T is denoted by C(I,T). The pair {I,T} is called (3) commuting if
TIz = ITz for all z € M; (4) R-weakly commuting if for all x € M there
exists R > 0 such that d(ITz,TIz) <Rd(Iz,Tz). If R = 1, then the maps
are called weakly commuting; (5) compatible [9] if lim, d(T Iz, ITz,) = 0
whenever {z,} is a sequence such that lim, Tz, = lim, Iz, =t for some t
in M; (6) weakly compatible if they commute at their coincidence points,
i.e.if ITx = TIx whenever Ix = Tx. If I and T are weakly compatible and
do have a coincidence point, I and T are called [3, 10] nontrivially weakly
compatible. The subset M of a linear space is called g-starshaped with
q € M if the segment [¢,z] = {(1 — k)g+ kz : 0 < k < 1} joining ¢ to
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z, is contained in M for all x € M. Suppose that M is g-starshaped with
q € F(I) and is both T- and I-invariant. Then T and I are called;

(7) R-subcommuting on M if for all z € M, there exists a real number
R > 0 such that d(ITz, TIz) < £d((1-k)q+kTz, Iz) for each k € (0,1]. If
R =1, then the maps are called 1-subcommuting [7]; (8) R-subweakly com-
muting on M (see [8, 23)) if for all € M, there exists a real number R > 0
such that d(ITz,TIz) < Rdist(Iz,[q,Tz]). Clearly, R-weakly commuting,
and compatible maps are weakly compatible but not conversely in general.
R-subcommuting and R-subweakly commuting maps are compatible but the
converse does not hold in general [11].

In 1995, Jungck and Sessa [12] extended the results of Meinardus [17],
Singh [25], Habiniak [4] and Sahab, Khan and Sessa [21] to the pair of
commuting maps defined on weakly compact subset of a Banach space.
Latif [16], further extended these results to the setting of p-normed spaces.
More recently, Shahzad [23, 24]], Hussain and Jungck [11], Hussain et al. [8],
Jungck and Hussain [11] and O’Regan and Hussain [19] further extended the
above mentioned results to R-subweakly commuting and weakly compatible
maps. The aim of this paper is to establish a general common fixed point
theorem for compatible and weakly compatible generalized I-nonexpansive
maps in the setting of locally bounded topological vector spaces and locally
convex topological vector spaces. As application, we derive some results
on the existence of best approximations. Our results unify and extend the
results of Dotson [1, 2], Habiniak {4], Hussain and Berinde [5], Hussain and
Khan [7], Hussain, O’Regan and Agarwal [8], Jungck and Sessa [12]|, Khan
et al. [13], Khan and Khan [14], Latif [16], O’Regan and Hussain [19], Sahab
et al. [21], Sahney et al. [22], Shahzad [23, 24|, and Singh [25, 26].

Here, we state some useful results.

THEOREM 1.1 [3]. Let X be a Hausdorff topological space, and I, T be
continuous and nontrivially weakly compatible self-maps of X. Then there
ezists a point z in X such that [z =Tz = z, provided T satisfies following
condition

(C) ANF(T)#0 for any nonempty T-invariant closed set A C X.

The next theorem gives conditions under which condition (C') is satisfied.

THEOREM 1.2 ([10], Theorem 3.1). Let X be a Hausdorff topological space
and T be a continuous self-map of X. If T has relatively compact proper
orbits then T satisfies condition (C).

2. Common fixed point and approximation results
The following recent result will be needed in the sequel.
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THEOREM 2.1 [11]|. Let M be a subset of a metric space (X,d), and I and
T be self-maps of M. Assume that clT(M) C I(M), clT(M) is complete
and I, T satisfy for all z,y € M and 0 < h < 1 the condition
(2.1) d(Tz,Ty)

< hmax {d(Iz, ly),d(Iz,Tz),d(ly, Ty),d(Iz,Ty),d(1y, Tx)}.
Then I and T have a unique coincidence point in M.

Throughout this section, we shall assume that X* separates points of a
p-normed space X whenever weak topology is under consideration.

THEOREM 2.2. Let I and T be self-maps on a q-starshaped subset M of a
p-normed space X. Assume that T satisfies condition (C), ddT(M) C I(M),
q € F(I) and I is affine. Suppose that I and T are continuous, and satisfy

Iz — Iy||, , dist(Iz, [Tz, q]), dist(1y, [Ty, q]),
dist(Iz, [Ty, q]),dist(Iy, [Tz, q])

for all z,y € M. Then F(T) N F(I) # 0, provided one of the following
conditions holds;

(2.2) | Tz — Tyll, < maz {

(i) dT(M) is compact and I and T are compatible,

(i) M is complete and bounded, T is a compact map and I and T are
compatible,

(iii) M is complete and bounded, I and T satisfy condition (A°) and I and
T are weakly compatible,

(iv) X is complete, M is weakly compact, I — T is demiclosed at 0 and I
and T are weakly compatible,

(v) X is complete, M is weakly compact, I and T are completely continuous
and I and T are weakly compatible.

Proof. Define T,, : M — M by Tpz = (1 — kn)q + k,Tx for some g and
all z € M and a fixed sequence of real numbers k,, € (0,1) converging to 1.
Then, for each n, clT,(M) C I(M) as M is g-starshaped, cIT(M) C I(M),
I is affine and Iq = ¢. By (2.2),
1Tne — Tayllp = (kn)? I Tz — Tyllp
< (kn)Pmaz{||Ix — Iyl|,,, dist(Iz, [Tz, q]), dist(ly, [Ty, q]),
dist(Iz, [Ty, q)), dist(ly, [Tz,q])}
< (kn)Pmaz{|| Iz — Tyllp, [z — Tnz|, , [Ty — Tnyll,
Iz — Toyll, » [Ty — Tnzll,}

for each z,y € M.
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(i) Since cIT(M) is compact, cIT,(M) is also compact and hence com-
plete. By Theorem 2.1, for each n > 1, there exists x,, € M such that
Iz, = T,x,. The compactness of c/(T'(M) implies that there exists a
subsequence {T'z,}of {Tz,} such that Tz,, — y as m — oo. Since
km — 1, Iz, = (1 — kmm)q + kmTxy converges to y. Since T and [
are continuous, then T'lz,, — Ty and ITz,, — I'y as m — co. By the
compatibility of I and T, we obtain 0 = limm—o0 [ {TZm — TIZm|p, =
Iy — Ty|lp. Thus I'y = T'y. Hence the pair {I,T} is nontrivially com-
patible. Theorem 1.1 guarantees that M N F(I) N F(T) # 0.

(if) As in (i), there is a unique z, € M such that Tz, = Iz, As T is
compact and {z,} being in M is bounded so {T'z, } has a subsequence
{Tzm} such that {T'z,,} — z as m — oco. Then the definition of T;, 2,
implies Ix,, — z. So by the continuity of T' and I, TIx,, — Tz and
ITx,, — Iz as m — oo. By the compatibility of I and T, we obtain
Iz = Tz. Hence the pair {I,T} is nontrivially compatible. Theorem
1.1 guarantees that M N F(I) N F(T) # 0.

(iii) Asin (i) there exists z,, € M such that Iz, = T,,z,. But M is bounded,
80 [[Izn — Tznllp = [[((1 — kn)g + knTzn) — Tanllp, < (1= kn)P(llgllp +
|Tznp) — 0 as n — oo. By condition (A°), Izg = Txo for some zg €
M. Hence the pair {I,T} is nontrivially weakly compatible. Theorem
1.1 guarantees that M N F(I) N F(T) # 0.

(iv) Since M is weakly compact and hence complete, then cl(T,(M)) is
complete. By Theorem 2.1, for each n > 1, there exists =, € M
such that Iz, = T,x,. The weak compactness of M implies that
there exists a subsequence {z,,} of {z,} such that z,, — y weakly
as m — oo. Since {zn} is bounded, kyn — 1, so ||(Izm — Tzmll, =
1L = Em)g-+ knT@m) ~ T2mllp < (1= kr)?(lgllp + [Tz llp) converges
to 0. Since (I — T) is demiclosed at 0 so (I — T)y = 0 and hence
Iy = Ty. Thus the pair {I, T} is nontrivially weakly compatible and
the conclusion follows from Theorem 1.1.

(v) As in (iv), we can find a subsequence {zp,} of {,} in M converging
weakly to y € M as m — oco. Since I and T are completely continuous,
then Iz, —» Iy and T'z,, — Ty as m — oo. Since k,, — 1, then Ix,, =
Tmzm = kmTxm + (1 — kn)q — Ty as m — oo. Using the uniqueness
of the limit, we have Iy = Ty. Thus the pair {I,T} is nontrivially
weakly compatible and the conclusion follows from Theorem 1.1.

COROLLARY 2.3. Let M be a q-starshaped subset of a p-normed space X, and
I and T continuous self-maps of M. Suppose that I is affine with g € F(I),
cdT (M) C I(M) and T (M) is compact. If T has d.o.d., the pair {I,T} is
compatible and satisfy (2.2) for all x,y € M, then M N F(T)NF(I) # 0.
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Proof. Since T has d.o.d, T has proper orbits [10]. As clT'(M)) is compact,
T has relatively compact orbits. Therefore by Theorem 1.2, T satisfies
condition (C). The result now follows by Theorem 2.2(i).

REMARK 2.4. Theorem 2.2 and Corollary 2.3 extend and improve Theo-
rems 1 and 2 of Dotson [1], Theorem 4 of Habiniak [4], Theorem 2.3 and
Corollary 2.4 of Jungck and Hussain [11], Theorem 6 of Jungck and Sessa
[12], Theorem 2.4 of O’Regan and Hussain [19], Theorem 2.2 of Shahzad
[24], and corresponding results in [14, 16, 21, 23, 25].

The following result extends Theorem 3 of [21], Theorem 8 of [4], and
the main results in [14, 16, 17, 25].

THEOREM 2.5. Let M be subset of a p-normed space X andletI,T: X — X
be mappings such that u € F(T)NF(I) for someu € X and T(OM NM) C
M. Assume that T satisfies condition (C), I(Pyp(u)) = Pp(u) and the
pair {I,T} is continuous and compatible on Pp(u) and satisfy for all z €

Ppr(u) U {u},
2.3) [Tz -Tyl,

|z — Iul|, ify=u,
< maa:{||I:v - Iy“p 9 diSt(IIa [q’ Tfl?]), dlSt(Iya [Qa Ty]),
dist(Iz, [q, Ty]), dist(ly, [q, Tz])} ify € Ppy(u).

If Pp(u) is closed, g-starshaped with q € F(I), I is affine and clT(Pp(u))
is compact then Pyr(u) N F(I) N F(T) # 0.

Proof. Let z € Py(u). Then ||z — ul|, = dist(u, M). Note that for any
ke (0,1),

lku+ (L - k)2 —ull, = (1 — k)P |le — ull, < dist(u, M).

It follows that the line segment {ku + (1 — k)z : 0 < k < 1} and the set M
are disjoint. Thus z is not in the interior of M and so x € M N M. Since
T(OMNM) C M, Tz must be in M. Alsosince Iz € Py(u), u € F(T)NF(I)
and T and I satisfy (2.3), we have

1Tz —ull, = Tz — Tull, < Iz — Iu|l, = [z — ul|, = dist(u, M).
Thus Tz € Pps(u). Theorem 2.2(i) further guarantees that Py (u) N F(I) N
F(T) #0.

Let D = Pys(u) N C};(u), where Ci (u) = {z € M : Iz € Py(u)}.
The following result provides a non-locally convex space analogue of
Theorem 3.3 [7] for more general class of maps.
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THEOREM 2.6. Let M be subset of a p-normed space X and I,T : X — X
be mappings such that u € F(T)NF(I) for someu € X and T(OMNM) C
M. Suppose that T satisfies condition (C), D is closed g-starshaped with
q € F(I), I is affine, cIT(D) is compact, I(D) = D and the pair {I,T}
is compatible and continuous on D and, for all x € D U {u}, satisfies the
following inequality,

(24)  |ITz-Tyl,

|1z — I, ify =u,
< { maz{||Iz — Iyl|,,, dist(Iz, [¢, Tz]), dist(ly, [q, Ty})),
dist(Iz, g, Ty)), dist(Iy, [q, Tz])} ify e D.

If I is nonexpansive on Py(u) U {u}, then Py(u) N F(I) N F(T) # 0.

Proof. Let x € D then proceeding as in the proof of Theorem 2.5, we
obtain T’z € Ppr(u). Moreover, since I is nonexpansive on Ppr(u) U {u} and
T satisfies (2.4), we obtain

Tz — ull, < |Tz — Tu|l, < Iz — Tul|, = dist(u, M).

Thus ITz € Py(u) and so Tz € Cl,(u). Hence Tz € D. Consequently,
cT(D) ¢ D =1I(D). Now Theorem 2.2(i) guarantees that Pys(u) N F(I) N
F(T) # 0.

REMARK 2.7. (a) It is worth to mention that approximation results similar
to Theorem 2.5 and Theorem 2.6 can be obtained, using Theorem 2.2(ii)-(v)
which extend and improve the corresponding results in {12, 14, 16, 17, 21,
24, 25).

(b) As an application of Theorem 2.2(i), we can prove Theorem 2.7 of [11]
in the setup of p-normed space X.

(c) The results of this section hold true for the the nonlocally convex spaces,
for example, the sequences spaces I, 0 < p < 1 and Hardy spaces H?,
0 < p < 1 whose topological duals are total. When topological dual is
not total the situation becomes more complicated. The topological dual of
X = Ly[0,1], 0 < p < 1, and X = S[0,1], vanish and Shauder’s conjecture
is still open even for these spaces (see for details [18, 20] and references
therein).

3. Further results
(1) All results of the paper (Theorem 2.2-Remark 2.7) remain valid in the
setup of a metrizable locally convex topological vector space (X, d),
where d is translation invariant and d(az, ay) < ad(z,y), for each a
with 0 < a < 1 and z,y € X ( recall that d, is translation invariant
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and satisfies dp(az, ay) < (a)Pdp(z,y) for any scalar a > 0 ). Conse-
quently, Theorem 2.2-Theorem 3.3 due to Hussain and Khan (7] and
corresponding results in [5, 22, 26] are improved and extended.

We define C{;(u) = {x € M : Iz € Py(u)} and denote by Sy the class
of closed convex subsets of X containing 0. For M € Sy, we define M,, =
{x € M :d(0,z) < 2d(0,u)}. It is clear that Py(u) C M, € So.

Following result extends Theorem 8 in [4], Theorem 3.3 in [5], Theorems
2.9-2.10 in [11], Theorem 2.6 in [19], Theorem 2.3-2.4 in [23], Theorem 2.9
in [24] and many others.

THEOREM 3.1. Let X be a metrizable locally convex space (X,d) where d is
translation invariant and d(az,ay) < ad(z,y), for each a with 0 < a < 1
and z,y € X, and I and T be self-mappings of X with v € F(I) N F(T)
and M € o such that T(M, ) C I(M) C M. Suppose that I is affine,
d(Iz,u) < d(z,u), d(Tz,u) < d(Iz,u) for all x € M, the pair {I,T} is
continuous on M and one of the following two conditions is satisfied:

(a) clI(M) is compact,
(b) T (M) is compact.

Then

(i) Pur(u) is nonempty, closed and convez,
(it) T(Pam(u)) C I(Ppm(u)) C Pu(u) provided that d(Iz,u) < d(z,u) for
all z € CLy(u),
(iii) Py(u) N F(I) N F(T) # 0 provided that d(Iz,u) < d(z,u) for all
z € Cl/(u), I and T satisfy condition (C), I(Pa(u)) is closed, the
pair {I,T} is compatible on Py(u) and satisfies for all ¢ € F(I),

d(Tz,Ty) < max{d(Iz, Iy),dist(Iz,[q,Tx]), dist(Iy, [q, Ty]),
dist(Iz,[q,Ty|),dist(Iy,[q,Tx])},
for all x,y € Ppr(u).
Proof.
(i) Let r = dist(u, M). Then there is a minimizing sequence {yn} in M
such that lim,d(u,y,) = r. As clI(M) is compact so {Iy,} has a

convergent subsequence {Iy,,} with lim,, Iy, = z¢ (say) in M. Now
by using d(Iz,u) < d(z,u) we get

r < d(zg,u) = liglnd(lym,u) < li%n d(Yym,u) = lirrlnd(yn,u) =r.
Hence zg € Pps(u). Thus Py(u) is nonempty closed and convex. Sim-

ilarly, when cIT(M) is compact we get same conclusion by using in-
equalities d(Iz,u) < d(z,u) and d(T'z,u) < d(Iz,u) for all z € M.
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Let z € Pp(u). Then d(Tz,u) < d(Iz,u) = dist(u, M). This im-
plies that Tz € Pp(u) and so T(Pp(u)) C Pp(u). Also we have
I(Pp(u)) € Pup(u). Let y € T(Py(uw). Since T(M,) C I(M) and
Prr(u) C M,, then there exist z € Pp(u) and £ € M such that
y = Tz = Iz. Thus, we have d(Iz,u) = d(Tz,u) < d(Iz,u) <
d(z,u) = dist(u, M). Hence = € C};(u) = Pa(u) and so (ii) holds.
(a) By (i) Pap(u) is closed and by (ii) Pa(u) is I-invariant, so by
condition (C) of I, Py(u) N F(I) # 0. It follows that there exists
q € P(u) such that ¢ € F(I). By (ii), the compactness of clI(M,)
implies that clT'(Pp(u)) is compact. The conclusion now follows from
Theorem 2.2(i)(which holds for metrizable locally convex space) ap-
plied to Pps(u).
(b) By (i) Pap(u) is closed and by (ii) Par(u) is I-invariant, so by
condition (C) of I, Py(u) N F(I) # @, it follows that there exists
q € Pps(u) such that ¢ € F(I). Theorem 2.2(i) further guarantees that
Py(u)NF(T)NF(I) # 0.
Let M be subset of a p—normed space X and F = {f;}zem a family
of functions from [0,1] into M such that f,(1) = z for each z € M.
The family F is said to be contractive [2, 13] if there exists a function
¢ : (0,1) — (0,1) such that for all z,y € M and all t € (0,1), we
have || fz(t) — fy(D)llp < [#(#)]Plz — yllp- The family F is said to be
jointly (weakly) continuous if ¢ — #o in [0,1] and z — z, (x — ¢
weakly) in M, then fy(t) — fz,(to) (f2(t) — fzo(to) weakly) in M. We
observe that if M € X is g-starshaped and f;(t) = (1 —t)q + tz, (z €
M;t € (0,1)), then F = {f;}zem is a contractive jointly continuous
and jointly weakly continuous family with ¢(¢) = ¢. Thus the class of
subsets of X with the property of contractiveness and joint continuity
contains the class of starshaped sets which in turn contains the class
of convex sets ((see [2, 8]). Following the arguments as above and
those in [8, 13], we can obtain all of the results of the paper (Theorem
2.2-Remark 2.7) provided [ is assumed to be surjective, and affinity of
I is replaced by I(fz(a)) = fiz(a) for all z € M, a € [0,1], and the g-
starshapedness of the set M is replaced by the property of contractivity
and joint continuity or weak joint continuity. Consequently, recent
results due to Hussain et al. [8], and Khan et al [13] are extended to the
class of weakly compatible pair {I,T} where T satisfies property (C).
A subset M of a linear space X is said to have property (N) with
respect to T' [5, 8] if,
HT:M— M,
(ii) (1 — kn)g + knTx € M, for some ¢ € M and a fixed sequence of
real numbers k(0 < k, < 1) converging to 1 and for each x € M.
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A mapping I is said to be affine on a set M with property (N) if
I((1 —kp)g+knTz) = (1 —kn)Iqg+ kpITx for each z € M and n € N.
All of the results of the paper (Theorem 2.3-Remark 2.7) remain valid,
provided I is assumed to be surjective and the g-starshapedness of
the set M is replaced by the property (N), in the setup of p-normed
spaces and metrizable locally convex topological vector space(tvs)
(X, d) where d is translation invariant and d(az,ay) < ad(z,y), for
each a with 0 < a < 1 and z,y € X. Consequently, recent results due
to Hussain and Berinde [5], and Hussain, O’Regan and Agarwal [§]
are extended to the class of weakly compatible maps, where T satisfies

property (C).
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