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INITIAL AND BOUNDARY VALUE PROBLEMS
FOR FUZZY DIFFERENTIAL EQUATIONS

Abstract. This paper deals with the study of existence and uniqueness criteria for
initial and boundary value problems associated with fuzzy differential equations of first
and second order with the help of a modified Lipschitz condition.

1. Introduction

The theory of fuzzy differential equations has attracted much attention
in recent times [8]. Many authors ([3]-[10]) have studied initial and bound-
ary value problems associated with first and second order Fuzzy differential
equations on the metric space (E™, D) of normal fuzzy convex sets with the
distance D given by the supremum of the Hausdorff distance between the
corresponding « - level sets.

Recently in [3] they have been obtained existence and uniqueness condi-
tions of solutions for initial value problems associated with nonlinear second
order and higher order fuzzy differential equations satisfying a Lipschitz con-
dition. In this paper, we prove existence and uniqueness theorems for first
and second order nonlinear fuzzy differential equations satisfying a modified
Lipschitz condition.

Section 2 is concerned with notations and terminology relating to fuzzy
sets and also deals with existence and uniqueness theorem for initial value
problems associated with first order fuzzy differential equations. In sec-
tion 3 we prove existence and uniqueness results for initial and boundary
value problems for second order fuzzy differential equations with the help of
Green’s functions and contraction mapping theorem. Here, we use a modi-
fied Lipschitz condition that involves all the variables. The results obtained
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here, include more general class of problems than in ([3], [5] and [7]) obtained
for first and second order fuzzy differential equations.

2. Preliminaries

Let Py(R™) denotes the family of all nonempty compact convex subsets
of R™. Define the addition and scalar multiplication in Pg(R") as usual.
Radstrom [12] states that Px(R™) is a commutative semigroup under ad-
dition, which satisfies the cancellation law. Moreover, if o, € R and
A, B € P(R"™), then

a(A+B)=aA+aB, ofA)=(p)4A, 1-A=A

and if o, 3 > 0, then (a + §)A = aA + BA. The distance between A and B
is defined by the Hausdorff metric

d(A,B) =inf{e: A C N(B,¢),B C N(4,¢)},
where
N(Aje)={z € R": ||z —y|| <, for some y € A}.
Let I = [a,b] C R be a compact interval and let
E™ ={u: R" — [0,1]/u satisfies (i)—(iv) below},
where

(i) u is normal, i.e. there exists an zg € R" such that u(zg) = 1;
(ii) u is fuzzy convex, i.e. for z,y € R" and 0 < A < 1,
u(Az + (1 = A)y) > minfu(z), u(y)];
(iii) u is upper semicontinuous;
(iv) [u]® = cl{z € R*/u(x) > 0} is compact.
For 0 < a < 1, the a-level set is denoted and defined by [u]* = {z €
R™/u(z) > a}. Then, from (i)-(iv) it follows that [u]* € Py(R™) for all
0<a<l.
Define D : E™ x E™ — [0,00) by the equation
D(u,v) = sup{d((u]*, ]/ € 0,1},
where d is the Hausdorff metric defined in P(R™). It is easy to show that
D is a metric in E™ and using results of [[2], [11]], we see that (E™, D) is a
complete metric space, but not locally compact. Moreover, the distance D
verifies that
D(u+ w,v+ w) = D(u,v), u,v,w€ E",
D(Au, W) = [A\|D(u,v), u,ve€ E™"X€R,
D(u+ w,v + 2) < D(u,v) + D(w, 2), u,v,w,z€ E™
We note that (E™, D) is not a vector space. But it can be embedded iso-
morphically as a cone in a Banach space [12].
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Regarding fundamentals of differentiability and integrabilitry of fuzzy
functions we refer to O. Kaleva [5], Lakshmikantham and Mohapatra [8].

Let I = [a,b] C R and f : I x E® — E™ be continuous. A mapping
¢ : I — E™ is a solution of the initial value problem

(21) y/ = f(t, y)7 y(a) =k,
where k is a real constant, if and only if ¢ is a solution of the integral
equation

(2.2) y(t) = k+§ f(s,y(s))ds.

a

It is easily seen that C(I, E™), the set of all continuous mappings from I to
E™ is complete with the distance

H(u,v) = sup {D(u(t),v(t))e "},

where u,v € C(I, E™) and p(> 0) € R is fixed.

THEOREM 2.1. Let f : I x E™ — E™ be a continuous map and suppose that
there exists M > 0 such that

(23) D(f(ta ul)a f(t’ UZ)) < MD(ula u2)e~pt
for all t € I,uj,ug € E™. Then the initial value problem (2.1) has a unique
solution on the interval I.
Proof. For any u € C(I, E™) define the operator Q : C(I, E™) — C(I, E™)
given by

t

[Qul(t) =k + Sf(s,u(s))ds, vtel.
a

Consider

H(Qu,Qu) = sup {D((Qul(t), [Qu](t)e*}

t ¢
= sup {D(S f(s,u(s))ds,sf(s,v(s))ds))e‘pt}

tel 2 2

D(f(s,u(s)), £(5,v(s)))ds ,,}

IA
o
m e
~T
—N— ——

MD(U(S), U(s))dse—ps e_pt}

< MH(u,v) Stlel? {(t —a) e‘Pt}
(
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We can choose p > 0 such that M(b— a)e ™ < 1 and Q is a contraction
mapping. By using Contraction Mapping Principle, @ has a unique fixed
point which is a unique solution of the initial value problem (2.1). =

ExXAMPLE 2.1 Consider the initial value problem
(2.4) y'(t) = e Py(t) + F(t), y(1)=k, te(L,2]
where F € C([1,2], E™), and q, k € R. Here
ft,y) = qe™y(t) + F ().
Consider
D(f(t,y), f(t,2)) < D(ge 'y + F(t),ge "z + F(2))
= lqle™"'D(y, 2)
= MD(y,z)e ",
where M = |q|. Clearly, f satisfies (2.3). By taking ¢ = 1, and from

Theorem 2.1 the initial value problem (2.4) has a unique solution for all
p>0.

We denote by C'(I, E™) the set of all continuously differentiable map-
pings from I to E™. For u,v € C'(I, E™), we define the distance
Hy(u,v) = H(u,v) + H(,v').
LEMMA 2.1 (Lemma 1 of [3]). (C'(I, E™), H1) ts a complete metric space.

3. Initial and boundary value problems

In this section we prove the existence and uniqueness results for initial
and boundary value problems associated with second order fuzzy differential
equations.

Consider the nonlinear fuzzy differential equation of second order

(3.1) ¥+ ft,y,9) =0
satisfying
(3.2) yla) =m;  y'(a) =mo

where f: I x E™ x E™ — E™ is continuous, m; and ms are real constants.
If ¢ is a solution of (3.1) satisfying (3.2) if and only if ¢ is a solution of

the integral equation

¢
(3.3) y(t) =m1+ma(t —a) + | (s ~ ) f(5,y(s), ¥/(5))ds.

a
Now we prove the existence and uniqueness theorem for initial value problem
(3.1) satisfying (3.2) using the integral representation (3.3).
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THEOREM 3.1. Let f : I x E™ x E™ — E™ be a continuous map and suppose
that there exist My, Ms > 0 such that
(34)  D(f(t,u1,uz), f(t,v1,v2)) < [M1D(u1,v1) + MaD(ug,vz)]e™"*

forallt € I = [a,b], u1,uz,v1,v2 € E™. Then the initial value problem (3.1)
satisfying (3.2) has a unique solution on the interval I.

Proof. Consider the complete metric space (C'(I, E™), Hy). For any u €
C'(I, E™) define the operator T': C'(I, E™) — C'(I, E™) by

[Tu](t) = m1+m2t—a+§(s—tf(sy) '(s))ds, tel.

Using definitions of Hq, H,T, and (3.4) we have
H1(Tu,Tv) = H(Tu,Tv) + H([Tu}, [Tv]")

= sup {D(S (s = t)f (s,u(s), u'(s))ds, | (s — 1) f (s, v(s), U'(S))dS)e_"t}

a

+ sup {D(S f(s,u(s),u'(s))ds, | f(s,v(s), v'(s))ds)e“”t}

tel 2 2

< sup {n = D (s, u(6), (), £(5,0(5),/(5))ds }
+sup {§ D(f(s,u(s),w(s)), f(s,v(s),v'(s)))ds e"’t}

< sup {Sft— )M D(u(s),o(5)) + MaD(w! (5, V' (5))e™ds }
aup {§ [MyD(u(s),v(s)) + MaD(w/(s),v'(s))]e~"ds e_pt}

<

stlel? {S (t — s)[M1H(u,v) + MoH (W, v')]ds e_”t}

a

¢
+ sup {S [MiH (u,v) + MaH(u',v')|ds e_”t}
tel |2

tel tel

= [M1H(u,v) + MoH (¥ ,v")] (sup {S (t—s)dse ”t} + sup {Sds e ”t})
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< max{M;, Mo} Hy(u,v) (Stlel? {@ e—Pt} + sup {(t-a) e_”t}>

(b—a)®
2

= H(u, v) max{ M, Mz} ( e P+ (b— a)e"’a) .

We can choose p > 0 such that
(b—a)?
2
It follows that T is a contraction mapping in the complete metric space
C'((I,E™), Hy). By Contraction Mapping Principle, T has a unique fixed
point u, which is a unique solution of the initial value problem (3.1) satis-

fying (3.2). =

Now consider the nonlinear fuzzy differential equation of second order

max{M, Mp} ( e 4 (b— a)e—m) <1

(3.5) y' + fty,y) =0
satisfying the boundary condition
(3.6) y(a) =k y(b) =k

where f : I x E™ x E™ — E™ is continuous, k; and k9 are real constants.
We know that C'((I,E™), H;) is a complete metric space. For any ¢ €
C'((I, E™), Hy) define the operator T'¢ € C'(I, E™) by

b
[T9](t) = | G(t, s)f(s,d(s), ¢/ (s))ds, V tel,

a

where G(t, s) is the Green’s function for the homogeneous boundary value
problem. Hence, ¢ € C'(I, E™) is a solution of (3.5) satisfying (3.6) if and
only if ¢ is a fixed point of T

THEOREM 3.2. Let f: I x E™ x E™ — E™ be continuous and suppose that
there exist My, My > 0 such that (3.4) is satisfied. Then the two point fuzzy
boundary value problem (8.5) satisfying (3.6) has a unique solution on the
interval I.

Proof. Consider the boundary value problem

(3.7) y' =0
satisfying
(3.8) y(a) =0, y(b)=0.

This problem has no nontrivial solution. Therefore, if 4 is any continu-
ous function on [a, b], the equation y”(t) + h(t) = 0 has a unique solution
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satisfying the boundary condition (3.8) given by

b
y(t) = [ G(t, s)h(s)ds,

a

where
(_b:lf)(iﬂ e<s<t<b
G(ta 3) = -4
w a<t<s<hbh.
b—a - - =
Consider
b t b
supx |G(t, s)|ds = sup {S |G(t, s)|ds + S |G’(t,s)|ds}
tel 2 :

¢ b
:sup{b—tS(s—a)ds+z:a5(b—s)ds}
a t

tel

+b

This function attains its maximum value at ¢ = 232, and hence

(3.9) sup§ IG(t, s)|ds < b—a)

a
Again consider

b

—a 2 _ 12
splicit s = e { S5}

a
The maximum of this function is attained at a and b which yields

b b—a
(3.10) § t(t, 8)lds < —

a

We know that C'((I, E™),H;) is complete metric space. For any u €
C'(I, E™) define the operator F : C'(I, E™) — C'(I, E™) by

b
(3.11) [Ful(t) = [ G(t, ) f(s,u(s),u/(s))ds, tel

Using the bounds on G, G; given by (3.9) and (3.10), definitions of Hy, H, F,
and from (3.4) we have
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Hi(Fu, Fv) = H(Fu, Fv) + H([Fu]', [Fv]')

IA

IN

IA

IA

b
sup{ (G, ) f(s,u(s),v/(s))ds, | (t,s)f(s,v(s),v'(s))ds)e"’t}

tel 2 2

b
+ sup {D(S Gi(t, s)f(s,u(s),v(s))ds, | Ge(t, 5) f (s, v(s), v'(s))ds)e"’t}

tel 2

b
sup {S |G(¢, )| D(f(s,u(s), u'(s)), f(s,v(s),7'(s)))ds e_pt}
b
+ Sup {S |G(t, )| D(f (s, u(s),%(s)), f(s,0(s),v'(s)))ds e_pt}
b
Stlel? {S |G(t, s)|[M1D(u(s),v(s)) + MaD(u'(s),v'(s))]e P°ds e"’t}

b
+sup {S |G1(t, 5)|[M1D(u(s), v(s)) + M2D(u/(s),2(s)) e **ds 6”’”}

b
stlelp {S |G(¢, s)|[M1H (u,v) + Mo H(u/,v")]ds e_"t}

+ sup {S |Ge(t, 8)|[M1H (u,v) + MoH (u/,v'))ds e_”t}
tel |

[M1H (u,v) + MaH(u',v")]

X <St1€lII) { § IG(t, s)|ds e"’t} + sup { lf |Ge(t, 5)|ds e_pt}>

a

max{ M, Mz} Hi (u, v) (Sup {L—z;ﬁ } +su {(b;_a) e—pt})

tel tEI

ma.x{Ml,Mg}Hl(u,v) (w e P + @ e—p"> .

We can choose p > 0 such that

max{Ml,Mg}(@ e P4 (b;za) e_p“) <1

and F is contraction mapping. By Contraction Mapping Principle, F' has a
unique fixed point, which is a unique solution of the boundary value problem
(3.5) satisfying (3.8).
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By applying the above procedure to the boundary value problem
v+ f(ty(t) +p(t),y'(t) +P'(8) =0
y(a) =0, y(b) =0,
where p is a polynomial of first degree such that p(a) = ki, p(b) = ke
a unique solution y;(t) is constructed. Let y(t) = y1(t) + p(t). Then it is

easily seen that y is a solution of the boundary value problem (3.5) satisfying
(3.6). Hence the theorem. =

THEOREM 3.3. Let f : I x E™ x E™ — E™ be continuous and suppose that
there exist My, My > 0 such that (3.4) is satisfied. Then the two point fuzzy
boundary value problems of the second kind, (8.5) satisfying

(3.12) y'(@) =k yb) =k
and (8.5) satisfying
(3.13) y@) =k y'(b)=ko

have unique solutions on the interval I.

Proof. First, we consider the boundary value problem

(3.14) y' =0
satisfying
(3.15) y(a) =0 y'(b) = 0.

This problem has no nontrivial solution. Therefore, if g is any
continuous function on [a, b], the equation
(3.16) y'(t)+9(t)=0

satisfying the boundary condition (3.15) has a unique solution, given by

b
y(t) = | K(t, 5)g(s)ds,

a
where
s—a a<s<t<}

K(t,s) =
(t9) {t—a a<t<s<hb.

Consider

b
supS |K(t,s)|ds = sup {
t tel

el ,

b
(s —a)ds+ (t—a) Sds}

t

A~ R e o

:sup{ t_za)2 +(t—a)(b—t)}.
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This function attains its maximum value at t = “T+b and hence
b 2
b—

(3.17) sup | | K (t, s)|ds < (b-a)

tel , 2
Again consider

b
(3.18) supS|Kt(t, s)|ds=sup{b—t} < b—a.
t tel

a

We know that C’((I,E™),H;) is complete metric space. For any v €
C'(I, E™) define the operator @ : C'(I, E™) — C'(I, E™) by

b
(3.19) [®v](t) = SK(t, 8)f(s,v(s),v'(s))ds te€l.

Similarly using the bounds on K, K given by (3.17) and (3.18), definitions
of H;, H,®, (3.4), and following the procedure as in Theorem 3.2, we have

H, (®v, dw)
< [MiH(v,w) + MaH(v',w")]

b b
X (sup {S |K(t,3)|ds e"”t} + sup {S | K¢(t, s)|ds e"’t}>
tel | g tel | g

max{My, My} Hy (v, w) (i‘é? {we”’t} +sup {(b— a)e‘Pt})

tel

IA

b-a)? pa
= max{Mi, Ma}H;(v,w) 5 € Prr(b—a)e P ).
We can choose p > 0 such that
(b_a’)2 —pa
max{Ml,Mg} T+(b—a) e <l

and ® is a contraction mapping. By Contraction Mapping Principle, ®
has a unique fixed point, which is a unique solution of the boundary value
problem (3.5) satisfying (3.15).

By applying the above procedure to the boundary value problem

y' + f(ty() +a(t), ' () + 4 (1) =0,
y(a) =0, ¥(b)=0,
where ¢ is a polynomial of first degree such that g(a) = k1, ¢'(b) = k2 a
unique solution y(t) is constructed. Let y(t) = y(t) + ¢(t). Then it is easily

seen that y(t) is a solution of the boundary value problem (3.5) satisfying
(3.13).
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Similarly we can prove that the boundary value problem (3.5) satisfying
(3.12) has a unique solution on I. =

ExXAMPLE 3.1. Consider the two point boundary value problem

(3.20) ' (t) = e y(t) + e Y () + (t), te[1,2]

where ¢ € C([1,2], E™), q1, ¢2, k1, k2 € R and p(> 0) € R is fixed. Here
(3.22) Fty1,12) = e (t) + e Pya(t) + 6(t)

Consider

D(f(t, , ?12)7 f(t, 21, 22))
< D(qie "'y (t) + goe P ya(t) + ¢(t), e 21 (t)

+ gze P 2o(t) + ¢(t))
= D(qie”"y1(t) + g2 y2(t), e 21(t) + gee ™ 22(2))
<lgile™D(y1, 21) + |g2le ™ D(yz, 23)
= [M1D(y1,21) + M1D(y1, 21)le™,

where M; = |q1| and Ma = |g2|. Therefore f satisfies the modified Lipschitz
condition.

In particular, if we take q1 = 2, g2 = 4, then the two point boundary
value problem (3.20) satisfying (3.21) has a unique solution for all values of
p=>1

ExAMPLE 3.2. Consider Example 3.1 with boundary conditions (3.21) re-
placed by

(3.23) y(1) =k, y'(2) = k2.

By taking ¢ = 1 and ¢» = %, and from Theorem 3.3 the boundary value
problem (3.20) satisfying (3.23) has a unique solution for all values of p > 1.

Acknowledgement. The authors are grateful to the learned referee for
a very careful reading of the manuscript with many useful suggestions for
improvement.
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