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OSCILLATION C R I T E R I A F O R H I G H - O R D E R S U B L I N E A R 
N E U T R A L D E L A Y F O R C E D D I F F E R E N C E E Q U A T I O N S 

W I T H OSCILLATING C O E F F I C I E N T S 

A b s t r a c t . In this paper we are concerned with the oscillation of solutions of higher-
order sublinear neutral type difference equation with an oscillating coefficient of the form 

A n[y(k)+p(k)y{T(k))}+q(k)ya(<7(k)) = r(k) NBn> 2, 

where p(k) is an oscillatory function which is interesting. We obtain some comparison 
criteria for oscillatory behaviour. The results are new when n = 2 and n = 3. 

1. Introduction 
We consider the higher-order sublinear difference equation of the form 

(1) An[y(k) + p(k)y(r(k))} + q(k)ya(a(k)) = r(k) n, k e N, n > 2, 

where a € (0,1) is a ratio of positive odd integers, and the following condi-
tions are always held: 

i) p(k) is an oscillating function with lim^oo p(k) = 0, 
ii) q(k) > 0 for k > k0, 

iii) r(k) is an oscillating function with A n s ( k ) = r(k) and lim^oo s(k) = 
0 , 

iv) r(fc) < k with r(k) —» +oo as k —> oo and a(k) < k with a(k) —• +oo 
as k —> oo. 

By a solution of Eq.(l) , we mean any function y(k) : Z —> R which is 
defined for all k > minj>o{r(i), a(i)} and satisfies Eq. (1) for sufficiently 
large k. We consider only such solutions which are nontrivial for all large 
k. As it is customary, a solution {y(k)} is said to be oscillatory if the 
terms y{k) of the sequence are not eventually positive or not eventually 
negative. Otherwise, the solution is called non-oscillatory. A difference 
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equation is called oscillatory if all of its solutions oscillate. Otherwise, it 
is non-oscillatory. In this paper, we restrict our attention to real valued 
solutions y{k). 

Neutral difference equations find numerous applications in natural sci-
ence and technology. For instance, they are frequently used for the study of 
distributed networks containing lossless transmission lines. Recently, much 
researches have been done on the oscillatory and asymptotic behaviour of 
solutions of higher order delay and neutral delay type difference equations. 
But there are very scarsely results in the case of coefficient Pk is an oscillating 
function. 

The purpose of this paper is to study oscillatory behaviour of solutions 
of the Eq. (1). For the general theory of difference equations, one can refer 
to [1-5]. Many references for the applications of the difference equations 
can be found in [4-5]. 

For the sake of convenience, the function z(k) is defined as 

(2) z(k) = y(k)+p(k)y(r(k))-s(k) 
and N(a) = {a, a + 1 , . . . }. 

2. Some auxiliary lemmas 

LE M M A 1 ([1]). Let y(k) be defined for k > k0 G N, and y(k) > 0 with 
Any(k) of constant sign for k > ko, n G N( 1) and not identically zero. Then 
there exists an integer m, 0 < m < n with (n + m) even for Any(k) > 0 or 
(n + m) odd for Any(k) < 0 such that 

i) m < n — 1 implies (—l)m+lAly(k) > 0 for all k > ko,m < i < n — 1 
ii) m > 1 implies A l y ( k ) > 0 for all large k > ko, 1 < i < m — 1. 

LE M M A 2 ([1]). Lety{k) be defined fork > k0, andy(k) > 0 with Any(k) < 0 

for k > ko and not identically zero. Then there exist a large k\ > ko such 
that 

y{k) > - ki)™-1 An~1y(2n~m~1 k), k > ku 

where m is defined as in Lemma 1. Further, if y(k) is increasing, then 

3. Main results 

THEOREM 1. Assume that n is even and inequality 
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does not have any positive bounded solution for all sufficiently large k. Then 
every bounded solution of equation (1) is either oscillatory or tends to zero 
as k —> oo. 

Proof . Assume that Eq. (1) has a bounded nonoscillatory solution y(k). 
Without loss of generality, assume that y(k) is eventually positive. That is, 
y(k) > 0 ,y(r(k)) > 0 and y(a(k)) > 0 for all k > ki> ko. Further, suppose 
that y(k) does not tend to zero as k —> oo. By (1), (2) we have 

(3) Anz(k) = —q(k)ya(a(k)), (0 < a < 1, k> h). 

That is Anz(k) < 0. It follows that A a z(k) (a = 0 , 1 , 2 , . . . , n - 1) is 
strictly monotone and eventually of constant sign. Since y(k) is bounded, 
by virtue of (i), (in) and (2) there is a fo > k\ such that z(k) > 0 for 
all k > k2 and z(k) is bounded. Because n is even, by Lemma 1, since 
m = 1 (otherwise, z(k) is not bounded) there exists > k2 such that for 
k > k 3 

(4) (—l) i+1A iz(fc) > 0 (i = 0 , 1 , 2 , . . . , n — 1). 

In particular, since Az(k) > 0 for k > z(k) is increasing. Since y(k) 
is bounded, lim/c^00p(fc)?/(r(/c)) = 0 by (i). Then, since lim^^oo s(k) = 0 
by (Hi), there exists a fej > £3 by (2) 

y(k) = z(k) - p(k)y(r(k) + s(k) > i z ( k ) > 0 

for all k > £4. We may find a /C5 > k^ such that for k > k$ we have 

y(a(k)) > \z(a(k)) > 0 

and 

(5) ya(°(k)) > i\z(o(k))}a > 0 , 0 < a < 1. 

From (3) and (5) we obtain the result of 

(6) Anz(k) + q(k)[^z(cr(k))}a <0, 0 < a < l 

for all large k > By Lemma 2, this inequality can be written as 

( 7 ) A U z { k ) + [2 (2 -1 A n _ 1 ) ! ] t t g ( f c ) ^ ( w " 1 ) ( f c ) ( ^ W W < 0, 
k > k$. 

Let us take u(k) as An_12(A;) i.e. u(k) = A n ~ l z (k ) in (7). Thus u(k) 
satisfies for k, which is large enough, 

A u { k ) + [ 2 ( 2 ^ ) n \ n - ^ ( ^ - ' H W W k ) ) < 0 



856 Mustafa Asim Ozcan, Ya§ar Bolat 

which does not have any eventually positive solutions by (Ci). This contra-
dicts the fact that An~ lz{k) > 0 by (4). 

In the case, where y(k) is an eventually negative solution, then —y(k) will 
be an eventually positive solution. The proof of Theorem 1 is completed. • 

THEOREM 2. Assume that n is odd and inequality 

{(h) Az(k) + i ^ ^ ^ q i ^ i a i k ) ) < 0 

does not have any positive bounded solution for all sufficiently large k. Then 
every bounded solution of equation (1) is either oscillatory or tends to zero 
as k —• oo. 

P r o o f . Assume that Eq. (1) has a bounded nonoscillatory solution y(k). 
Without loss of generality, assume that y(k) is eventually positive. That is, 
y(k) > 0,y(r(fc)) > 0 and y(a(k)) > 0 for all k> k\ > ko. Further, suppose 
that y(k) does not tend to zero as k —> oo. As in the proof of Theorem 1, we 
can find that z(k) is bounded. Because n is odd, by Lemma 1 since m = 0 
(otherwise z(k) is not bounded) there exists k\ > ko such that 

(8) (—l)iAiz(k) > 0, (i = 0 ,1 ,2 , . . . ,n — 1) for all k>k\. 

In particular, since Az(k) < 0 for k > k\ and z(k) is decreasing. Since 
y(k) is bounded, l im^oo p(/c)y(r(/c)) = 0 by (i). Then there exists a > /ci 
by (2) and (iii) 

y{k) = z(k) - p(k)y(T(k)) + s(k) > i z ( k ) > 0 

for all k > and z(k) is bounded. We may find a £3 > fo such that 

y(a(k)) > \z(a(k)) > 0 

and we have 

(9) ya{°m > [\z{a{k))r > 0 , 0 < a < 1. 

for all k > ks From (3) and (9) we can the result of 

Anz(k) + ^q(k)za(a(k))<0 

for all large k > k^. Since z(k) is decreasing, we can write this last inequality 
in the form 

(10) A n z ( k ) + ±q(k)za(o(k)) < 0. 

By Lemma 2, inequality (10) can be written as 
(k — K W " - 1 ) 

A1lz{k) + \2(n -1)11« g W ^ ^ X f c ) ) < 0, k > k3. 
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Let us take u(k) as An 1z(k) i.e. u(k) = A n 1z(k). Thus u(k) satisfies 
for all k, which is large enough, 

(k — taW"-1) 

A u(fc) + [2(ra — l ) ! ] a ^ 

which does not have any eventually positive solutions by (C2). This contra-
dicts the fact that An~ lz{k) > 0 by (8). 

In the case, where y(k) is an eventually negative solution, then —y{k) will 
be an eventually positive solution. The proof of Theorem 2 is completed. • 
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