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ON T H E ( j ^ - S U M M A B I L I T Y AND (r^) -CORE 

A b s t r a c t . In [6] and [9], the concepts of cr-core and statistical core of a bounded 
number sequence x have been introduced and also some inequalities which are ana-
logues of Knopp's core theorem have been proved. In this paper, using the concept 
of cr^-summability introduced by Sava§, we characterize the matrices of the classes 
(m, Va(A)), (c, V^a)), (V<r, VCT(yi)) and ( S f l m , Va(A))reg and determine necessary and suffi-
cient conditions for a matrix B to satisfy —core(Bx) C K—core(x), cr^ —core(Bx) C 
a — core(x) and a ^ — core(Bx) C st — core(x), for all x 6 m. 

1. Introduction 
Let K be a subset of N, the set of positive integers. The natural density 

5 of K is defined by 

8(K) = lim —Ifc < n : k £ K\, 
n n 

where the vertical bars indicate the number of elements in the enclosed 
set. The number sequence x = (x^) is said to be statistically convergent 
to the number I if for every e, ¿({A; : \xk — > e}) = 0 (see [6]). In this 
case, we write st — lima; = I. We shall also write S and So to denote the 
sets of all statistically convergent sequences and of all sequences statistically 
convergent to zero. The statistically convergent sequences were studied by 
several authors (see [1], [6] and others). 

Let m and c be the Banach spaces of bounded and convergent sequences 
x = (xk) with the usual supremum norm. Let a be a one-to-one mapping 
from N into itself. A continuous linear functional 4> on m said to be an 
invariant mean or a <r-mean if (i) $(x) > 0 when the sequence x = (x^) has 
xk > 0 for all k, (ii) $(e) = 1, where e = (1,1,1, . . . ) , (iii) = 3>(x) 
for all x Em. 

2000 Mathematics Subject Classification: 40C05, 40J05, 46A45. 
Key words and phrases: cr - convergence, statistically convergence, matrix transfor-

mations and core theorems. 



860 K. Kayaduman, H. Qo§kun 

Throughout this paper we consider the mapping a such that ap(k) ^ k 
for all positive integers k > 0 and p > 1, where ap(k) is the pth iterate of 
a at k. Thus, a ¿r-mean extends the limit functional on c in the sense that 
3>(x) = lima; for all x G c (see [10]). Consequently, c C Va where Va is the 
set of bounded sequences all of whose cr-means are equal. 

In case a(k) = k + 1, a cr-mean is often called a Banach limit and Va is 
the set of almost convergent sequences, introduced by Lorentz (see [7]). If 
x = (xn), write Tx = (Txn) = It can be shown [13] that 

Va = {x G m : limtpn(x) — s uniformly in n, s = a — lima;} p 

where 

tpn(x) = (xn + Txn + --- + Tpxn)/(p + 1), i_ijn(x) = 0. 

We say that a bounded sequence x = (x^) is cr-convergent if x € Va. 
By Z, we denote the set of cr-convergent sequences with cr-limit zero. It is 
well known [12] that x € m if and only if Tx — x G Z. 

A matrix A called Cesaro matrix if ank = l/n if 1 < k < n; ank = 0 if 
k > n (see [8]). 

It is known that [14], a bounded sequence x is said to be a^-convergent 
(or (7^-summable) to t if 

lim > ^TTLTl (v) = i uniformly in p. 
n 

The space of all a ^ - convergence and a ^ - convergence to zero sequence 
are denoted by Va{A) and VQ(T(a) , respectively. 

In case of A of matrix being taken into Cesaro matrix, the space Va(A) 
is reduced to the space Va. 

Let A be an infinite matrix of real entries ank and x = (xf~) be a real 
number sequence. Then Ax = ((Ax)n) = (J2k ankXk) denotes the trans-
formed sequence of a;. If X and Y are two non-empty sequence spaces, then 
we use (X , Y) to denote the set of all matrices A such that Ax exists and 
Ax G Y for all x € X. Throughout, Ylk wiU denote summation from k = 1 
to oo. 

A matrix A is called (i) regular if A e (c,c)reg and lim Ax = lim re, (ii) 
cr-regular if A € (c, Va)Teg and a — lim Ax = lima; for all x G c, and (iii) 
a-coercive if A € (m, Va). The necessary and sufficient conditions for A to 
be regular, cr-regular and cr-coercive are well-known [8] and [13]. 

For any real number A we write A - = max{—A, 0}, A+ = max{0, A}. 
Then A = A+ — A - . We recall (see [9]) that a matrix B is said to be 
a-uniformly positive if 
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lim ) b (p, n, k) = 0 uniformly in n p ' * 
k 

where 

1 p 

b(p,n,k) = 
i=0 

It is known [9] that a cr-regular matrix B is <r-uniformly positive if and only 
if 

lim V Ib(p, n,k) 1 = 1 uniformly in n. 
p k 

Let us consider the following functional defined on m: 

£(x) = liminf x, L(x) = l imsupx, qu{x) = lim sup sup t ^ x ) , 
p n 

1 P 

L*(x) — l im s u p s u p 7 xn+i. 
p n P+ 

In [9], the cr-core of a real bounded number sequence x has been defined 
as the closed interval [—qc{—x), qa(x)] and also the inequalities qa(Ax) < 
L(x) (a-core of Ax C K-core of x), qa{Ax) < qa(x) (a-core of Ax C cr-core 
of x), for all x € m, have been studied. Here the if-core of x (or Knopp 
core of x) is interval \£(x), L(x)} (see [2]). 

When a(n) = n + 1, since qa{x) = L*(x), cr-core of x is reduced to 
the Banach core of x (B-core) defined by the interval [—L*(—x),L*(x)] (see 
[11])-

The concepts of B-core and cr-core have been studied by many authors 
[4, 5, 9, 11]. 

Recently, Fridy and Orhan [6] have introduced the notions of statistical 
boundedness, statistical limit superior (si — lim sup) and inferior 
(st — l iminf), defined the statistical core (or briefly st-core) of a statist-
cally bounded sequence as the closed interval [si — liminf x, st — lim sup x\ 
and also determined necessary and sufficient conditions for a matrix A to 
yield K-coie(Ax) C si-core(x) for all x 6 m. 

D E F I N I T I O N 1.1. Let x E m. Then, c r^ -core of x is defined by the closed 
interval [ - q ^ i - x ) , ^ D ( X ) ] , where 

%<.a) (%) = l im s u p s u p y^ amnxan(p). 
P n 

From the definition, it is easy to see that a^- core x = {£} if and only if 
a(A) _ l i m x — j n c a s e 0f A matrix being taken into Cesaro matrix, since 
qa(A)(x) = qcr(x), the c r^-core of x is reduced to the cr-core of x. 
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2. Main results 
The proofs of the following theorems are entirely analogous to the proof 

of Theorem 2.4. So, we omit the proofs. 

THEOREM 2.1. Let ||A|| < oo. Then B G (m, VC(A)) if and only if 

(2.1) ||£|| =sup^2\bnk\ <<x>, 
n k 

(2.2) lim > OjjyiyiO0-nf>p\ fc = ak uniformly in p, for each k, 
m ^—' 

n 

(2.3) lim X ] amnban^tk - ak 
m 

k 

= 0. 

If the conditions (2.1)-(2.3) hold, then a^ — l imBn (x) = ^2koikxk for <dl 

x Em. 

THEOREM 2.2. Let ||>1|| < oo. Then B G (c, Va(A)) if and only if the 

conditions (2.1) and (2.2) hold, and 

(2.4) lim amnban^ k = a uniformly in p . 

k n 

If the conditions (2.1), (2.2) and (2.4) hold, then 

<r(yl) - lim Bn(x) = akxk + ¿(a - afc) 
k k 

for all x G c. 

In the cases of matrix A being taken into Cesaro matrix Theorem 2.1 
and Theorem 2.2, we respectively have Theorem 2, and Theorem 3 of Schae-
fer, [13]. 

THEOREM 2.3. Let ||,4|| < oo. Then B e ( K , V ^ ) ) if and only if the 
conditions (2.1) and (2.4) hold and B(T — I) G (m, Va(A)). 

THEOREM 2.4. Let ||A|| < oo. Then, B G ( S n m , ^ ) ) ^ if and only if 

B G (c,Va(A))reg and 

= 0 uniformly in p, (2-5) Ylamub°n(p)>k 
keE n 

for every EC N with 5(E) = 0. 

P roo f . First, suppose that B G (S fl m, Va(A))reg. Then, B G (c, Va(A))reg 

immediately follows from the fact that c C S fl m. Now, define a sequence 
t = (tfc) for x G m as 

= (xk, keE, 
k I 0, k i E, 
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where E is any subset of N with 6(E) = 0. By our assumption, since t € So, 
we have Bt € On the other hand, since Bt = ^2keE bnkxk, the 
matrix D = (dnk) defined by 

, _ J Kk, keE, 

n f c " \ 0 , k f E , 

for all n, must belong to the class (m, Va(A)). Hence, necessity of (2.5) 
follows from Theorem 2.1. 

Conversely, suppose that B € (c, Va{A))reg and (2.5) holds. Let x be any 
sequence in S fl m with st — limx = £. Write E = {k : \xk — £\ > e} 
for any given e > 0, so that 5(E) = 0. Since B € (c, V^A))reg and 
a(A) _ lim^3fc bnk = 1, we have 

a(A ) - l im(Är) = - l i m ( £ bnk(xk - £) + bnk) 

k k 

k 

= lim amnban(p)ik(xk - £ ) + £ . 
k n 

On the other hand, since 

\ % 2 Y l a m n b ° n ( p ) ( x k ~ - I N I + e i i i 4 i i i i ß i i » 
k n keE n 

the condition (2.5) implies that 

lim ̂ 2 E amn&<7«(p) (xk ~ £) = 0 uniformly in p. 
m 

k n 

Hence, a^ — lim(-Ba:) = st — limx; that is, B G (S n m,Va(A))reg, which 
completes the proof. • 

In case of A matrix being taken into Cesaro matrix, Theorem 2.4 is 
reduced to following theorem: 

THEOREM 2.5 ([3]). B e (5 f lm, Va)reg if and only if B is a-regular and 

1 p 

keE y i=0 

= 0 uniformly in n, 

for every E C N with natural density zero. 

3. Core theorems for infinite matrices 
We need the following lemma given by Das for the proof of next theorem: 
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LEMMA 3.1. Let \\C = (CMA;(P))|| < oo and l i m m s u p p \cmk{p)\ — 0- Then, 
there is a y G m such that ||y|| < 1 and 

lim SUp SUp ^ Cmk {p)Vk = lim Sup SUp ^ |Cmk (p) I. 
m p k m p k 

THEOREM 3.2. Let ||^4|| < oo. Then a^ - core(Bx) C K - core(x) for all 
x £ m if and only if B G (c, Va(A) )reg and 

(3.1) L I M S U P ^ L ^ 
P k 

= 1. 

P r o o f . Suppose first that a^ — core(Bx) C K — core(x) for all x em. If 
x G V^a), then we have q^A)(Bx) = —qa(A){—Bx). By hypothesis, we get 

-L(-x) < —qa(A) (—Bx) < qa(A) {Bx) < L(x). 

If x G c, then L(x) = —L{—x) = l imx. So we have o^ — lim Bx = 
q(T(A){Bx) = —qa(A){—Bx) = l imx which implies that B E {c,Va(A))Teg-

Now, let us consider the sequence C = (cmk(p)) of infinite matrices 
defined by 

Cmkip) = <W&<x«(p),fc f o r all n,k,pE N. 
n 

Then, it is easy to see that the conditions of the Lemma 3.1 are satisfied for 
the matrix sequence C. Thus, by using the hypothesis, we can write 

1 < lim inf sup V ^ \cmk{p)\ < lim sup sup V ] \cmk(jp)\ 
m P k m p k 

= lim sup sup cmk {p)yk = %i.A) (By) < L(y) < ||y|| < 1. 

This gives the necessity of (3.1). 
Conversely, assume B G (c, Va(A))Teg and (3.1) holds for all x € m. Then, 

for any given e > 0, there is a ko G N such that xk < L(x) + e for all k > ko-
Now, we can write 

^~2 cmk(p)xk = Cmk{p)xk + ^ (Cmk{p))+Xk ~ ^ {Cmk(p))~Xk 

k k<ko k>k0 k>k0 

< ||z|| ^ lCmfc(p)| + ( L ( x ) + £ ) ^ | c m f c ( p ) | 
k<ko k 

+ I W l £ ( l ^ ) l ~Cmk(p))-
k 

Thus, by applying the l im m sup supp and using hypothesis, we have 

qa(A)(Bx) < L(x) + e. 

This completes the proof since e is arbitrary and for all x G m. m 
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In case of A matrix being taken into Cesaro matrix, Theorem 3.2 is 
reduced to following theorem: 

THEOREM 3 . 3 ([9]). a-Core of Bx C K-Core of x, i.e., qa(Bx) < L(x) for 
all x € m if and only if B is a-regular and a-uniformly positive. 

THEOREM 3.4. Let | | A | | < oo. Then a^ — core(Bx) Co- - core(x) for all 
x 6 m if and only if B G (V(T,V(7(A))reg and (3.1) holds. 

P r o o f . Let a^ — core(Bx) C a — core(x) for all x G m. Then, since 
q^A){Bx) < qa(x) and qc(x) < L(x) for all x G m, the necessity of (3.1) 
follows from Theorem 3.2. 

One can also easily see that 

~qA~x) < -%(a){-Bx) < qa(A) (Bx) < qa(x), 
i.e, 

a — lim inf x < —q(T(A)(—Bx) < qa(A)(Bx) < a — lim sup x. 
If a; 6 Va, then a — lim inf x = a — lim sup x = a — limx. Thus, the last 
inequality that a — lima; = —qa(A)(—Bx) = qa(A)(Bx) = a^ — lim(Bx), 
that is, A G (Vi,, V^A^reg-

Conversely, suppose that (3.1) holds. In this case, since c C Va, by using 
Theorem 3.2, we have qa(A) (Bx) < L(x) for all x € m. Thus, we write 

(3.2) inf q<T(A)(B(x +z)) < inf L(x + z) = w(x). 
•zeVo a zeVoa 

On the other hand, we have 

(3.3) inf q<j(A)(B(x + z)) > inf [qa(A)(Bx) + (-q^-Bz)] = q^Bx), 
zeVoa ZEVoa 

since —q^A) (—Bx) = qa(A){Bz) = 0 for all z G VQfT(A). Now, combining (3.2) 
and (3.3), we obtain that qa(A)(Bx) < w(x) for all x £ m which completes 
the proof, since qa(x) = w(x), [9]. • 

In case of A matrix being taken into Cesaro matrix, Theorem 3.4 is 
reduced to following theorem: 

THEOREM 3.5 ([9]). For an infinite matrix B = (bnk), a-Core of Bx C a-
Core of x, i.e., q(T(Bx) C a(x) for all x G m, if and only if B is strongly 
a-regular and a-uniformly positive. 

THEOREM 3 .6 . Let | |y l | | < oo. Then a^ - core(Bx) Qst- core(x) for all 
x Em if and only if B G (S fl m, V^A^reg and (3.1) holds. 

P r o o f . Assume that a^ — core(Bx) C st — core(x) for all x G m. Then 
qa(A)(Bx) < (3(x) for all x G m where (3(x) = st — lim sup a:. Hence, since 
P(x) = st — limsupx < L(x) for all x G m (see [6]), we have (3.1) from 
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Theorem 3.2. Furthermore, one can also easily see that 

- 0 ( - x ) < -qa(A){-Bx) < qa(A){Bx) < (3(x), 

i.e., 
st — liminfa; < —q^^i—Bx) < qa(A)(Bx) < st — limsupx. 

If x E S n m , then st — l iminfx = st — limsuprr = st — lima;. Thus, 
the last inequality implies that st — lima; = —qa(A)(—Bx) = qa(A)(Bx) = 
c r ^ - l imite, that is, B E (S Dm, Va(A))reg-

Conversely, assume A E (Snm) , Va(A))reg and (3.1). lix Em, then 0(x) 
is finite. Let E be a subset of N defined by E — {k : Xk > (3(x) + e} for a 
given e > 0. Then it is obvious that 6(E) = 0 and x^ < (3(x) + e if k ^ E. 

Now, we can write 

'YjCmk(jP)Xk = °mk{p)Xk + °™k(p)Xk 
k k<ko k>k0 

= Cmkip^k + Ctk(P)Xk ~ Cmk(P)Xk 
k<ko k>ko k>k0 

< IMI \Cmk{p)\ + Cmk(p)xk + Cmk(p)xk 
k<k0 k>k0 k>k0 

k<£E keE 

+ IMI Yl ^ k { p ) \ ~ Cmkip)) < ||a;|| J2 \Cmk(p)\ 
k>ko k<ko 

+ (P(x)+e) J2 \cmk(p) I + INI Y , \Cmkip)\ 
k>ko k>k0 
k£E keE 

+ IMI dCmkip)] ~ Cmk(p)) • 
k>k0 

Applying the operator l immsupsupp and using hypothesis, it follows that 
qa(A) (Bx) < /3(x) + e. This completes the proof since e is arbitrary. • 

In the special case A = (C, 1) of Theorem 3.6, we have the following 
theorem: 
THEOREM 3 .7 ([3]). a — core(Ax) C st — core(x) for all x E m if and only 
if B E (S Dm, Va)reg and B is a-uniformly positive. 
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Naseer Shahzad 

A BEST PROXIMITY PAIR THEOREM 

Abstract. The aim of this note is to obtain a best proximity pair theorem which 
contains a recent result of Kirk, Reich and Veeramani (Numer. Funct. Anal. Optim., 24 
(2003), 851-862) as a special case. 

1. Introduction and preliminaries 
Let A and B be nonempty closed convex subsets of a Hilbert space H. 

We denote by K(B) the family of all nonempty compact subsets of H. The 
Hausdorff metric is defined by 

for nonempty closed bounded subsets C and G of H, where dist(c, G) = 
infpgG ||c — Throughout PA will represent the nearest point projection 
of H onto A. It is well-known that PA is nonexpansive. Let / : A —> A. 
A mapping T : A —> K(B) is called /-Lipschitz if there exists k > 0 such 
that D(Ta,Tb) < k\\fa - fb\\ for any a, b G A. If 0 < k < 1 (resp. k = 1), 
then T is called an /-contraction (resp. /-nonexpansive mapping). A point 
a G A is called a coincidence point of / and T if fa G Ta. The set of 
coincidence points of / and T is denoted by C(f, T). A point a G A is called 
a coincidence point of / (resp. T) if a = fa (resp. a G Ta). The set of fixed 
points of / (resp. T) is represented by F ( f ) (resp. F(T)). The mapping 
/ is called weakly continuous if {an} converges weakly to ao implies {fan} 
converges weakly to /ao- The notion of il-subweakly commuting multimaps 
was introduced by Shahzad [3]. Let / : A —> A and T : A —> K(A). Suppose 
p G F(f). Then the pair {/, T} is said to be il-subweakly commuting if for 
all a £ A, fTa is a nonempty closed subset of A and there exists R > 0 such 

2000 Mathematics Subject Classification: 41A65, 46B20. 
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that D(Tfa,fTa) < Rdist(fa,[Ta,p\), where [Ta,p} = {Txa : A G [0,1]} 
and T\x := XT a + (1 — A )p. It is clear that commuting mappings on A 
are i?-subweakly commuting. However, the converse is not true in general 
(see [3]). 

We recall the following notations (see [1]). For any nonempty subsets 
A, B of E, 

dist(A, B) = inf{||a — 6|| : a e A,b e B} 
AQ := {a G A : \\a - b\ \ = dist(A, B) for some b G B} 
BQ {b G B : | |a — 6| | = dist(A, B) for some a G A}. 

A pair (AO,BO) G AQ X BQ is called a best proximity pair for A and B. In 
particular, d(ao,&o) = dist(A,B). A mapping T : A —> K(B) is said to 
have a best proximity pair solution if there exists a best proximity pair 
(ao, BO) G AQ x BQ such that BO G Tao-

Fixed point theory is a useful tool for solving various types of operator 
equations and operator inclusions. The well-known approximation theorem 
of Fan yields the existence of approximate solutions; however, it does not 
give optimal solutions. On the other hand, best proximity pair theorems 
guarantee approximate solutions which are also optimal. Recently, Kirk, 
Reich and Veeramani [1] obtained the following remarkable best proximity 
pair theorem for nonexpansive mapping. 

THEOREM 1.1. Let H be a Hilbert space. Let A and B be nonempty closed 
convex subsets of H with A bounded. Let T : A —> K(B) be such that 
(a) T(A0) C B0 

(b) T is nonexpansive on A. 
Then there exists XQ G A such that 

dist(ao,Tao) = dist(A, B) = inf{dist(a,Ta) : a G A}. 

More recently, O'Regan and Shahzad [2] extended Theorem 1.1 to /-non-
expansive mappings with an assumption that { / , PA ° T} be i?-subweakly 
commuting on Ao. 

T h e o r e m 1 .2 . Let H be a Hilbert space. Let A and B be nonempty closed 
convex subsets of H with A bounded. Let f : A —> A be continuous and 
affine such that f(Ao) = AQ and T : A K(B) be such that 
(a) T(A0) C B0 

(c) {/, PA ° T} is R-subweakly commuting on Ao 
(d) T is f-nonexpansive on Ao. 
Then there exists ao G A such that 

dist(fao,Tao) = dist(A,B) — in f {d i s t ( f a ,Ta ) :ae A}. 
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In this note, we show that Theorem 1.2 remains valid if R-subweak com-
mutativity of the pair { / , PA ° T} is dropped and also affineness and conti-
nuity of f are relaxed. Thus we obtain a natural extension of Theorem 1.1 
to /-nonexpansive mappings. For this we need the following results. 

The following results are due to Kirk, Reich and Veeramani [1]. 

LEMMA 1 . 3 . Let A be a nonempty closed convex subset of a Hilbert space 
H. Then if B and C are nonempty closed bounded subsets of H, 

D(PA(B),PA(C))<D(B,C). 

LEMMA 1 . 4 . Let A be a nonempty closed bounded convex subset of a reflexive 
Banach space E and B a nonempty closed convex subset of E. Then Ao and 
Bo are nonempty and satisfy 

PB(A0) C BO a n d PA(B0) C A0. 

The following lemma follows from a result in [4]. 

LEMMA 1 . 5 . Let (X, ||.||) be a normed space, f : X —> X and T : 
X K(X) such that T(X) C f ( X ) . If f { X ) is complete and T is an 
f-contraction, then C(f,T) ^ 0. 

2. Main results 

LEMMA 2 . 1 . Let A be a nonempty closed bounded convex subset of a Hilbert 
space H and f : A —> A be weakly continuous such that f(A) = A. As-
sume that T : A —• K{A) is an f -nonexpansive map. Then C(f,T) fl A is 
nonempty. 

P r o o f . Choose p € A and a sequence {kn} with 0 < kn < 1 such that 
kn —• 1 as n —> oo. For each n, define Tn by 

Tna = (1 - kn)p + knTa 

for all a € A. Then, for each n,Tn: A -> K{A), Tn(A) C A = f(A), and 

D(Tna, Tnb) = knD(Ta,Tb) 
< f c n | | / a - / & | | 

for each a,b G A. This implies that each Tn is an /-contraction. Notice that 
f(A) is complete. Now Lemma 1.5 guarantees that, for each n, C ( f , Tn) is 
nonempty, i.e., there exists an € A such that fan £ Tnan. This implies 
that fan — cn — (1 — kn)(p — Cn) for some cn E Tan. It then follows that 
fan — C n - ^ O a s n — > o o . By weak compactness of A, we can find a 
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subsequence {am} of the sequence {a n } such that { a m } converges weakly to 
do G A as m —> oo. By weak continuity of /, {fam} converges weakly to 
fao G A as m —> oo. Using the standard arguments, it can be shown that 
0 € (/ - T)(a0). Hence C(f, T) n A is nonempty. 

THEOREM 2 . 2 . Let H be a Hilbert space. Let A and B be nonempty closed 
convex subsets of H with A bounded. Let f : A —• A be weakly continuous 
such that f(A0) = Ao and T : A —• K(B) be such that 
(a) T(A0) C Bo 
(b) T is f-nonexpansive on Ao. 
Then there exists ao 6 A such that 

dist(fao,Tao) = dist(A,B) = inf {dist{fa,Ta) : a£ A}. 

Proof . By Lemma 1.4, Aq is nonempty. Let a G Ao- We claim that 
Pa(Tcl) C AQ. Indeed, let c e Pa{Tcl). Then c G PA(b) for some b G 
Ta C Bo and so \\c — 6|| = dist(b,A). Since b G Bo, it follows that ||a — 
6|| = dist(A,B) for some a G A. Thus ||c - 6|| = dist(b,A) < ||a - 6|| = 
dist(A, B). On the other hand, dist(A, B) < ||c—6|| for all c G A and b G B. 
Consequently, ||c — 6|| = dist(A,B). This proves our claim. 
Since Pa is nonexpansive and so continuous, P^(To) is compact. As a result, 
Pa o T : Ao —» K(Ao). By Lemma 1.3, for any a,c G Ao, we have 

D(PA(Ta),PA(Tc)) < D(Ta, Tc) < \\fa - fc\\. 

Now Lemma 2.1 guarantees that C{J,Pa ° T) fl Ao is nonempty, that 
is, there exists ao G Ao such that fao G PA(Tao). Consequently, for some 
b G Tao C Bo, we have 

||/ao-&|| = dist(b,A). 

Since 6 G -Bo, it follows that |\a — b\\ = d(A, B) for some a & A. This implies 
that 

\\fa0-b\\ = dist(b, A) < \ |a - b| | = dist{A, B) 

and so 

dist(fa0,Ta0) < ||/a0 - y\ \ = dist(b,A) < dist(A,B). 

Since dist(A, B) < \\fa - b\\ for all a G A and b G Ta, it follows that 

dist{A,B) < inf{11/a - b|| : b G Ta} = dist(fa,Ta) for all a G A 

and so 
dist(A, B) < i n f { d i s t ( f a , T a ) : a G A}. 
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But 
in f {d i s t ( f a ,Ta ) : a 6 A} < dist(fao,Tao). 

Therefore 

dist(fao,Tao) < dist(A,B) < i n f {d i s t ( f a ,Ta ) : a € A} < dist(fao,Tao). 
As a result, 

dist(fao,Tao) = dist(A,B) = i n f {d i s t ( f a ,Ta ) : a € ^4}. 
It is well-known that every continuous and affine mapping defined on a 
closed convex subset of a Hilbert space is weakly continuous. So we have 
the following corollary, which contains Theorem 1.1 (due to Kirk, Reich and 
Veeramani [1]) as a special case. It is worth mentioning that we do not 
require i?-subweak commutativity of the pair {/, Pa ° T} as in [2], 

C o r o l l a r y 2 . 3 . Let H be a Hilbert space. Let A and B be nonempty 
closed convex subsets of H with A bounded. Let f : A —• A be continuous 
and affine such that f(Ao) — Ao and T : A —> K(B) be such that 
(a) T(A0) C Bo 
(b) T is f -nonexpansive on AQ. 
Then there exists ao G A such that 

dist(fao,Tao) = dist(A,B) = in f{d i s t ( fa , Ta) : a € A}. 

E x a m p l e 2 . 4 . Let X = R 2 with the Euclidean norm, j4 = { ( l , y ) : 0 < y < l } 
and B = {(2,y) : 0 < y < 1}. Then A0 = A and B0 = B ([1]). Define 
T : A B and / : A A by 

r ( l , y ) = ( 2 , l - y 2 ) a n d / ( l , y ) = (l,y2). 

Then all hypotheses of Theorem 2.2 are satisfied. Note that ao = (1, 
satisfies 

\\fa0-Ta0\\ = dist{A,B) = inf{||/o - Ta\\ :a<EA}. 
Note also that Theorem 1.1 and Theorem 1.2 can not be used here. 
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A NOTE ON SOME SUBSPACES OF AN FK-SPACE 

Abstract. The purpose of this paper is to give the properties of some distinguished 
FK spaces and to solve the problem of characterizing matrices A such that YA is Cesaro 
semiconservative space (for a given Y). 

1. Introduction 
In summability theory conservative spaces and matrices play a special 

role in its theory. However in [9], [11] Snyder and Wilansky shown that the 
results depend on a weaker assumption, that the spaces be semiconservative. 
First came conservative matrices, those for which CA D C. When attention 
widened to FK spaces it was very natural to define one to be conservative if 
it includes c. Snyder and Wilansky studied the properties of any A matrix 
such that XA is semiconservative space and shown that there is no FK 
space X such that XA is semiconservative space if and only if A € ( X , X ) . 

In this paper we studied Cesaro semiconservative spaces which has 
weaker assumption then semiconservative space and shown that there is 
no FK space X such that XA is Cesaro semiconservative space if and only 
if Ae ( X , X ) . 

2. Notations and definitions 
Let w denote the space of all real or complex-valued sequences. It can be 

topologized with the seminorms Pi(x) = (i = 1,2,...), and any vector 
subspace of w is called a sequence space. A sequence space X, with a locally 
convex Hausdorff topology will be called a locally convex sequence space. 
A K space is a locally convex sequence space in which the inclusion mapping 
I: X —> w, I(x) — x is continuous. An FK space is a Frechet K-space. 
An FK space whose topology is normable is called a BK space. The basic 
properties of such spaces can be found in [11], [12] and [13]. By m, Co we 

1991 Mathematics Subject Classification-. 46A45, 40G05, 40H05. 
Key words and phrases: FK—Spaces, Conservative Spaces, Semiconservative Spaces. 
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denote the spaces of all bounded sequences, null sequences, respectively. 
These are FK spaces under ||x|| = sup \xn\. By I we shall denote the space 

n 
of all absolutely summable sequences. The sequences spaces 

oo 
h = j x E w : l imxj = 0, and lAxjl < oo j , 

3 j=i 
oo 

q = E w : sup \xj\ < oo and ^ j |A 2Xj| < oo | , 
j j=l 

= lx E w : sup — Xj < oo 1, 
i » f 

= {xEw: lim — ^ ^ Xj < oo 1 
n k=i j=l ^ 

ab 

as 

and 

fe=i ' 
(To = < x E w : lim 

I 

are BK spaces with the norms 
oo 

IML = J ^ j | A x j | + s u p \xj\, 
J=1 
oo 

H 9 = ^ i | A 2 ^ | + s u p | ^ | , 
j=1 

M l ab = S U P n 

j n fe 

fc=l j = l 
and 

m U = sup 
i n 

~y2xk n ' k= 1 
respectively, where A x j = Xj — Xj+i, A2Xj = Axj — Ax j+ i . The space 
q fl Co is denoted by qo. Under the norm ||.||g , qo is a BK space ([1], [2]). 

oo 
In addition bv — {x E w : Y1 \xj ~ xj+i| < bvo := bv fl Co . 

3=i 
Throughout the paper e denotes the sequence of ones, ( 1 , 1 , . . . , 1 , . . . ) ; 

Si ( j = 1 ,2 , . . . ) , the sequence ( 0 , 0 , . . . , 0 , 1 , 0 , . . . ) with the one in the j—th 
position. Let (f> := l.hull {Sk : k E N} and <t>\ = 4> U {e } . The topological 
dual of X is denoted by X'. The space X is said to have AD if <j) is dense in X 
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and an FK space X is said to have AK or be an AK space, if X D <j> and for 
n 

each x G X, x^ —> x in X, where x^ = J2 XkSk = (xi,x2, • • •, xn, 0 , . . . ) . 
k=1 

In addition an FK space is said to have aK space if X D (j) and for each 
n 

X € X, x^k> —> x, (n —> oo). Every AK space is a aK space. For 
k=1 

example w, h, co are AK spaces while qo, as are aK spaces ([1], [2], [8]). 
In addition, every aK space is an AD space. 

Let X be an FK space containing </>. Then 

X f = { { f ( S k ) } : / € * ' } . 

In addition 
oo 

XP = : exists for every y € X j , 
fc=i 

, 1 n k 

Xa = < x : lim — ^ ^ ^ ^ Xjyj exists for every y G X >, 
n k=i j=l > 

s n k 

Xab = < x : sup — ^ Xjyj < oo for every y G X 

L n 71 k=i j=i 

Let E, Ei be sets of sequences. Then for A; = /,/?, a, a¡, 

( a ) E c E k k , (b) Ekkk = Ek, ( c ) if E C Ei then C 

holds ([4], [8]). 
It is easy to prove that C Xa C Xab c X-f and if X is a K space 

then = and if X is an AD space then Xa = Xah. 

Let A = (a,ij) be an infinite matrix. The matrix A may be considered 
as a linear transformation of sequences (Xk) by the formula y — Ax, where 

oo 
Vi = E aiixj» (i = 1 ,2, . . . ) . 

3=1 

For an F X space (E,u) we consider the summability domain := 
{x G w : Ax G .E1}. Then is an FK space under the seminorms pi — 

m 
|xj|, (z = 1,2,...), hi(x) = sup dijXj , (i = 1,2,.. . ) and (u o = 

m J = 1 

u(AE) [11]. 

3. Some subspaces of an FK spaces 
Let we recall some important subspaces of an FK space which introduced 

by Goes in [4]. 
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DEFINITION 3.1. Let X be an FK space containing Then 

aW := aW (X) = j x : - x { k ) x (weakly) in X j 
^ n k=l ' 

= j x : f(x) = lim - J 2 J 2 x i f ( S j ) > f o r a11 / € 
^ 11 U k=1 j=1 J 

aS:=aS(X) = j x : - ¿ x ( f c ) x in x j 
^ n k=l 

= { x : x = l i m ^ £ x i ( S > }, 

L Jb=l j=l ' 

aB+ := (X) = j x : X ^ } i s b o u n d e d i n 

= j x : j x n / ( ¿ n ) | € ab for all / € X ' j , 

oF+ := aF+ (X) = | x : - ¿ x ( f c ) is weakly Cauchy in X j 
^ n fe=i J 

f 1 n k . 
= <j x : lim - Xjf (Sj) exists for all / G X ' > 

^ " U fc=i j=i ^ 
= {x : {x n / (<Jn)} G as for all f € X'}. 

Also u F = aF+ n X, aB = aB+ D X. An FK space is a a-ftT-space 
(respectively SaW—space, oF—space, aB—space) if X = aS (respectively 
X = aW, X = aF, X = aB ) [1]. 

It is well known that for an FK space X 

0 C aS C aW C aF C aB C X. 

THEOREM 3 . 2 . Let X be an FK space containing <f>. Then aB+(X) = 
Xf°b, aF+(X) =Xf° [4]. 

THEOREM 3 . 3 . Let X be an FK space containing <f>. Then X has FaK 
if and, only if X f = Xa and X has aB if and only if X* = Xab [4]. 

We note that subspaces aW are closely related to Cesaro conullity of the 
FK space X [6]. 

LEMMA 3 . 4 . Let X be an AD space, then X has FaK if and only if X 
has aB. 
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P r o o f . Since X be an AD space t h e n X a = Xab and hence we get the 
proof by Theorem 3.3. • 

Since aF C aB, FaK implies aB but not conversely: 
EXAMPLE 3 . 5 . q and ab have aB but does not have FaK. 

The proof is as follows: 
aB+ (q) = qfab = ab°b = q then aB (q) = aB+ {q)r\q = q, 

aF+ (q) = qf° = q0 then aF (q) = aF+ (q)nq = q0, 
aB+ (ab) = abfab = qab = ab then aB (ab) = ab, 

aF+ (ab) = abf<T = qa = as then aF (ab) = as ([1], [2]). 
In this section we give some results which are analogous those given in 

[11, Chapter 10]. 
THEOREM 3 . 6 . ao c X if and only if a00 c aF+. 

P r o o f . Necessity: We have aF+ (ao) C aF+ (X) holds by [5] and therefore 
a{° C aF+ (X) by [4]. Since o{a = h° = a^ [2] then C aF+ (X). 

Sufficiency: We get a C X^ by [4] therefore X* C c ff^ C 
alo = <7q [2]. Since aQ has AK [2] then a0 C X [11, Theorem 8.6.1.]. Also 
we arrive at aF+ (ac) = aF+ (cJoo ) = aF+ (a0) = aby Theorem 3.3. • 
THEOREM 3 . 7 . Let X be an FK space containing </>. Then aF C aB 
(closure in X ) if and only if aF is closed in X. Thus the closedness of aB 
implies the closedness of aF. 

P r o o f . Sufficiency is trivial. Now suppose that aF C aB. Fix / € X' 
and define g : aW a^ by g(x) = { / (x(n))} . Then Pn o g : aF^ 

n 
K, where Pn(x) = xn, given by Pn(g(x)) = / ( x w ) = £ xkf (5k) is 

fc=i 
continuous, where aF has the relative topology of X, and K is the scalar 
field R or C. Thus g : aF —> a^ is continuous [11, Theorem 4.2.3], hence 
since ac is closed in a^ then g~l (ac) is closed in aF . Because of aF = 
n {iT1 (<rc) : f eX'} , aF is closed in X. 

If aB is closed then aF C aB. • 

4. Matrix domains 
In this section we solve the problem of characterizing matrices A such 

that Ya is Cesaro semiconservative space for given Y. 
Before the following theorems we give the definition of Cesaro semicon-

servative space. 
DEFINITION 4 . 1 . An FK space X containig (f> is called Cesaro semiconser-
vative space if Xf C as [7]. 
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THEOREM 4 . 2 . Let Y be an FK space and A is a matrix. Then YA is 
Cesaro semiconseruative space if and only if the columns of A are in Y and 
g(ak) £ as for each g £ Y', where ak is the kth column of A, = ank-

P r o o f . Necessity: The columns of A are in Y since YA D <f> by definition of 
Cesaro semiconservative space. Given g £ Y' , let f(x) — g(Ax) for x £ YA, 
so / £ Y'A by [11, Theorem 4.4.2.]. Then f(5k) = g(ak) and the result 
follows since YA C as. 

Sufficiency: We first note that each row of A belongs to as since in 
the hyphotesis we may take g = Pn. Then{^(a f c)} = {P n (a j j ) } = {a n ^} £ 

00 
as, (k = 1 ,2 ,3 , . . . ) . Hence WA ̂  as13. Let / £ Y^.Then f{x) = Yh ak%k + 

fc=1 
g(Ax) by [11, Theorem 4 .4 .2 . ] with g £ Y', a £ wPA C asp/3 = as. Thus 
f(Sk) = ak +g(ak). Since a^ £ as and g{ak) £ as then {f(6k)} £ as. Thus 
Y{ C as and YA is Cesaro semiconservative space. • 

Given A, if there is any Y such that YA is Cesaro semiconservative space, 
then the rows of A belongs to as. It is clear from Theorem 4.2. For giving an 
alternative proof; we assume that r is a row of A. Then YA C WA C C ra. 
Hence ra is Cesaro semiconservative space by [7, Theorem 3.6.]. 

Theorem 4.2 says that YA is Cesaro semiconservative space if < ̂  ak > 
fc=i J 

is weakly Cauchy in Y. Also since YA is Cesaro semiconservative space then 

Ya D qo by [7, Theorem 3.8.]. Hence if <{ ^ ^ > is weakly Cauchy then 
fc=i J 

YA D qo i .e A £ (qo,Y). 

THEOREM 4 . 3 . If YA is Cesaro semiconservative space then AT £ (Y@,as), 
where AT denotes transpose of matrix A. 

PROOF. Since Ya D qo by [7, Theorem 3.8.] then A £ (q0, Y). Hence 
AT £ = {Yf\ab) by [11, Theorem 8 .3 .8 . ] . Let 2 £ and define 

00 
g(y) = zy, where zy — Yh zkUk ,y€Y. Then by Banach-Steinhaus Theorem 

k—1 
g £ Y'. Let f(x) = g(Ax) so that / £ Y'A by [11, Theorem 4.4.2.]. Hence 

00 
{f(6k)} £ as. f(6k) = £ znank = ( A T z ) k so {ATz) £ as. • 

71=1 
COROLLARY 4 . 4 . Let Y be a BK space and suppose that YA is Cesaro 
semiconservative space. Then A £ (q,Y@f). 

P r o o f . Its clear by using Theorem 4.3. and [11, Theorem 8.3.8.]. • 

EXAMPLE 4 . 5 . Let A = I,Y = q. Then 



Some subspaces of an FK-space 881 

-A € (q,q) = (q, Q13^) but YA = q is not Cesaro semiconservative space by 
[7]. Thus the converse of Corollary 4.4. is false. Also AT = I e (as, as) = 
(Y@, as) so the converse of Theorem 4.3. is false. 

We can obtain a converse for Theorem 4.3. in the unimportant case in 
which Y has AK. 
THEOREM 4 . 6 . Let Y be an FK space with AK. Then Y\ is Cesaro 
semiconservative space if and only if the columns of A belong to Y and 
ATe(YP,as). 

Proof. Necessity is trivial by Theorem 4.3. 
Sufficiency: Let g € Y', zn = g(Sn). Then zeY* = Y& by [11, Theorem 

7.2.7.], so ATZ € as. Hence we get 
oo oo 

(.ATz)k = znank = 9 ankSn^ = g(ak) G as. 
n= 1 n= 1 

Then YA is Cesaro semiconservative space by Theorem 4.2. • 

LEMMA 4 . 7 . The following are eqivalent for an FK space X. 
(i) If A € (X, X) then XA is Cesaro semiconservative space. 
(ii) X is Cesaro semiconservative space. 

Proof, (z) (ii) : Take A = I. 
(ii) (i) : If A £ (X, X) then XA D X , hence XA is Cesaro semicon-

servative space by [7]. • 

LEMMA 4 . 8 . Suppose that an FK space X has the property: (i)'If XA is 
Cesaro semiconservative space then A € (X, X). Then X C q. 

Proof. We assume that as <£X°. Because of as C Xa implies X C Xaa c 
as" = q. Let z € as\Xa, 0 ^ v £ X and ank = ~^vnZk, if 1 ^ n 

00 n (lr 11 
k < n,and 0 otherwise. Since (Ax)n = ^ ankxk = yvn ^ "~ n~ ' zkxk = 

fc=i fc=l 
n k 

^ xjzj then WA — XA = ua. Since ua is Cesaro semiconservative 
k=\j=i 

space by [7] XA is Cesaro semiconservative space. But A £ (X, X) since X 
£ WA. • 
COROLLARY 4.9. There exists no FK space X such that XA is Cesaro 
semiconservative space if and only if A G (X, X). 

By Lemmas 4.7, 4.8. and [7, Theorem 3.5.], q would be Cesaro semicon-
servative space, contradicting [7, Example 3.9.]. 

However Ince (in [8]) has proved that XA is strongly Cesaro conull 
(Cesaro conull) space if and only if q C XA and A : q —> X (weakly) 
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compact. In addition every (strongly) Cesaro conull space is Cesaro semi-
conservative space. 

DEFINITION 4.10. A matrix A is called Cesaro semiconservative if CA is 
Cesaro semiconservative space. 

The reason for this definition is that summability theory deals with 
spaces of the form CA and with FK spaces whose properties generalize 
those of such spaces. If we can extend theorems about conservative spaces 
to Cesaro semiconservative spaces so much better. 

THEOREM 4.11. A is Cesaro semiconservative if and only if 
(i) A has convergent columns, i.e. ca D <t>, 
(ii) a G as where a = {a*,} , ak = limanjt, 

n 

{Hi) AT G (I, as). 

PROOF. Necessity: 

(i) is clear by Definition 4.10. (ii): Since CA is Cesaro semiconservative 
then we take g := lim in Theorem 4.2. Hence a G as. (Hi): By Theorem 4.3. 

i °° 
Sufficiency: Let g e e . Then g(y) = x limi/ + tnyn,t G I by [11, 

n= 1 
1.0.2.]. If we take y = Ax ; x = Sk in here we obtained g(ak) = x l i m a nk + 

oo 
(tA)k where (tA)k = tnO-nk • Since g(ak) G as from (ii) and (Hi) then by 

n=1 
Theorem 4.2. the result is obtained. • 

In the following theorems we give simple conditions for the subspaces 
aF, aB in the FK space YA .The conditions will depend on the choice of 
the FK space Y and the matrix A. However the subspaces aS, aW are 
calculated in the FK space YA in [6]. 

THEOREM 4.12. Let z G w,Y be an FK space and A be a matrix such that 
YA D <F> i.e. the columns of A belong to Y. Then the following conditions 
are equivalent: 

(z) z G aB+, 

(ii) {l £ AzW\ is bounded in Y, 
P=I J 

(Hi) Ya.Z D qo where the matrix A.z is (ankZk), 
(iv) {zkg(ak)} G ab for each g €Y' where ak is kth column of A. 
Also these are equivalent: z G aB, YA.Z 3 Q , (H) and z G YA, (iv) and 

ZEYA. 

Proof , (i) (ii): z € aB+ Z~1.YA D qo, where Z~1.YA — 
{x : x.z G YA}, X.Z = {xnzn} ^ YA.Z 3 Qo by z~L.YA = YA.Z and [7]. 
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(Hi) <=> (iv): Since qo is an A D space and by hypothesis then Y{z C <?q 
by [11, Theorem 8.6.1.]. Hence f(6k) = ak+ g(aknzk) for each / £ Y'A z with 
a G w^A z, g G Y' by [11, Theorem 4.4.2.]. Since a € wPA z C y £ 2 C = ab 

then f(6k) G ab if and only if {zkg(ak)} G ab for each g G Y'. 

(ii) <=*• (iv): (iv) is true if and only if Y1 Az^^j j is bounded for 

each g G Y' by [11, Theorem 8.0.2.]. Here 

v P=i ' v p=l fe=i ' p=l fe=i 

The second part is trivial because of 2 G YA if and only if e G YA.Z- D 

THEOREM 4.13. Let ZG w, Y be an FK space and A be a matrix such that 

YA D (j> i.e. the columns of A belong to Y. Then the following conditions 

are equivalent: 

(*) ^ G aF+. 

(ii) is weakly Cauchy in Y i.e.i^g(jp ^ Az^^j j is con-

vergent for each g 6 7 ' . 

(Hi) YA.Z is Cesaro semiconservative space, 

(iv) {zkg(ak)} G as for each g G Y'. 

Also these are equivalent: z G aF, YA.Z is bounded convex Cesaro semi-

conservative space i.e. YA.Z ^ Q and YA.Z Cesaro semiconservative space, 

(ii) and z G Ya, (iv) and z E YA. 

P r o o f , (i) (ii): z G aF+ •<=> z~l.YA is Cesaro semiconservative spaced 
YA.Z is Cesaro semiconservative space by [7, Theorem 4.2]. 

(Hi) <=> (ii) : Since the kth column of A.z is zkak and by Theorem 4.2. 
then, this equivalent is trivial. 

(Hi) (iv) : By Theorem 4.2., since the kth column of A.z is zkak. 

The second part is clear as in Theorem 4.12. • 

THEOREM 4.14. Let Y be an FK space such that weakly convergent se-

quences are convergent in the FK topology, let A be a row finite matrix such 

that YA D <f). Then aS = aW = aF = aF+ in YA. 

P r o o f . If z G aF+, £ Az^ \ is weakly Cauchy in Y by Theorem 4.13., 
P = l > 

r 
hence Cauchy [11, Theorem 12.0.2.], hence convergent say £ Az^> — * y. 

p=l 
r 

However £ Y1 z^ — > z in WA since this a aK space because of WA is an 
P = l 
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AK space [11, 4.3.8]. Thus ± £ Az(p) —• Az in tu. But \ £ A s ^ —• y 
P=L P=I 

in w since Y" is an FK space hence y = Az so 2 € crS by [6]. 
Also take A = I in Theorem 4.14. then aS = aW = aF = aF+ in Y. 
We take Y = I, bv0, bv in Theorem 4.14. • 

Acknowledgement. I am grateful to the referee for his/her helpful 
suggestions. 
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Mehmet §engoniil 

ON THE GENERALIZED NAKANO SEQUENCE SPACE 

Abstract. The purpose of this note is to define and to investigate the generalized 
Nakano sequence space A{p) and to show that the sequence space A(p) equipped with the 
Luxemburg norm is rotund and posses property-H when p = (pk) is bounded with pk > 1 
for all fc e N. 

1. Introduction 
By w, we shall denote the space of all real or complex valued sequences. 

Each linear subspace of w is called a sequence space. A sequence space A with 
linear topology is called a if-space provided each of maps pi : w —• C defined 
by pi(x) = Xi is continuous for all i G N; where C denotes the complex field 
and N = {0,1,2,. . . } . A K- space A is called an FK- space provided A is a 
complete linear metric space. An FK- space whose topology is normable is 
called a BK- space [2, pp. 272-273]. A triangle is a lower triangular matrix 
with no zeros on the principal diagonal. A matrix A is called regular if A 

is limit preserving over c, where c denote the space of convergent sequences. 
For a Banach space A, we denote by 5(A) and B(A) the unit sphere and unit 
ball of A, respectively. A point XQ G 5(A) is called: 

A) an extreme point if for every x,y £ 5(A) the equality 2XQ = x + y 

implies x = y; 

b) an H-point if for any sequence (xn ) in A such that ||xn|| —• 1 as n —• oo, 
the weak convergence of (xn) to x implies that \\xn — x|| —» 0 as n —> oo. 

A Banach space A is said to be rotund, if every point of 5(A) is an extreme 
point. A Banach space A is said to possess H-property provided every point 
of 5(A) is an H-point. 

Let A be an arbitrary vector space over C. 
a) A functional m : A —> [0, oo] is called modular if the following 

conditions hold: 

2000 Mathematics Subject Classification: 46E20, 46E30, 46E40. 
Key words and phrases: modular spaces, Banach space, rotund, Nakano space. 
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Ml) m(x) = 0 x = 0, 
M2) m(ax) = m{x) for a € M (or C) with |a| = 1, for all x € A, 
MS) m(ax + (3y) < m(x)+m(y) if a, (3 > 0, a + (3 = 1, for all x, y € A. 
b) If MS is replaced by; 
M4) m(ax + /3y) = asm(x) + /3 sm(y) if a , 0>O, as + (3s = 1, with an 

s G [0,1] then the modular m is called an s-convex modular; and if s = 1, 
m is called a convex modular. 

c) A modular m defines the corresponding modular space, i.e, the space 
Am given by 

Recall that for given any e > 0, a sequence (xn) is said to be an e-separated 
sequence if 

We say Banach space A has /^-property if for every e > 0 such that, for each 
element x € B{A) and each sequence (xn) € B{A) with sep(xn) > e, there 
exists an index k such that 

The Nakano sequence space £(p) is defined by 

t(p) = {x = (Xk) € w : m(tx) < oo for some t > 0} , 

where m(x) = Yhk \xk\Plc and p = (p^) is a sequence of positive real numbers 
with Pk > 1 for all fceN. The space i{p) is a Banach space with the norm 

k 
Also, some geometric properties of £(p) were studied in [1] and [3]. 

For 1 < p < oo, the Cesaro sequence space is defined by 

Am = {x £ w : m(tx) —> 0 as t —> oo} . 

sep(zn) = inf {||xn - xk\\ : n ^ k} > e. 

If p = (pk) is bounded, we have 

(1.1) CCSp — x = (xk) Ew: 
n ^ k=1 

equipped with the norm 
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This space was introduced by Shue [12]. Some geometric properties of 
the Cesaro sequence space cesp were studied by many mathematicians. It 
is known that cesp is locally uniform rotund and posses property-H [5]. Cui 
and Hudzik [3] proved that cesp has the Banach- Saks of type p if p > 1, 
and it was shown in [4] that CCSp has ^-property. 

2. The sequence space A 
The space ces(p) [11] is defined by 

(2.1) ces(p) = {x G w : p(tx) < oo for some t > 0} , 
where p(x) = Sfc=i lxfcl)Pn • The space ces(p) is a Banach space with 
the norm 

| | x | | = i n f { t > 0 : p ( | ) < l j 

and if p = (pn) is bounded then we have 

ces(p) = ix G w : < 
^ n k= 1 ' ' 

Several geometric properties of ces(p) were studied in [11]. Define the se-
quence y = (yn), which will be frequently used, as the ^-transform of a 
sequence x = (x^), i.e., 

n 
(2.2) (Ax)n = yn = an ^ xk 

k=o 
where, A = (ank) is defined by 

[0, (k > n) 

an > 0 for all n € N, a = (an) is monotone decreasing and A is regular. 
Now, we wish to introduce the generalized Nakano sequence space A(p), 

as the set of all sequences such that A— transforms of them are in the space 
£(p), that is 
(2.4) A(p) = {x = (x k ) G w : {Ax) G ¿(p)} 
or in another word 

A{p) = {x G w : m(tx) < oo for some t > 0} , 
where m(x) = J2n(an ]L™=o \xi\)Pn < We consider the space A(p) 
equipped with the so-called Luxemburg norm 

x = i n f j i > 0 : < i}-
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If p = (pn) is bounded, then we have 
n 

A(p) = j z G w : ^ < oo j . 
n i=0 

The purpose of this note is to define and to investigate the generalized 
Nakano sequence space A(p) and show that the sequence space A(p) equip-
ped with the Luxemburg norm is rotund and posses H-property when p = 
(Pk) is bounded with Pk> 1 for all k G N. 

Clearly, in the special cases an = (n + l ) - 1 and an = 1, we have A(p) = 
ces{p) and A(p) = £(p), respectively. Also, throughout this paper we assume 
that p = (pi) is bounded with Pi > 1 for alH G N and K = supjpj. 

Now, we may begin with the following theorem which is essential in the 
text: 

THEOREM 2 . 1 . The set A(p) is the BK- spaces with the norm ||X||_4(p) = 
\\M\m-

P r o o f . Since (2.2) holds and £(p) is the BK—space [10] with respect to its 
norm and the matrix A is normal, Theorem 4.3.2 of Wilansky [13, pp. 61] 
gives the fact that the space A(p) is BK— space. • 

PROPOSITION 2 . 2 . The functional m on the space A(p) is a convex modular. 

P r o o f . m(x) = 0 O x = 0 and m(ax) = m(x) for all scalar a with |a | = 1 
is clear so, we omit it. Let x, y G A(p) and a > 0, ¡3 > 0 with a + ¡3 = 1. 
By the convexity of the function u —> |u|Pn; n G N, we have: 

n 
m(ax + (3y) = (an ^ \(axi + l) 

n i=0 
n n 

+ {anYJ\^yi\))Pn 

n ¿=0 i=0 
71 v n P 

n ¿=0 n i=0 
= am(x) + Pm(y). • 

PROPOSITION 2.3. For x G A(p) the modular m on A{p) satisfies the fol-
lowing properties: 

PI. ifO < r < 1 then rKm(r~lx) < m(x) and m(rx) < rm(x), 
P2. if r > 1, then m(x) < rKm{r~lx), 
PS. if r > 1, then m(x) < rm(x) < m(rx). 
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Proof . It is obvious that PS is satisfied by the convexity of m. It remains 
to prove PI and P2. For 0 < r < 1, we have 

n v n p m(x)=E(anE î O"=E(ranEir_la;ii) 
n j=0 n i=0 

= E ̂  E i^i)Pn ̂  E ̂  («»E i*-1*! T 
n ¿=0 n i=0 

n = rKJ2(anJ2\r~1Xi\)Pn=rKm(r-1x), 
n i=0 

and it implies by the convexity of m that m(rx) < rm(x), hence PI is 
satisfied. Note that P2 follows directly from PI. Namely, if r > 1 then 0 < 
r - 1 < 1. Therefore, by Pi , (r_1) fem(rx) < m(x), we get m(x) < rKm(r~1x) 
and so P2 is obtained. • 

Now, we give relationships between the Luxemburg norm and the mod-
ular m on the space A(p). 

PROPOSITION 2 . 4 . For any x € A(p), if p = (pn) is bounded, we have 
P4• if ||x|| < 1 then m(x) < ||x|| 
P5. if 11re11 > 1 then m(x) > ||x|| 
P6. ||x|| = 1 if and only if m(x) = 1 
PI. ||z|| < 1 if and only if m(x) < 1 
P8. ||x|| > 1 if and only if m(x) > 1 
P9. ifO < r < 1 and ||x|| > r then m(x) > rK 

P10. if r > 1 and ||x|| < r then m(x) < rK. 

Proof . P4. Let e > 0 be such that 0 < e < 1 — ||x||. Then we have 
||x|| + e < 1. By definition of ||.|| there exists p, > 0 such that ||x|| + e > p, 
and m(fj,~1x). From Proposition 2.3 (PI. and P3.), we have 

m(x) < m ((||x|| + e)p~1x) < (||x|| + e)m (p~lx) < ||x|| + e 

which implies that m(x) < ||x||. So P4 is satisfied. 
P5. Let e > 0 be such that 0 < e < (||x|| - l)||x||_1 then 1 < 

(1 — e)||x|| < ||x||. By definition of ||.|| and by part PI of Proposition 2.3 we 
have 

1 < m(x[(l - e)!!*!!]-1) < [(1 - eJllxirV®)-

So (1 - e)||x|| < m(x) for all e G (0, (||x|| - l ) !^! ! - 1 ) . This implies that 
||x|| < m(x), hence P5 is obtained. 

P6. We have that m(x) = 1 implies that ||x|| = 1. Now assume 
that ||x|| = 1. By the definition of ||x|| we have that for any e > 0 there 
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exists n > 0 such that 1 + e > fi > ||x|| and m ( x f i < 1. By part P2 of 
Proposition 2.3, we have 

m(x) < n K m { x n _ 1 ) < n K < (1 + e ) K . 

So, ( m ( x ) ) K 1 < 1 + e for all e > 0, which implies m(x) < 1. If m(x) < 1, 
then we can choose r G (0,1) such that m(x) < r K < 1. By part PI of 
Proposition 2.3, we have m(r~ 1x) < (rA:)_1m(a;) < 1 hence ||z|| < r < 1 
which is a contradiction. Therefore m(x) = 1. 
P7. Follows directly from PI and P6. 
P8. Follows from P6 and P7. 
P9. Suppose 0 < r < 1 and ||a;|| > r. Then ||xr_11| > 1. By P5 we have 
m(xr~ 1) > 1. Hence by part PI of Proposition 2.3, we obtain that m(x) > 

r K m { r ~ l x ) > r K . 

P10. Suppose that r > 1 and ||x|| < r. Then ||xr_1|| < 1. By P7 we have 
||âr* 1 j| < 1. If r = 1, it is obvious that m(x) < 1 = r K. If r > 1, then by 
part P2 of Proposition 2.3; we obtain that m(x) < r K m ( r ~ 1 x ) < r K . • 

PROPOSITION 2 . 5 . Let ( x n ) be a sequence in A ( p ) , where p — (pk) is 

bounded. Then; 

P l l . If ||xn|| —> 1 as n —• cx), then m ( x n ) —> 1 as n —> oo. 
P12. If m{xn) —* 0 as n —> oo, then ||xn|| —» 0 as n —> oo. 

Proof . Pll. Suppose that ||a:|| —> 1 as n —> oo. Let e G (0,1). Then there 
exists N G N such that 1 - e < j|xn|| < 1 + e for all n G N. By part P9. and 
P10. of Proposition 2.4 we have (1 - e) K < m(xn) < (1 + e) K for all n > N 
which implies m(xn) - > l a s n - » o o . 
PI 2. Suppose that || xn\\ 0 as n —• oo. Then there is an e G (0,1) and a 
subsequence (xn k ) of (xn) such that ||a;nfc|| > e for all k G N. By part P9. of 
Proposition 2.4 we have m ( x n k ) > e K for all k G N. This implies m ( x n k ) 0 
as n —> oo. • 

Now we shall show that A(p) has the H-property but first we give a 
lemma: 

LEMMA 2.6. Let x G A(p) and ( x n ) C A ( p ) . If \\m.nm(x n) = m(x) and 

limn x" = Xi for all i € N then limn x n = x in A ( p ) , that is \\x n — rrr|| —> 0 
as n —» oo. 

Proof . Let e > 0 be given. Since m(x) = ( an \ xi\) P n < 00> there 
is no G N such that 

oo n 

(2-5) £ ( a n £ | x i | ) P n < 6 ( 2 ^ 1 3 ) - 1 . 
n=no+l i=0 
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Since 
no 7i no n 

. Pn 
m(xn) - E ( ° n E lx*l)P m ( x ) ~ E ( a " E l^y 

n=0 i=0 n=0 i=0 

as (n —> oo) and —> Xj as n —> oo as for all i € N, there is no G N such 
that 

no n no n 
(2.6) m(xn) ~ E ( a " E < m ( x ) - E ( a - E l ^ l ) ^ + ( Z ^ ^ ) " 1 

n=0 ¿=0 n=0 ¿=0 

for all n > no, and 
no n 

(2.7) 
n=0 ' ¿=0 

for all n > no- It follows from (2.5), (2.6) and (2.7) that for n > no 
n 

no n 

v Pn 

Xi 

m(xn-x)= ^ ( o n ^ l x f - x i i y 
n i=0 
no n 

= E ( a « E i a : " ~ a : < i ) P n + E ( ^ E i ^ - ^ ) ' 
n=0 ¿=0 n=no+l ¿=0 

oo n oo n 
< 3 - W 2 * [ £ ( " » X > ? i r + E ( a " E i 

n=no+l z=0 n=no+l 2=0 
no n oo n 

= 3 - 1 e + 2 ^ [ m ( x " ) - X ; ( a n E l < l ) P n + E ( ^ E l ^ l ) ' " ] 
n=0 i—0 n=no+l i=0 
no n 

< 3 - 1 e + 2 ^ [ m ( x " ) - X ; ( a n ^ | x i | ) P n + (2^3) - 1 6 
n=C 

oo n 

+ E ( a n E l ^ l ) 

n=0 ¿=0 

n=no+l ¿=0 
oo 

n=no+l ¿=0 
oo n 

+ E ( " n E l ^ l ) 
n=no+l i=0 

oo n 
= 3 " 1 e + 2 * [ ( 2 * 3 ) " 1 e + 2 £ ( a ^ N ) 

n=no+l i=0 

< 3 - 1 e + 3 - 1 e + 3 - 1 e = e. 
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This show that m(xn — x) —• 0 as n —> oo. Hence by part P8 of Proposition 
2.5, we have that \\xn — x|| —• 0 as n —> oo. • 

THEOREM 2.7. The A(p) has the H-property. 

P r o o f . Let x G S(A(p)) and ( x n ) C A(p) be such that ||zn|| 1 and 
xn —> x weakly as n —> oo. From Proposition 2.2, we have m(x) = 1 so 
it follows from Proposition 2.3 that m(xn) —• m(x) as n —• oo. Since the 
mapping pi : A(p) —> R, defined by pt{y) = Vi is a continuous linear 
functional on A(p) it follows that x™ —> X{ as n —• oo for all i G N. Thus, by 
Lemma 2.6, we get xn —> x as n —> oo. • 

THEOREM 2.8. T/ie space A(p) is rotund whenever p = (pn) is bounded. 

P r o o f . Let x G S(A(p)) and y,z G £(-4(i>)) with x = 2'1(y + 2). By 
Proposition 2.2 and convexity of m, we have 

1 = m(x) < 2~1(m(y) + m(z)) < 2~1(1 + 1), 

so that m(x) = 2~1 (m(y) + m(z)) — 1. This implies that 

(2.8) (afc Y |2-\yi + Zi)\)Pk = 2 _ 1 (afc £ + 2 - 1 (ofc Y W ) P f c 

i =0 i=0 i=0 

for all fceN. We shall show that yt = Z{ for all i G N. Prom (2.8), we have 

(2.9) =2"1 [|yi| + k i r . 

Since the mapping u —> |«|Pl is strictly convex, it implies by (2.8) that 
yi — z\. Now assume that yi = Zi for allz = 1,2, . . . , n—1. Then y% = Zi = Xi 

for a l i i = 1,2, . . . , n — 1. Prom (2.8) we have 
n n n 

(2.10) ( a n ^ | 2 - 1 ( j / i + ^ )| )P n = (2 - 1 [ a n ^| 2 / i | + a n ^ | 2 i | ] ) P " 
¿=0 ¿=o ¿=0 

n n 

(2.11) = 2"1 (an Y \Vi\)Pn + 2 - 1 (an Y N ) ^ 
i=0 i=0 

By the convexity of the mapping u —> \u\Pl it implies that an Y17=o \Vi\ = 

an 0 \ziI- Since yi = z% for alH = 1,2, . . . , n — 1 we get that 

(2.12) \yn\ = \zn\. 

If yn — 0, then we have yn = zn = 0. Suppose that yn ^ 0. Then zn ^ 0. If 
VnZn < 0 it follows from (2.12) that yn + zn — 0. This implies by (2.10) and 
(2.12) 

n—1 n— 1 

= (an(Y \Xi\ + l y i l ) ) ' 
i=0 ¿ =0 
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which is a contradiction. Thus, we have ynzn > 0. This implies that, by 
(2.9) yn = zn. Thus, by induction, we have yn = zn for all n G N, so y = z. 

• 
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reading and making some useful comments which improved the presentation 
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N. Hussain, A. Latif, S. Al-Mezel 

NONCOMMUTING MAPS 
AND INVARIANT APPROXIMATIONS 

Abstract . We obtain common fixed point results for generalized 7-nonexpansive 
compatible as well as weakly compatible maps. As applications, various best approxima-
tion results for this class of maps are derived in the setup of certain metrizable topological 
vector spaces. 

1. Introduction and preliminaries 
Let X be a linear space. A p-norm on X is a real-valued function || • Hp 

on X with 0 < p < 1, satisfying the following conditions: 

(i) IMIp > 0 and ||x||p = 0 x = 0, 
(ii) | |az||p = Mp | |x | |p, 

(iii) \\x + y\\p < IHIp + ||y||p, 

for all x, y 6 X and all scalars a. The pair ( X , ||, ||p) is called a p-normed 
space. It is a metric linear space with a translation invariant metric dp 

defined by dp(x,y) = ||x — y\\p for all x,y £ X. If p = 1, we obtain the 
concept of the usual normed space. It is well-known that the topology of 
every Hausdorff locally bounded topological linear space is given by some 
p-norm, 0 < p < l(see [15]). The spaces lp and Lp, 0 < p < 1 are p-normed 
spaces. A p-normed space is not to necessarily a locally convex space. Recall 
that dual space X* separates points of X (or equivalently X* is total [18]) 
if for each nonzero x € X, there exists / G X* such that f ( x ) ^ 0. In this 
case the weak topology on X is well-defined and is Hausdorff. Notice that 
if X is not locally convex space, then X* need not separate the points of 
X. For example, if X = Lp[0,1], 0 < p < 1, the space of to the power p 
integrable functions, or X = S'fO, 1], the space of measurable functions, then 
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X* = {0}(see [15, 18, 20]). However, there are some non-locally convex 
spaces X (such as the p-normed spaces lp, 0 < p < 1) whose dual X* 
separates the points of X. 

Let X be a metric linear space and M a nonempty subset of X. The 
set PM{V) = {x € M : d(x,u) = dist(u, M)} is called the set of best 
approximants to « e l from M, where dist(u, M) = inf {d(y, u) : y G M}. 
We shall use N to denote the set of positive integers, cl(S) to denote the 
closure of a set S. The diameter of M is denoted and defined by 8{M) = 
sup {||a; — y\\ : x, y G M}. A mapping I : X —> X has diminishing orbital 
diameters (d.o.d.) [13] if for each x G X, 6(0(x)) < oo and whenever 
S(0(x)) > 0, there exists n = nx G N such that S(0(x)) > S(0(In{x))), 
where O(x) = (Ik(x) : k G N U {0}} is the orbit of I at x and 0(In(x)) = 
{Ik{x) : k G N U {0} and k > n} is the orbit of I at In(x) for n G N U {0}. 
Let I be a self-map of a topological space X. The orbit 0(x) of / at x 
is proper if and only if O(x) = {x} or there exists n = nx G N such 
that cl(0(In(x))) is a proper subset of cl(0(x)). If 0(x) is proper for each 
x G M C X, we shall say that I has proper orbits on M. Observe that in 
metric space (X, d) if I has d.o.d. on X, then I has proper orbits [10, 11]. 
Let I : M —» M be a mapping. A mapping T : M —> M is called an 
/-contraction if, there exists 0 < k < 1 such that d(Tx, Ty) < kd(Ix, Iy) 
for any x, y G M. If k = 1, then T is called 7-nonexpansive. A mapping 
T : M —> M is called (1) completely continuous if {xn} converges weakly 
to x implies that {Txn} converges strongly to Tx; (2) demiclosed at 0 if for 
every sequence {xn} G M such that {xn} converges weakly to x and {Txn} 
converges strongly to 0, we have Tx = 0. The mappings I and T are said 
to satisfy the condition (A0) if for any sequence {xn} in M, D G C(M) 
such that dist(xn,D) —> 0 and d(Ixn,Txn) —> 0 as n —> oo, there exists 
y G D with Iy = Ty, where C(M) denotes the class of nonempty closed 
subsets of M. The set of fixed points of T ( resp. I) is denoted by F(T) 
(resp. F(I)). A point x E M is a common fixed (coincidence) point of 
I and T if x = Ix = Tx(Ix = Tx). The set of coincidence points of I 
and T is denoted by C( / ,T) . The pair {I, T} is called (3) commuting if 
Tlx = ITx for all x G M; (4) i?-weakly commuting if for all x G M there 
exists R > 0 such that d(ITx,TIx) <Rd(Ix,Tx). If R = 1, then the maps 
are called weakly commuting; (5) compatible [9] if limn d(TIxn, ITxn) = 0 
whenever {xn} is a sequence such that lim„ Txn = limn Ixn = t for some t 
in M; (6) weakly compatible if they commute at their coincidence points, 
i.e.,if ITx = Tlx whenever Ix = Tx. If I and T are weakly compatible and 
do have a coincidence point, I and T are called [3, 10] nontrivially weakly 
compatible. The subset M of a linear space is called g-starshaped with 
q G M if the segment [q,x] = {(1 — k)q + kx : 0 < k < 1} joining q to 
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x, is contained in M for all x € M. Suppose that M is g-starshaped with 
q € F(I) and is both T- and /-invariant. Then T and I are called; 

(7) ii-subcommuting on M if for all x £ M, there exists a real number 
R > 0 such that d(ITx,TIx) < %d((l-k)q + kTx,Ix) for each k e (0,1]. If 
R = 1, then the maps are called 1-subcommuting [7]; (8) i?-subweakly com-
muting on M (see [8, 23]) if for all x £ M, there exists a real number R > 0 
such that d(ITx,TIx) < Rdist(Ix, [q,Tx]). Clearly, i?-weakly commuting, 
and compatible maps are weakly compatible but not conversely in general. 
i2-subcommuting and il-subweakly commuting maps are compatible but the 
converse does not hold in general [11]. 

In 1995, Jungck and Sessa [12] extended the results of Meinardus [17], 
Singh [25], Habiniak [4] and Sahab, Khan and Sessa [21] to the pair of 
commuting maps defined on weakly compact subset of a Banach space. 
Latif [16], further extended these results to the setting of p-normed spaces. 
More recently, Shahzad [23, 24]], Hussain and Jungck [11], Hussain et al. [8], 
Jungck and Hussain [11] and O'Regan and Hussain [19] further extended the 
above mentioned results to i?-subweakly commuting and weakly compatible 
maps. The aim of this paper is to establish a general common fixed point 
theorem for compatible and weakly compatible generalized /-nonexpansive 
maps in the setting of locally bounded topological vector spaces and locally 
convex topological vector spaces. As application, we derive some results 
on the existence of best approximations. Our results unify and extend the 
results of Dotson [1, 2], Habiniak [4], Hussain and Berinde [5], Hussain and 
Khan [7], Hussain, O'Regan and Agarwal [8], Jungck and Sessa [12], Khan 
et al. [13], Khan and Khan [14], Latif [16], O'Regan and Hussain [19], Sahab 
et al. [21], Sahney et al. [22], Shahzad [23, 24], and Singh [25, 26]. 

Here, we state some useful results. 

THEOREM 1.1 [3]. Let X be a Hausdorff topological space, and I, T be 
continuous and nontrivially weakly compatible self-maps of X. Then there 
exists a point z in X such that Iz = Tz = z, provided T satisfies following 
condition 
(C) A fl F(T) ^ 0 for any nonempty T-invariant closed set A C X. 

The next theorem gives conditions under which condition (C) is satisfied. 

THEOREM 1.2 ([10], Theorem 3.1). Let X be a Hausdorff topological space 
and T be a continuous self-map of X. If T has relatively compact proper 
orbits then T satisfies condition (C). 

2. Common fixed point and approximation results 
The following recent result will be needed in the sequel. 
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THEOREM 2 .1 [11], Let M be a subset of a metric space (X,d), and I and 

T be self-maps of M. Assume that clT(M) C I(M), clT(M) is complete 

and I, T satisfy for all x,y £ M and 0 < h < 1 the condition 

(2.1) d(Tx,Ty) 

< / i m a x { d ( I x , I y ) , d ( I x , T x ) , d ( I y , T y ) , d ( I x , T y ) , d ( I y , T x ) } . 

Then I and T have a unique coincidence point in M. 

Throughout this section, we shall assume that X* separates points of a 
p-normed space X whenever weak topology is under consideration. 

T H E O R E M 2.2. Let I and T be self-maps on a q-starshaped subset M of a 

p-normed space X. Assume that T satisfies condition (C), clT(M) C I{M), 

q € F(I) and I is affine. Suppose that I and T are continuous, and satisfy 

(2.2) I I T * - Ty\\ < max ( ^ " ^ ' ^ ^ ^ ^ ^ ^ 
{ dist(Ix,[Ty,q]),dist(Iy,[Tx,q]) J 

for all x,y 6 M . Then F(T) n F(I) / 0, provided one of the following 

conditions holds; 

( i ) clT(M) is compact and I and T are compatible, 

( i i ) M is complete and bounded, T is a compact map and I and T are 

compatible, 

(iii) M is complete and bounded, I and T satisfy condition ( A 0 ) and I and 

T are weakly compatible, 

( iv ) X is complete, M is weakly compact, I — T is demiclosed at 0 and I 

and T are weakly compatible, 

( v ) X is complete, M is weakly compact, I and T are completely continuous 

and I and T are weakly compatible. 

P r o o f . Define Tn : M —> M by Tnx = (1 — kn)q + knTx for some q and 
all x € M and a fixed sequence of real numbers kn G (0,1) converging to 1. 
Then, for each n, clTn(M) C I(M) as M is g-starshaped, clT(M) C I(M), 

I is affine and Iq = q. By (2.2), 

||Tnx - Tny\\p = (kny\\Tx - Ty\\p 

< (kn)pmax{\\Ix - Iy\\p,dist{Ix, [Tx,q\),dist{Iy, [!Ty,q]), 

dist(Ix, [Ty, q\), dist{Iy, [Tx, g])} 

< (kn)pmax{\\Ix - Iy\\p, \\Ix - Tnx\\p , \\Iy - Tny\\p , 

\\Ix-Tny\\p,\\Iy-Tnx\\p}, 

for each x, y € M. 
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(i) Since clT(M) is compact, clTn(M) is also compact and hence com-
plete. By Theorem 2.1, for each n ^ 1, there exists xn € M such that 
Ixn = Tnxn. The compactness of cl(T(M) implies that there exists a 
subsequence {Txm}of {Txn} such that Txm —» y as m —• oo. Since 
km —> 1, /xTO = (1 — km)q + kmTxm converges to y. Since T and I 
are continuous, then TIxm —> Ty and ITxm —> Iy as m —> oo. By the 
compatibility of 7 and T, we obtain 0 = limm^oo ||7Tx m TIxm\\p -
||Iy — Ty\\p. Thus Iy = Ty. Hence the pair {/, T} is nontrivially com-
patible. Theorem 1.1 guarantees that M D F(I) n F(T) ^ 0. 

(ii) As in (i), there is a unique xn 6 M such that Tnxn = Ixn. As T is 
compact and {xn} being in M is bounded so {Txn} has a subsequence 
{Txm} such that {Txrn} —> z as m —> oo. Then the definition of Tmxm 

implies Ixm —> z. So by the continuity of T and 7, TIxm —> Tz and 
ITxm —> Iz as m —> oo. By the compatibility of I and T, we obtain 
Iz = Tz. Hence the pair {I, T} is nontrivially compatible. Theorem 
1.1 guarantees that M n F{I) n F(T) ± 0. 

(iii) As in (i) there exists xn G M such that Ixn — Tnxn. But M is bounded, 
so ||Jxn - Txn\\p = || ( (1 - kn)q + knTxn) - Txn\\p < (1 - fcnFGItfllp + 

||r̂ n||p) —> 0 as n —> oo. By condition (^4°), Ixo = Txo for some xo € 
M. Hence the pair {I, T} is nontrivially weakly compatible. Theorem 
1.1 guarantees that M D F(I) n F (T) ^ 0. 

(iv) Since M is weakly compact and hence complete, then cl(Tn(M)) is 
complete. By Theorem 2.1, for each n > 1, there exists xn G M 
such that Ixn = Tnxn. The weak compactness of M implies that 
there exists a subsequence {xm} of {xn} such that xm —> y weakly 
as m —> oo. Since {xrn} is bounded, km 1, so \\(Ix m T^m ||p — 
11V V x "'Tn )q + kmTx m) Txm ||p < (l-fem)p(||g||p-|-||Ta;m||p) converges 
to 0. Since (I — T) is demiclosed at 0 so (I — T)y = 0 and hence 
Iy = Ty. Thus the pair {I, T} is nontrivially weakly compatible and 
the conclusion follows from Theorem 1.1. 

(v) As in (iv), we can find a subsequence {xm } of {xn} in M converging 
weakly to y G M as m —» oo. Since I and T are completely continuous, 
then Ixm —> Iy and Txm —» Ty as m —» oo. Since km —> 1, then Ixm = 
TmXm = kmTxm + (1 — km)q —> Ty as m —> oo. Using the uniqueness 
of the limit, we have Iy = Ty. Thus the pair {I,T} is nontrivially 
weakly compatible and the conclusion follows from Theorem 1.1. 

COROLLARY 2.3. Let M be a q-starshaped subset of ap-normed space X, and 

I and T continuous self-maps of M. Suppose that I is affine with q € F ( I ) , 

clT(M) C I(M) and clT{M) is compact. I f T has d.o.d., the pair { I , T } is 

compatible and satisfy (2.2) for all x,y e M, then M Pi F(T) fl F ( I ) ± 0-
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P r o o f . Since T has d.o.d, T has proper orbits [10]. As clT(M)) is compact, 
T has relatively compact orbits. Therefore by Theorem 1.2, T satisfies 
condition (C). The result now follows by Theorem 2.2(i). 

Remark 2.4. Theorem 2.2 and Corollary 2.3 extend and improve Theo-
rems 1 and 2 of Dotson [1], Theorem 4 of Habiniak [4], Theorem 2.3 and 
Corollary 2.4 of Jungck and Hussain [11], Theorem 6 of Jungck and Sessa 
[12], Theorem 2.4 of O'Regan and Hussain [19], Theorem 2.2 of Shahzad 
[24], and corresponding results in [14, 16, 21, 23, 25]. 

The following result extends Theorem 3 of [21], Theorem 8 of [4], and 
the main results in [14, 16, 17, 25]. 

Theorem 2.5. Let M be subset of a p-normed space X and let I,T : X —> X 
be mappings such that u G F(T) n F(I) for some u G X and T{dM fl M) C 
M. Assume that T satisfies condition (C), I(PM(U)) = PM{U) and the 
pair {I, T} is continuous and compatible on PM(U) and satisfy for all x G 
PM{U) U M , 

(2.3) \\Tx-Ty\\p 

\\Ix-Iu\\p i f y = u, 
< max{\\Ix — Iy\\p , dist(Ix, [q,Tx]),dist(Iy, [q,Ty]), 

dist{Ix, [q,Ty]),dist(Iy, [q,Tx])} if y G PM(U). 

If PM(U) is closed, q-starshaped with q G F(I), I is affine and CIT(PM(U)) 
is compact then PM[U) D F(I) fl F(T) ± 0. 

P r o o f . Let x G PM(U)- Then ||x — u\\p = dist(u, M). Note that for any 
k € (0,1), 

||fctt + (1 - k)x - u\\p = (1 - k)p ||x - u||p < dist(u, M). 

It follows that the line segment {ku + (1 — k)x : 0 < k < 1} and the set M 
are disjoint. Thus x is not in the interior of M and so x G dM fl M. Since 
T(dMC\M) C M, Tx must be in M. Also since Ix G PM(u),ue F(T)nF(I) 
and T and I satisfy (2.3), we have 

||Tx - u\\p = ||Tx - Tu\\p < ||Ix - Iu\\p = ||Ix - u\\p = dist(u, M). 

Thus Tx G PM(U)- Theorem 2.2(i) further guarantees that PM(U) H F(I) n 
F(T) ± 0. 

Let D = PM{U) H Clf(u), where C ^ U ) = {x € M : Ix € PM{U)}-

The following result provides a non-locally convex space analogue of 
Theorem 3.3 [7] for more general class of maps. 
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THEOREM 2.6. Let M be subset of a p-normed space X and I,T : X —> X 
be mappings such that u € F(T) fl F(I) for some u € X and T(dM f l J l i ) c 
M. Suppose that T satisfies condition (C), D is closed q-starshaped with 
q 6 F(I), I is affine, clT(D) is compact, 1(D) = D and the pair {I,T} 
is compatible and continuous on D and, for all x € D U {it}, satisfies the 
following inequality, 

If I is nonexpansive on PM(U) U {«}> then PM(U) fl F(I) fl F(T) ^ 0. 

P r o o f . Let x G D then proceeding as in the proof of Theorem 2.5, we 
obtain Tx G PM{U). Moreover, since I is nonexpansive on PM(U) U {u} and 
T satisfies (2.4), we obtain 

\\ITx - u||p < ||Tx - Tu\\p < ||Ix - Iu\\p = dist(u, M). 

Thus ITx € PM(U) and so Tx € C^(ii) . Hence Tx € D. Consequently, 
clT(D) C D = 1(D). Now Theorem 2.2(i) guarantees that PM(U) D F(I) n 
F(T) ± 0. 

REMARK 2.7. (a) It is worth to mention that approximation results similar 
to Theorem 2.5 and Theorem 2.6 can be obtained, using Theorem 2.2(ii)-(v) 
which extend and improve the corresponding results in [12, 14, 16, 17, 21, 

(b) As an application of Theorem 2.2(i), we can prove Theorem 2.7 of [11] 
in the setup of p-normed space X. 
(c) The results of this section hold true for the the nonlocally convex spaces, 
for example, the sequences spaces lp, 0 < p < 1 and Hardy spaces Hp, 
0 < p < 1 whose topological duals are total. When topological dual is 
not total the situation becomes more complicated. The topological dual of 
X = Lp[0,1], 0 < p < 1, and X = £[0,1], vanish and Shauder's conjecture 
is still open even for these spaces (see for details [18, 20] and references 
therein). 

3. Further results 
(1) All results of the paper (Theorem 2.2-Remark 2.7) remain valid in the 

setup of a metrizable locally convex topological vector space (X, d), 
where d is translation invariant and d(ax,ay) < ad(x,y), for each a 
with 0 < a < 1 and x, y € X ( recall that dp is translation invariant 

(2.4) \\Tx — Ty\\p 

' \ \ I x ~ I u \ \ p 

< max{\\Ix — Iy\\p, dist(Ix, [q, Tx]),dist(Iy, [q,Ty]), 
dist(Ix, [q, Ty]),dist(Iy, [q, Tx})} 

i f y = u, 

i f y e D. 

24, 25]. 
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and satisfies dp(ax,ay) < (a)pdp(x, y) for any scalar a > 0 ). Conse-
quently, Theorem 2.2-Theorem 3.3 due to Hussain and Khan [7] and 
corresponding results in [5, 22, 26] are improved and extended. 

We define C^u) = {x G M : Ix G Pm(u)} and denote by % the class 
of closed convex subsets of X containing 0. For M G 9o, ^ define Mu = 

{x G M : d(0,x) < 2d(0, u) } . It is clear that Pm(U) C MU G 
Following result extends Theorem 8 in [4], Theorem 3.3 in [5], Theorems 

2.9-2.10 in [11], Theorem 2.6 in [19], Theorem 2.3-2.4 in [23], Theorem 2.9 
in [24] and many others. 

T h e o r e m 3.1. Let X be a metrizable locally convex space (X,d) where d is 

translation invariant and d(ax,ay) < ad(x,y), for each a with 0 < a < 1 
and x, y G X, and I and T be self-mappings of X with u G F(I) D F(T) 

and M G % such that T(MU ) C I{M) C M. Suppose that I is affine, 

d(Ix,u) < d(x,u), d(Tx,u) < d(Ix,u) for all x G M, the pair {I,T} is 

continuous on M and one of the following two conditions is satisfied: 

(a) clI(M) is compact, 

(b) clT(M) is compact. 

Then 

(i) PM{U) is nonempty, closed and convex, 

(ii) T(PM(U)) C I(PM(U)) C PM(U) provided that d(Ix,u) < d(x,u) for 

all x G C^u), 

(iii) PM(U) n F(I) n F(T) ^ 0 provided that d(Ix,u) < d(x,u) for all 

x G Cj^(u), I and T satisfy condition ( C ) , I(PM(U)) is closed, the 

pair {/, T} is compatible on PM(U) and satisfies for all q G F(I), 

d(Tx,Ty) < ma x { d ( I x , I y ) , d i s t ( I x , [q,Tx]),dist(Iy, [q,Ty]), 

dist(Ix, [q,Ty]),dist(Iy, [q,Tx])}, 

for all x, y G PM(U). 

P r o o f . 

(i) Let r = dist(u, M). Then there is a minimizing sequence {yn} in M 

such that limnd(u,yn) = r. As clI(M) is compact so {Iyn} has a 
convergent subsequence {Iym} with limm Iym = XQ (say) in M. Now 
by using d(Ix, u) < d(x, u) we get 

r < d(xo,u) = lim d(Iym,u) < lim d(ym,u) = lim d(yn,u) = r. 
m m n 

Hence XQ G PM{U). Thus PM(U) is nonempty closed and convex. Sim-
ilarly, when clT(M) is compact we get same conclusion by using in-
equalities d(Ix,u) < d(x,u) and d(Tx,u) < d(Ix,u) for all x G M. 
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(ii) Let z G PM{U). Then d(Tz,u) < d(Iz,U) = dist(u,M). This im-
plies that Tz £ Pm{u) and so T(Pm(u)) C Pm(u). Also we have 
I{PM(U)) C PM(U). Let y G T{PM(U). Since T{MU) C / ( M ) and 
PM(U) C MU, then there exist z G PM(U) and x G M such that 
y = Tz = Ix. Thus, we have d(Ix,u) = d(Tz,u) < d(Iz,u) < 
d(z,u) = dist(u,M). Hence x € C j ^ u ) = PM{U) and so (ii) holds. 

(iii) (a) By (i) Pm{u) is closed and by (ii) Pm{u) is /-invariant, so by 
condition (C) of / , Pm(u) H F(I) / 0- It follows that there exists 
Q € PM(U) such that q £ F ( / ) . By (ii), the compactness of clI(Mu) 
implies that cIT(Pm{u)) is compact. The conclusion now follows from 
Theorem 2.2(i)(which holds for metrizable locally convex space) ap-
plied to Pm(u). 

(iii) (b) By (i) PM{U) is closed and by (ii) PM(U) is /-invariant, so by 
condition (C) of / , PM(U) H F(I) ^ 0, it follows that there exists 
<1 € PM{U) such that q G F(I). Theorem 2.2(i) further guarantees that 
PM(u)NF(T)NF(I)^0. 

(2) Let M be subset of a p—normed space X and F = {fx}x&M a family 
of functions from [0,1] into M such that / x ( l ) = x for each x G M. 
The family F is said to be contractive [2, 13] if there exists a function 
<f> : (0,1) -> (0,1) such that for all x,y G M and all t G (0,1), we 
have | | f x ( t ) - fy(t)\\p < [<p{t)]p\\x - y\\p. The family F is said to be 
jointly (weakly) continuous if t to in [0,1] and x —• xa (x —> xo 
weakly) in M, then fx(t) -y fxo(t0) ( f x ( t ) fX0(to) weakly) in M. We 
observe that if M G X is g-starshaped and fx(t) = (1 — t)q + tx, (x G 
M ; i G (0,1)), then F = {fx}xeM is a contractive jointly continuous 
and jointly weakly continuous family with <j){t) = t. Thus the class of 
subsets of X with the property of contractiveness and joint continuity 
contains the class of starshaped sets which in turn contains the class 
of convex sets ((see [2, 8]). Following the arguments as above and 
those in [8, 13], we can obtain all of the results of the paper (Theorem 
2.2-Remark 2.7) provided / is assumed to be surjective, and affinity of 
I is replaced by I ( f x ( a ) ) = fix(a) for all x G M, a G [0,1], and the q-
starshapedness of the set M is replaced by the property of contractivity 
and joint continuity or weak joint continuity. Consequently, recent 
results due to Hussain et al. [8], and Khan et al [13] are extended to the 
class of weakly compatible pair { / ,T} where T satisfies property (C). 

(3) A subset M of a linear space X is said to have property (N) with 
respect to T [5, 8] if, 

(i) T:M -f M, 
(ii) (1 — kn)q + knTx G M , for some q G M and a fixed sequence of 

real numbers kn(0 < kn < 1) converging to 1 and for each x G M. 
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A mapping I is said to be affine on a set M with property (N ) if 
7((1 - kn)q + knTx) = (1 - kn)Iq + knITx for each x G M and n G N. 
All of the results of the paper (Theorem 2.3-Remark 2.7) remain valid, 
provided I is assumed to be surjective and the g-starshapedness of 
the set M is replaced by the property (N ) , in the setup of p-normed 
spaces and metrizable locally convex topological vector space(tvs) 
{X,d) where d is translation invariant and d(ax,ay) < ad(x,y), for 
each a with 0 < a < 1 and x,y € X. Consequently, recent results due 
to Hussain and Berinde [5], and Hussain, O'Regan and Agarwal [8] 
are extended to the class of weakly compatible maps, where T satisfies 
property (C). 
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