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ON VOLTERRA-FREDHOLM INTEGRAL EQUATION
IN TWO VARIABLES

Abstract. The aim of this paper is to study the existence, uniqueness and other
properties of solution of a certain Volterra-Fredholm integral equation in two independent
variables. The main tools employed in the analysis are based on the applications of the
well known Banach fixed point theorem and the new integral inequality with explicit
estimate.

1. Introduction
Consider the system of Volterra-Fredholm integral equation

Ty
(VF) u(z,y) =h($’y)+HF(m,y,s,t,u(S,t))dtds
00
+ | [ Gy, 5,t,u(s, 1) dids,
00

for (z,y) € [0,00) X [0,00), where u,h, F,G € R™, the n-dimensional Eu-
clidean space with appropriate norm |.|. We denote by Ry = [0,00) the
given subset of R, the set of real numbers and A = Ry x Ry, A? =
{(z,y,8,t):0<s<zx <00, 0<t<y<oo} and throughout assume that
heC(A,R™);F,G € C(A2 X R",R").

The mathematical literature concerning Volterra and Fredholm integral
equations involving functions of one independent variable is particularly
rich. A good deal of information on such equations may be found in [1, 4, 5,
10-13]. For the study of integral equations in several variables, we refer the
interested readers to [2, 6-9, 18-20]. Volterra-Fredholm integral equations
of the form (VF) are of particular interest, since the special versions of
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the same arise in a variety of applications, see [20]. The main objective
of this paper is to study the existence, uniqueness and other properties of
the solutions of equation (VF) by using Banach fixed point theorem (see [5,
p. 37]) coupled with Bielecki type norm [3] and the new integral inequality
recently established by the present author (see [17, p. 111]).

2. Existence and uniqueness

Let E be the space of those functions ¢ : A — R™ which are continuous
and fulfil the condition

(2.1) ¢ (z,y)| = O (exp (A (z +9))),

for (z,y) € A, where A > 0 is a constant. In the space E we define the norm
(see [3])

(2.2) |¢lg = sup [|¢(x,y)|exp(—A(z+y))].

(z,y)eA
It is easy to see that F with norm defined in (2.2) is a Banach space. We
note that the condition (2.1) implies that there exists a constant N > 0 such
that |¢ (z,y)] < Nexp (A (z +y)) for (z,y) € A. Using this fact in (2.2) we
observe that

(2.3) 6lp < N.

We need the following new integral inequality established by Pachpatte
(see [17, Theorem 2.5.7 part (r1), p. 111]). For detailed account on such
inequalities, see [16, 17].

LEMMA. Letu(z,y),a(z,y),b(z,9),c(z,y), f(z,y),9(z,y) € C(R2,R,)
and

zy
(2.4) u(z,y) <a(z,y)+b(z,y) S S f(s,t)u(s,t)dtds
00

re(e,y) | § g5 t)uls,)dds,
00
forx,y e Ry. If
(2.5) p= "X°°X°g (s,t) D (s,t)dtds < 1,
00

then
(2.6) u(z,y) < B(z,y) + MD (z,y),
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for z,y € Ry, where

27  Bz,y =a(z,y) +b(z,y) Az, y) | f (s,) a(s, 1) dtds,

O e 8
(=R

(2.8) D (z,y) =c(z,y) + b(z,y) A(z,y)

Og’n&]

3Slf(s t)c(s,t)dtds,
0

(2.9) A(z,y) =exp (“S” S f(s (s,t) dtds)
00

and

(2.10) =713 7 (S) (S) g (s,t) B (s,t)dtds.

Our main result in this section is given in the following theorem.
THEOREM 1. Assume that
(i) F,G satisfy the conditions
(2.11) |F (z,y,s,t,u(s,t)) — F(z,y,s,t,0(s,t))]
<k(z,y,s,t)|u(s,t)—v(st),

(2.12) G (z,y,s,t,u(s,t)) — G(z,y,s,t,v(s,1))|
<r(z,y,s,t) |u(s,t) —v(st),
where k,r € C (AQ,R+) ,
(ii) for A as in (2.1), there ezist nonnegative constants ay, e such that

a1 +az <1 and
zy

(2.13) S S k(z,y,s,t)exp(A(s+1t))dtds < arexp (A (z +y)),
00

(2.14) °S°°S°T (z,y,s,t)exp (A (s +1t))dtds < agexp (A (z + y)),
00

(iii) for A as in (2.1), there exists a nonnegative constant 3 such that
Ty 00 00
215)  [h(@9)l+|{IF (@,v,5,t,0)|dtds + | | G (2,55t 0)) dtds
00 00
< Bexp(A(z+y))-

Then the equation (VF) has a unique solution u(z,y) on A.
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Proof. Let u(z,y) € E and define the operator T by

Ty
(2.16) (Tw) (z,y) = h(z,y) + || F (z,9, 5, t,u(s,¢)) dtds
00
+ OSOOSOG (z,9,8,t,u(s,t)) dtds.
00

First we show that T'u maps E into itself. Evidently T'u is continuous on A
and Tu is in R™. We verify that (2.1) is fulfilled. From (2.16) and using the
hypotheses and (2.3) we have

2.17)  |(Tw)(z,9)|

Ty
< |h(z,9)l + {§IF (2,9,5,8,u(s,)) - F (z,9,5,t,0)| dtds
00

o0 00
+ S S |G(x,y,s,t,u(s,t)) —G(:E,y,s,t,O)ldtdS
00
TY o0 00
+H|F(a:,y,s,t,0)|dtds+ S S |G (z,y,s,t,0)| dtds
00 00

< Bexp(A(z +y))

Ty

+ S S k(z,y,s,t)exp(A(s+1t))|u(s,t)| exp(—A(s+t))dtds
00

+ OSOOSOT (z,y,8,t)exp (A (s + 1) |u(s,t)|exp (=X (s +t)) dtds
00

zy
<Bexp(A(z+y))+ |u|EHk(m,y, s,t)exp (A (s +t)) dtds
00

[e oXe o]
+lulg § § r(z,y,5t)exp (A (s + 1)) dtds
00

< [+ N (a1 +az)]exp(A(z +y))-
From (2.17) it follows that Tu € E. This proves that the operator T maps
E into itself.

Next we verify that the operator T is a contraction map. Let u(z,y),
v(z,y) € E. From (2.16) and using the hypotheses we have
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[(Tw) (z,y) — (Tv) (z,y)]

< EEIF(x,y,s,t,u(s,t)) — F(z,y,5,t,v(s,1))| dtds

+ C:g:igj G (2,9, 5,t,u(s,1)) — G (2,1, 5,t,v (s, 1))| dtds
< ggk (,9,8,8) exp (A (s + ) [u (5,) — v (5,2)| exp (= (5 + 1)) dtds

+ ogogr (9,5, t) exp (A (s + £)) [u (5,8) — v (s, )| exp (= (s + £)) dtds
< Ju— U|E:§::§k (9, 5,t) exp (A (s + 1)) dtds

OL’og

{ r(z,y,5t)exp(A(s+1))dtds
0

< fu—vlg (1 +az) exp (A(z +)).
Consequently we have
Ty —Tvlg < (a1 + a2) ju—v|g.

Since a1 + a2 < 1, it follows from Banach fixed point theorem (see [5, p.37])
that T has a unique fixed point in E. The fixed point of T is however a
solution of equation (VF).

REMARK 1. We note that Theorem 1 given above yields existence and
uniqueness of solutions of equation (VF) in E.

Indeed the following theorem holds concerning the uniqueness of solution
of equation (VF) in R™

THEOREM 2. Suppose that the functions F,G in equation (VF) satisfy
the conditions (2.11), (2.12) with k(z,y,s,t) = b(z,y)f(s,t), r(z,y, s,t) =
c(z,y)g(s,t), where b, f,c,g € C(A,Ry). Let p be as in (2.5). Then the
equation (VF) has at most one solution on A in R".

Proof. Let u; (z,y) and ug (z,y) be two solutions of equation (VF). Then
we have
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(2.18)  w(z,y) —u2(z,y)

Ty
= [{F (z,9,5,t,u1 (s,1) = F (2,9, 5,1, u2 (5, 1))} dtds
00
+ S S {G (:1:7 Y,8,tu (S,t)) - G(.’II, Y, 8,1, ug (Sat))}dtds‘
00

From (2.18) and using the hypotheses we have
(219) lul (.'IJ, y) — U2 (.’I?, y)'

Y
<b(z,y) | | F (s,t) lua (5,8) — ua (5,1)| dtds
00

[o o o]

+ c(:v,y) S S g (Sat) |U1 (S,t) - U2 (S,t)l dtds.
00

Here it is easy to observe that B(z,y) and M defined in (2.7) and (2.10)
reduces to B(z,y) = 0 and M = 0. Now an application of Lemma (with
a(z,y) = 0) to (2.19) yields |u; (z,y) — u2 (z,y)| <0, and hence u; (z,y) =
ug (z,y). Thus there is at most one solution to the equation (VF) on A
in R™.

3. Estimates on solutions

In this section we obtain estimates on the solutions of equation (VF)
under some suitable conditions on the functions involved in equation (VF).

First we shall give the following theorem concerning the estimate on the
solution of equation (VF).

THEOREM 3. Assume that the functions F,G in equation (VF) satisfy the
conditions

(3.1) |F (z,y,8,t,u (S’t))| <b(z,y) f(s,8)u(st)l,

(3.2) |G (z, 9,5, t,u (s, b)) < c(z,y) g (s,2) u(s, )],
where b, f,c,g € C(A,Ry). Let p, D(z,y) be as in (2.5), (2.8) and
1 o0 00
(3.3) M = 5 (S) (S) g (s,t) By (s,t) dtds,
where By (z,y) is defined by the right hand side of (2.7) by replacing a(z,y)
by |h(z,y)|. If u(z,y), (z,y) € A is any solution of equation (VF) then

for (z,y) € A.
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Proof. Using the fact that u(z,y), (z,y) € A is a solution of equation (VF)
and the hypotheses we have

Ty
(3-5) u(z,9)] < |h(z,9)| + §§IF (2., 5,t,u(s,1))| dtds
00
+ S S |G (z,y,s,t,u(s,t))| dtds
00

Ty
< |h(z,y) +b(z, ) | £ (5,) [u(s,t)| dtds
00

c(z,y) S S g (s,t) |u(s,t)| dtds.
00

Now an application of Lemma to (3.5) yields (3.4).

Next, we shall obtain the estimation on the solution of equation (VF)
assuming that the functions F, G satisfy Lipschitz type conditions.

THEOREM 4. Suppose that the functions F,G be as in Theorem 2. Let
p, D(z,y) be as in (2.5), (2.8) and

Ty
(3.6) ho (z,y) = {§IF (2,y,5,¢,h(s,1))| dtds

00

o0 00
+ § V16 (z,y,5,1,h(s,1))| dtds,
0 0

(3.7) = —— S S s,t) Ba (s, t) dtds,

where By (z,y) is defined by the mght hand side of (2.7) by replacing a(z,y)
by ho (z,y). If u(z,y), (z,y) € A is any solution of equation (VF) then

(38) Iu(:c,y) —h(:l,‘,y)| < B2 (IL',y) +M2D (zay)a

for (z,y) € A.

Proof. Using the fact that u(z,y), (z,y) € A is a solution of equation (VF)
we observe that

(39) U’(‘Tay) - h((L‘,y)
zy
= S X{F (z,y,8,t,u(s,t)) — F(z,y,s,t,h(s,t))}dtds
00
£ 1 TG (0,5, (5,8)) — G (2,,5,8, h (5,1))) deds
00
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TY [e oXe o]
+HF(a;,y,s,t,h(s,t))dtder S S G(z,y,s,t, h(s,t))dtds.
00 00

From (3.9) and using the hypotheses we have

TY
< Iho (2, 9)| +b(@,9) §§ £ (5,0)fu(5,2) — (5,1 deds
00

z,y) S S (s,t) |u(s,t) — h(s,t)|dtds.

Now an application of Lemma to (3.10) yields (3.8).

The following theorem deals with the estimate on the difference between
the solutions of equation (VF) and the system of Volterra integral equations
Ty
(3-11) v(z,y) = h(z,y) + || F (z,9,5,t,0(s,1)) dids,
00

for (z,y) € A, where the functions h, F' are as given in equation (VF).
THEOREM 5. Suppose that the functions F,G be as in Theorem 2 and

G(z,y,s,t,0) = 0. Let v(z,y), (z,y) € A be a solution of equation (3.11)
such that v (z,y)] < Q, where @ > 0 is a constant. Let

a(z,y) = Qe(z,y) | | g(s,t)dtds,
00
and p, D(z,y) be as in (2.5), (2.8) and
o0 o0
(3.12) M; = 1 S S g (s,t) B3 (s,t) dtds,
1-p3 0

where Bs (z,y) is defined by the right hand side of (2.7) by replacing a(z,y)
by a(z,y). If u(z,y), (x,y) € A is a solution of equation (VF), then
(3.13) lu(z,y) —v(z,y)| < Bs(z,y) + M3D (z,y),

for (z,y) € A.

Proof. Using the facts that u(z,y) and v(z,y) for (z,y) € A are the solu-
tions of equations (VF) and (3.11) we observe that

(3.14) u(z,y)—v(zy)
= S S {F(z,y,s,t,u(s,t)) — F(z,y,s,t,v(st))}dtds
00
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+ S {G T y’ S7t7u(8’t)) —G(w’y’ S’t7v(s’t))
0

/\Ot"c

z,y,8,t,v(s,t)) — G(z,y,s,t,0)} dtds.

From (3.14) and using the hypotheses we have

(3.15)  |u(z,y) —v(z,y)]

<a(z,y)+b(z,y) aﬁf (s,t) |u(s,t) —v(s,t)|dtds
00

oo 00

+c(z,y) S S g(s,t)|u(s,t) —v(s,t)| dtds.
00

Now an application of Lemma to (3.15) yields (3.13).

4. Continuous dependence

In this section we study the continuous dependence of solutions of equa-
tion (VF) on functions involved on the right hand side of equation (VF) and
also the continuous dependence of solutions of equations of the form (VF)
on parameters.

Consider the equation (VF) and the system of Volterra-Fredholm integral
equations

zY
(4.1) v(z,y) = h(z,y) + || F (z,9,5,t,0(s, 1)) dtds
00

+ | [ G(=,,8,t,v(s,t)) dtds,

for (z,y) € A, where h € C(A,R™); F,G € C(A2 X R",R").

The following theorem shows the continuous dependence of solutions of
equation (VF) on the right hand side of equation (VF).

THEOREM 6. Suppose that the functions F,G in equation (VF) satisfy
the conditions (2.11), (2.12) with k(z,y,s,t) = b(z,y)f(s,t), r(z,y,s,t) =
c(z,y)g(s,t), where b, f,c,g € C(A,Ry). Assume that

(4.2)  |h(=z,y) — h(z,y)| +\\ |F(z,9,s,t,v(s,t)) — F(z,y, s,t,v(s,t))|dtds

O e
(=R X

+S S |G(m,y,3,tav(3,t))—G(m>y)3at,v(3at))ldtds <g,
00
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where h, F,G and h, F,G are the functions involved in equations (VF) and
(4.1), v(z,y) is a solution of (4.1) and € > 0 is an arbitrarily small constant.
Let p, D(z,y) be as in (2.5), (2 8) and

(4.3) = — S S g (s,t) By (s,t)dtds,

where By (z,y) is defined by the right hand side of (2.7) by replacing a(z,y)
by €. Then the solution u(z,y), (z,y) € A of equation (VF) depends con-
tinuously on the functions involved on the right hand of equation (VF).

Proof. Since u(z,y) and v(z, y) for (z,y) € A are the solutions of equations
(VF) and (4.1) we have

(4.4) u(z,y) —v(z,y) = h(z,y) — h(z,y)
+ ﬁ{F (z,y,s,t,u(s,t)) — F(z,y,s,t,v(s,t))
+1?“0(a: ¥, 8, t,v(s,t)) — F (z,9,5,t,v(s,t)} dids
+ OSOOSO{G (z,y,s,t,u(s,t)) — G(z,y,s,t,v(s,t))
+§:((; y, s,t,0(s, 1)) — G(z,y, s, t,v(s, ) }dtds.

From (4.4) and using the hypotheses we have

(4.5)  |u(z,y) —v(z,y)| .
<|h(z,y) = h(z,y)]
zY
+{VIF (2,0, 5,t,u(s,t)) = F (2,9, 5,t,v (s, 1)) |dtds
00
ﬁlF z,y,8,t,v(s,t)) — F (x,y,s,t,v(s,t)) |dtds

00
00 00

+ S S |G (z,y,s,t,u(s,t)) — G(z,y,s,t,v(s,t))|dtds

00
+°SOOSO|G(:1: y,5,t,v(s,t)) — G (z,y, 5,8, v (s,t))|dtds
00
Ty
<etb(@y) | [£(s8)uls,0) — v(s dtds
00
re(@y) | [ 9(s,1)luls,t) - v(s,0ldtds.
00
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Now an application of Lemma to (4.5) yields

(46) |u($,y) —D(IL‘,y)l < By (z,y)+M4D (‘Tay)a

for (z,y) € A. From (4.6) it follows that the solutions of equation (VF)
depends continuously on the functions involved on the right hand side of
equation (VF).

REMARK 2. From (4.6), it is easy to observe that if By (z,y) and D(z,y)
are bounded for (z,y) € A and € — 0, then |u(z,y) — v (z,y)| — 0 on A.

We next consider the following systems of Volterra-Fredholm integral
equations

Ty
(47) 2 (‘T’y) = h(l‘,y) + S SH(I,y,S,t,Z (37t) ,,LL) dtds
00
[e ele o]
+ S S L(z,y,s,t,z(s,t),p)dtds,
00
and
Ty
(4.8) z(z,y) = h(z,y) + S S H (z,y,s,t,2z(s,t), po) dtds
00
o0 o0
+ S S L(z,y,s,t,z(s,t), o) dtds,
00

for (z,y) € A, where h,H, L are in R™, p, 1o are real parameters and h €
C(A,R™);H,Le¢ C’(A2 x R" x R,R").

The next theorem shows the dependency of solutions of equations (4.7)
and (4.8) on parameters.

THEOREM 7. Assume that the functions H, L satisfy the conditions

(4.9) |H (z,y, s,t,z(s,t), 1) — H (z,y,8,t,Z (s, t), p)|
<b(z,y) f(s,t) |2 (s,t) — 2 (s,8)],
(4.10) |H (z,y,s,t,2(s,t), ) — H(z,y,8,t,2(s,t), po)|
<71 (2, 9,8,) [ — pol 5
(4.11) |L(z,y,s,t,2(s,t),u) — L(z,y,s,t,Z2(s,t), )]
Selz,y)g(s,t)[2(s,t) — 2 (s, 1)l
(4.12) |L{z,y,s,t,z(s,t),u) — L(z,y,s,t,2(s,t), to)]

<r2(z,y,8t) | — ol
where b, f,c,g € C(A,Ry);r1,m2 € C (A%, Ry). Let
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Ty 00 00
(4.13) ag(z,y) = |u — pol Hrl (z,y, s, t)dtds + S S ro (z,y,s,t) dtds| ,
00 00
and p, D(z,y) be as in (2.5), (2.8) and
1 o0 00
(4.14) Ms;=— S g (s,t) Bs (s,t) dtds,
1-p5 0

where Bs (z,y) is defined by the right hand side of (2.7) by replacing a(z,y)
by ao (z,y). Let z1 (z,y) and 23 (z,y) be the solutions of equations (4.7) and
(4.8), respectively. Then

(415) lzl (‘Tay) — 22 (:I",y)l < Bs (z,y)+M5D (‘Tay)a

for (z,y) € A.

Proof. Let z(x,y) = z1 (z,y) — 22 (z,y). Since 21 (z,y) and z2 (z,y) are
the solutions of equations (4.7) and (4.8) we have

(416) z (IE,y) =21 (:r,y) — 22 (:L" y)

= SS{H(:L‘,y,S,t,zl (s’t)yﬂ)‘”H(l‘,y’S,taz2(3>t),l‘)
00

+ H (z,y,8,t,22(s,t),u) — H(x,y,s,t,22(s,t), o)} dtds

o0 00

+ S S {L(way,sat,zl (S,t),u)—L(I,yaS>t,z2 (Sat)7//')
00

+ L(z,y,s,t,22(s,t),u) — L(z,y,s,t,22(s,t), po)} dtds.

From (4.16) and using the hypotheses we have

zy
(4.17) |z (z,y)| < b(z,y) S S f(s,t) |21 (s,t) — 22 (s,t)|dtds
00

Ty
+ S 87'1 (z,y, s,t) |p — poldtds
00

o0 o0

+e(@y) § §a(s,1) 12 (s,8) — 22 (s, t)|dtds
00 %0 00

+§ § r2(z,9,5,1) |1 — poldtds
00

Ty
ao (z,y) +b(z,y Hf (s,t) |z (s,t)| dtds
00

+c(z,y) S S g (s,t)|z(s,t)| dtds.
00
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Now an application of Lemma to (4.17) yields (4.15), which shows the de-
pendency of solutions of equations (4.7) and (4.8) on parameters.

REMARK 3. We note that the ideas of this paper can be extended to study
the Volterra-Fredholm integral equations of the form (VF) involving more
than two independent variables. The details of the formulation of such
results are very close to those of given above with suitable modifications.
Here we omit the details.
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