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INITIAL AND BOUNDARY VALUE PROBLEMS 
FOR FUZZY DIFFERENTIAL EQUATIONS 

Abstract. This paper deals with the study of existence and uniqueness criteria for 
initial and boundary value problems associated with fuzzy differential equations of first 
and second order with the help of a modified Lipschitz condition. 

1. Introduction 
The theory of fuzzy differential equations has attracted much attention 

in recent times [8]. Many authors ([3]—[10]) have studied initial and bound-
ary value problems associated with first and second order Fuzzy differential 
equations on the metric space (En , D) of normal fuzzy convex sets with the 
distance D given by the supremum of the Hausdorff distance between the 
corresponding a - level sets. 

Recently in [3] they have been obtained existence and uniqueness condi-
tions of solutions for initial value problems associated with nonlinear second 
order and higher order fuzzy differential equations satisfying a Lipschitz con-
dition. In this paper, we prove existence and uniqueness theorems for first 
and second order nonlinear fuzzy differential equations satisfying a modified 
Lipschitz condition. 

Section 2 is concerned with notations and terminology relating to fuzzy 
sets and also deals with existence and uniqueness theorem for initial value 
problems associated with first order fuzzy differential equations. In sec-
tion 3 we prove existence and uniqueness results for initial and boundary 
value problems for second order fuzzy differential equations with the help of 
Green's functions and contraction mapping theorem. Here, we use a modi-
fied Lipschitz condition that involves all the variables. The results obtained 

2000 Mathematics Subject Classification: 34A10, 26E50, 34B15. 
Key words and phrases: fuzzy differential equations, existence, uniqueness, initial and 

boundary value problems, contraction mapping, Green's function. 



828 M. S. N. Murty, G. Suresh Kumar 

here, include more general class of problems than in ([3], [5] and [7]) obtained 
for first and second order fuzzy differential equations. 

2. Preliminaries 
Let Pk(Rn) denotes the family of all nonempty compact convex subsets 

of Rn. Define the addition and scalar multiplication in Pk(Rn) as usual. 
Radstrom [12] states that Pk(Rn) is a commutative semigroup under ad-
dition, which satisfies the cancellation law. Moreover, if a, ¡3 € R and 
A,B € PkiR71), then 

a(A + B) = aA + aB, a{(3A) = (a(3)A, 1-A = A 
and if a , (3 > 0, then (a + (3) A = aA + [3A. The distance between A and B 
is defined by the Hausdorff metric 

d(A, B) = inf{e : A C N(B, e), B C N(A, e)}, 
where 

N(A, e) = {xE Rn : \\x - y\\ < e, for some y G A}. 
Let I = [a, 6] C R be a compact interval and let 

En = {u : Rn [0,1 ]/u satisfies (i)-(iv) below}, 
where 
(i) u is normal, i.e. there exists an XQ G Rn such that u{xo) = 1; 
(ii) u is fuzzy convex, i.e. for x,y G Rn and 0 < A < 1, 

u(Xx + (1 - A)y) > min[u(x), u(y)]; 
(iii) u is upper semicontinuous; 
(iv) [it]0 = cl{x G Rn/u(x) > 0} is compact. 
For 0 < a < 1, the a-level set is denoted and defined by [u]a = {x G 
Rn/u(x) > a}. Then, from (i)-(iv) it follows that [u]a G Pk{Rn) for all 
0 < a < 1. 

Define D : En x En -»• [0, oo) by the equation 
D(u,v) = sup{d(M a , [v]a)/a G [0,1]}, 

where d is the Hausdorff metric defined in Pk(Rn). It is easy to show that 
D is a metric in En and using results of [[2], [11]], we see that (En, D) is a 
complete metric space, but not locally compact. Moreover, the distance D 
verifies that 

D(u + w, v + w) = D(u, v), u,v,w G En, 
D{\u,Xv) = \X\D(u,v), u,v G En,\€ R, 
D{u + w,v + z) < D(u, v) + D(w, z), u, v,w,z G En. 

We note that (En, D) is not a vector space. But it can be embedded iso-
morphically as a cone in a Banach space [12]. 
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Regarding fundamentals of differentiability and integrabilitry of fuzzy 
functions we refer to 0 . Kaleva [5], Lakshmikantham and Mohapatra [8]. 

Let I = [a, b] C R and / : I x En —» En be continuous. A mapping 
(f>: I —> En is a solution of the initial value problem 

(2-1) y' = f(t,y), y(a) = k, 
where A; is a real constant, if and only if 0 is a solution of the integral 
equation 

t 
(2.2) y(t) = k + \f(s,y(s))ds. 

a 

It is easily seen that C(I, En), the set of all continuous mappings from I to 
En is complete with the distance 

H{u, v) = sup {D(u(t),v(t))e-pt} , 
tei 

where u, v E C(I, En) and p(> 0) € R is fixed. 

THEOREM 2.1 . Let f : I x En —> En be a continuous map and suppose that 
there exists M > 0 such that 
(2.3) D(f(t, m), f(t, u2)) < MD(ui,U2)e~pt 

for all t G I,U\,U2 G En. Then the initial value problem (2.1) has a unique 
solution on the interval I. 
P r o o f . For any u € C(I, En) define the operator Q : C(I, En) -> C(I, En) 
given by 

t 
[Qu}(t) = k + \f(s,u(s))ds, Vi G I. 

a 
Consider 

H(Qu, Qv) = sup {D([Qu](t), [Qv\(t))e~pt\ 
tei 

= sup | l>(J f(s, u(s))ds, \ f(s, V ( S ) )d S ) )e -" t | 

< sup I i£>(/(5,«(«)), /(s,t ;( s)))ds e~pt 1 

< sup \\MD(u(s),v(s))dse~ps e~pt 

tei 
< MH{u,v) sup {{t-a) e~pt\ 

tei 
< MH(u, v)(b — a)e~pa. 



830 M. S. N. Murty, G. Suresh K u m a r 

We can choose p > 0 such that M{b — a)e"pa < 1 and Q is a contraction 
mapping. By using Contraction Mapping Principle, Q has a unique fixed 
point which is a unique solution of the initial value problem (2.1). • 

E X A M P L E 2.1 Consider the initial value problem 
( 2 . 4 ) y'(t) = qe-',ty(t) + F(t), y ( l ) = k, t € [1,2] 

where F G C([l ,2],En) , and q, k G R. Here 

f ( t , y ) = qe~pty(t) + F(t). 

Consider 

D ( f ( t , y), f ( t , z)) < D(qe~pty + F(t), qe'ptz + F(t)) 

= \q\e-ptD(y,z) 

= MD(y, z)e~pt, 

where M ~ Clearly, / satisfies (2.3). By taking q = 1, and from 
Theorem 2.1 the initial value problem (2.4) has a unique solution for all 
p > 0. 

We denote by C'(I, En) the set of all continuously differentiate map-
pings from I to En. For u, v G C'(I, En), we define the distance 

Hi(u, v) = H(u, v) + H(u', v'). 

L E M M A 2.1 (Lemma 1 of [3]). (C'(I, En), H\) is a complete metric space. 

3. Initial and boundary value problems 
In this section we prove the existence and uniqueness results for initial 

and boundary value problems associated with second order fuzzy differential 
equations. 

Consider the nonlinear fuzzy differential equation of second order 

( 3 . 1 ) y" + f ( t , y , y ' ) = 0 

satisfying 
(3.2) y(a) = mi y'(a) = m2 

where / : I x En x En —• En is continuous, mi and m^ are real constants. 
If cj) is a solution of (3.1) satisfying (3.2) if and only if (f> is a solution of 

the integral equation 
t 

( 3 . 3 ) y(t) = m i + m2(t - a ) + j ( s - t ) f ( s , y(s),y'(s))ds. 
a 

Now we prove the existence and uniqueness theorem for initial value problem 
(3.1) satisfying (3.2) using the integral representation (3.3). 
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THEOREM 3 . 1 . Let f : I x En x En —> En be a continuous map and suppose 
that there exist M\, M2 > 0 such that 

(3.4) D(f(t,u1,u2),f(t,vl,v2)) < [M1D(ul,v1) + M2D(u2,v2)}e-pt 

for allt € I = [a, b], u\,u2, v\,v2 € En. Then the initial value problem (3.1) 
satisfying (3.2) has a unique solution on the interval I. 

P r o o f . Consider t h e c o m p l e t e m e t r i c space (C'(I,En) ,H\) . F o r any u € 
C'{I, En) define t h e o p e r a t o r T : C'{I, En) C'(I, En) by 

t 
[Tu](t) = mi +m2(t -a) + \(s- t)f(s,y(s),y'(s))ds, t G /. 

a 

Using definitions of Hi,H,T, a n d ( 3 . 4 ) we have 

H!(TU,TV) = H(Tu,Tv) + H([Tu}', [Tv]') 

= sup j l > ( j (a - t)f{s, u(s), u'(s))ds, J (s - t)f(s, v(s), t / ( s ) ) d s ) e - ' t J 
+ sup | D ( \ f ( s , u(s),u'(s))ds, j f(s, v(s), 

< sup 15 \s - t\ D(f(s, u(s), u'(s)), f(s, *(*), i/(s)))<fc e~pt| 

+ sup j j Z > ( / ( s , « ( « ) , « ' W ) , / ( * > « ( « ) , v'(s)))ds e~pt | 

< sup 1 1 (t - s ) [ M 1 L > ( u ( s ) , u ( a ) ) + M2D(u'(s), v'(s))]e-psds e~pt 1 
tei \t J 

+ sup i [ A f i D ( u ( a ) , « ( a ) ) + M2D{u'{s), vf^e-^ds e~pt I 
tei {a J 

< s u p i \ ( t - s ) [ M i f f ( u , t ; ) + M 2 i f ( u / , v / ) ] i f e e - ' * ! 

tei U J 

+ sup 1 5 [MXHIU, V) + M2H(U', v')]ds e~pt 1 

= [MXH(U, v) + M2H(U', t / ) ] f sup H (t - s)ds e~pt 1 + sup j J ds e~pt 
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< max{Mi, M2}H1(U, V) ( s u p j ^ ~ e " * j + sup {(t - a) E 

= HI(U, V) max{Afi, M2} ^ e~pa + (6 - a j e - ' " 

We can choose p > 0 such that 

max{Afi, M2} ^ " ^ V * * 1 + (b - < 1. 

It follows that T is a contraction mapping in the complete metric space 
C'((/, En), H\). By Contraction Mapping Principle, T has a unique fixed 
point u, which is a unique solution of the initial value problem (3.1) satis-
fying (3.2) . . 

Now consider the nonlinear fuzzy differential equation of second order 

(3.5) y" + f(t,y,y') = 0 

satisfying the boundary condition 

(3.6) y(a) = h y(b) = k2 

where / : I x En x En —> En is continuous, k\ and are real constants. 
We know that C'((I, En), H\) is a complete metric space. For any </> € 
C"((J, En),Hi) define the operator T<p € C'{I, En) by 

b 
[T(j)}(t) = j G(t, s)f(s, <f,{8),<l>'(s))ds, V t e l , 

a 

where G(t, s) is the Green's function for the homogeneous boundary value 
problem. Hence, 4> E C'(I, En) is a solution of (3.5) satisfying (3.6) if and 
only if <fi is a fixed point of T. 

THEOREM 3.2. Let f : I x En x En —> En be continuous and suppose that 
there exist Mi, M2 > 0 such that (3-4) is satisfied. Then the two point fuzzy 
boundary value problem (3.5) satisfying (3.6) has a unique solution on the 
interval I. 

P r o o f . Consider the boundary value problem 

(3.7) y" = 0 

satisfying 

(3.8) y(a) = 0, y(b) = 0. 

This problem has no nontrivial solution. Therefore, if h is any continu-
ous function on [a, 6], the equation y"{t) + h(t) = 0 has a unique solution 
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satisfying the boundary condition (3.8) given by 

b 
y(t) = \G(t, s)h(s)ds, 

a 

' (b — t)(s — a) 
where 

G(t,s) = 
b — a 

(b-s)(t-a) 

b — a 

a < s < t < b 

a < t < s < b. 

Consider 
b f t b y 

s u p \ | G ( t , 8)\ds = s u p J J | G ( t , a)|da + \\G(t, s)\ds 
tei tei 

b - t \ t — a 
= sup < - t (s — a)ds + - t (b — s)ds — i t i _ n J ( i - a J 

tei I b - a 

= B p f ! i J M ) . 
tei I 2 J 

This function attains its maximum value at t = , and hence 

(3.9) 

Again consider 

sup J |G(i,s)|ds < 
tei „ 

( b - a ) 2 

r f (i — a) + (t — b) 1 
sup \Gtt, s) ds = sup \ ± ; k > \ . 
tei a tei I 2 ( 6 - a ) ) 

The maximum of this function is attained at a and b which yields 

(3.10) sup \ |Gt(t , s)|ds < 
tei „ 

b — a 

We know that C'((I, En), H\) is complete metric space. For any u G 
C'(I, En) define the operator F : C'(I, En) -> C'(I, En) by 

(3.11) [Fu](t) = \ G(t, s)f(s, u(s),u'(s))ds, t e I. 

Using the bounds on G, Gt given by (3.9) and (3.10), definitions of Hi, H, F, 
and from (3.4) we have 
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Hx{Fu, Fv) = H(Fu, Fv) + H{[Fu}', [Fw]') 

= sup |D(\G(t, s)f(s, u{s), u'(s))ds, J G(t, s)f(s, v(s), ¿(s^ds^ j 

+ sup Gt(t, s)f{s, u(s),u'(s))ds, j Gt(t, s)f(s, v(s), v / ( s ) ) d s ) e - " t | 

< supjjlG(t,s)\D(f(s ,u(s) ,u'(s)) , f (s ,v(s) ,v'(s)))ds c ^ j 

+ SupS^JGt(t,s)\D(f(sMs),u\s))J(sMs),v'(s)))ds e ^ j 

+ sup j jj |Gt(t, s )|[MiD(u(s) , v(s)) + M2D(u'(s), v'(s))]e~psds e " ' 4 J 

< sup \G(t,s)\[MiH(u,v) + M2H(u' ,v')]ds e - p t | 

+ sup | \ IGt{t, s ) | [ M i # ( u , v) + M2H(U', 

= [MIH{U,v) + M2H(U',V')} 

x ^sup | \ |G(t, s)|ds e-^j + sup j \ \Gt(t, s)|ds e _ p i } ) 

< max{M1,M2}H1(u,v) ŝup j ^ e~ptj + sup { e"* j ) 

= m a X { M 1 , M 2 } H 1 ( U , V ) ^ + e - ' a 

W e can choose p > 0 such t h a t 

m a x { M i , M2} ^ + ^ < 1 

and F is contraction mapping. B y Contraction Mapping Principle, F has a 
unique fixed point, which is a unique solution of the boundary value problem 
(3 .5) satisfying (3 .8) . 
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By applying the above procedure to the boundary value problem 

y" + f(t,y(t)+p(t),y'(t)+p'(t)) = 0 

y(a) = 0, y(b) = 0, 

where p is a polynomial of first degree such that p(a) = k\, p(b) = k2 
a unique solution yi(t) is constructed. Let y(t) = yi(t) +p(t). Then it is 
easily seen that y is a solution of the boundary value problem (3.5) satisfying 
(3 .6) . Hence the theorem. • 

THEOREM 3.3 . Let f : I x En x En —> En be continuous and suppose that 
there exist MI, M2 > 0 such that (3-4) is satisfied. Then the two point fuzzy 
boundary value problems of the second kind, (3.5) satisfying 
(3 .12) y'(a) = A* y(b) = k2 

and (3.5) satisfying 

(3 .13) y(a) = h y'(b) = k2 

have unique solutions on the interval I. 

P r o o f . First, we consider the boundary value problem 

(3 .14) y" = 0 

satisfying 

(3 .15) y(a) = 0 y'(b) = 0 . 

This problem has no nontrivial solution. Therefore, if g is any 
continuous function on [a, 6], the equation 

(3 .16) y"(t)+g(t) = 0 

satisfying the boundary condition (3 .15) has a unique solution, given by 
b 

y(t) = \K(t,s)g(s)ds, 

where 

Consider 

K(t,s) = 
s — a a < s < t < b 
t — a a < t < s < b. 

sup 11K(t, s)\ds = sup < t (s — a)ds + (t — a) \ ds > 
[ a t J 

= sup { i ^ ! + ( t _ o ) ( 6 - t ) } . 
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This function attains its maximum value at t = and hence 

(3.17) sup ( |K(t , s)\ds < (b 

tei 2 

Again consider 
b 

(3.18) sup j \Kt(t, s)|ds = sup {b — t} <b-a. 
tei a tei 

We know that C'((/, En), H i ) is complete metric space. For any v £ 
C'{I,En) define the operator $ : C'(I,En) -> C'(I,En) by 

b 
(3.19) [$u](t) = \K(t,s)f(s,v(s),v'(s))ds tel. 

a 

Similarly using the bounds on K,Kt given by (3.17) and (3.18), definitions 
of H i , H , $ , (3.4), and following the procedure as in Theorem 3.2, we have 

< [M\H{v,w) + M2H(v',w')] 

x ^sup ^ ( i , + s u p | j 

< max{M1,M2}H1(v,w) ^sup + SUP {(b ~ a ) e _ p i } ) 

= max{M1,M2}Hi(y, w) + (b - a) e ^ . 

We can choose p > 0 such that 

max{Afi, M 2 } + (6 - a ) ) e " " a < 1 

and $ is a contraction mapping. By Contraction Mapping Principle, 
has a unique fixed point, which is a unique solution of the boundary value 
problem (3.5) satisfying (3.15). 

By applying the above procedure to the boundary value problem 

y" + f(t,y(t) + q(t),y'(t)+q'(t)) = 0 , 

y(a) = 0 , y'(b) = 0 , 

where q is a polynomial of first degree such that q(a) = ki, q'(b) = k2 a 
unique solution y(t) is constructed. Let y(t) = y(t) + q{t). Then it is easily 
seen that y(t) is a solution of the boundary value problem (3.5) satisfying 
(3.13). 
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Similarly we can prove that the boundary value problem (3.5) satisfying 
(3.12) has a unique solution on I . • 

EXAMPLE 3.1. Consider the two point boundary value problem 

(3.20) y"{t) = qie~pty(t) + q2e-pty'(t) + ¿(t), t E [1, 2] 

(3.21) y ( l ) = h, 3/(2) = k2, 

where (f> G C( [ l , 2], £ " ) , gi, q2, fci, k2 e R and p (> 0) G -R is fixed. Here 

(3.22) /(t, y2) = qie-<*yi{t) + q2e"pty2(t) + ¿ ( i ) 

Consider 

D ( f ( t , y 1 , y 2 ) , f { t , z 1 , z 2 ) ) 

< D ( q i e - p t y i ( t ) + q2e~pty2(t) + ^ q ^ z ^ t ) 

+ q2e-ptz2(t) + <f>(t)) 

= D ( q i e - p t y i ( t ) + q2e~pty2(t), q ^ z ^ t ) + q2e-piz2(t)) 

< \qi\e~ptD(yi, zi) + \q2\e-ptD(y2, z2) 

= [M\D{y\, Z l ) + M\D(yi, zi)]e~pt, 

where M\ = \qi \ and M2 = [^l- Therefore / satisfies the modified Lipschitz 
condition. 

In particular, if we take q\ = 2, q2 = 4, then the two point boundary 
value problem (3.20) satisfying (3.21) has a unique solution for all values of 
p> 1. 

EXAMPLE 3.2. Consider Example 3.1 with boundary conditions (3.21) re-
placed by 

(3.23) y{ 1) = fci, y'(2) = k2. 

By taking q\ = 1 and q2 = and from Theorem 3.3 the boundary value 
problem (3.20) satisfying (3.23) has a unique solution for all values of p > 1. 

Acknowledgement. The authors are grateful to the learned referee for 
a very careful reading of the manuscript with many useful suggestions for 
improvement. 
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