

A. K. Shukla, J. C. Prajapati

GENERALIZATION OF A CLASS OF POLYNOMIALS

Abstract. An attempt is made to investigate a class of polynomials defined in form of Rodrigues type formula and Mittag-Leffler Function. Some generating relations and finite summation formulae have also been obtained.

1. Introduction, notation and results

Chak [1] defined a class of polynomials as:

$$(1.1) \quad G_{n,k}^{(\alpha)}(x) = x^{-\alpha-kn+n} e^x (x^k D)^n [x^\alpha e^{-x}],$$

where $D = \frac{d}{dx}$, k is constant and $n = 0, 1, 2, \dots$

Chatterjea [2] studied a class of polynomials for generalized Laguerre polynomial as:

$$(1.2) \quad T_m^{(\alpha)}(x, p) = \frac{1}{n!} x^{-\alpha-n-1} \exp(px^r) (x^2 D)^n [x^{\alpha+1} \exp(-px^r)].$$

Gould and Hopper [3] introduced generalized Hermite polynomials as:

$$(1.3) \quad H_n^r(x, a, p) = (-1)^n x^{-a} \exp(px^r) D^n [x^a \exp(-px^r)].$$

Singh [11] obtained generalized Truesdell polynomials by using Rodrigues formula, which is defined as:

$$(1.4) \quad T_n^{(\alpha)}(x, r, p) = x^{-\alpha} \exp(px^r) (xD)^n [x^\alpha \exp(-px^r)].$$

Mittal [5] proved a Rodrigues formula for a class of polynomials $T_{kn}^{(\alpha)}(x)$, which is given by

$$(1.5) \quad T_{kn}^{(\alpha)}(x) = \frac{1}{n!} x^{-\alpha} \exp\{p_k(x)\} D^n [x^{\alpha+n} \exp(-p_k(x))]$$

where, $p_k(x)$ is a polynomial in x of degree k and $x \in (0, \infty)$.

Key words and phrases: Mittag-Leffler function, generating relations, finite summation formulae.

2000 Mathematics Subject Classification: 33E10, 33E12, 33E99, 44A45.

Mittal [6] also proved the following relation

$$(1.6) \quad T_{kn}^{(\alpha+s-1)}(x) = \frac{1}{n!} x^{-\alpha-n} \{ \exp p_k(x) \} \theta^n [x^\alpha \exp \{-p_k(x)\}]$$

where, $\theta \equiv x(s + xD)$, $D = \frac{d}{dx}$ and s is constant, which can be generalized as:

$$\theta^n = x^n (s + xD)(s + 1 + xD)(s + 2 + xD) \dots (s + (n - 1) + xD).$$

In this paper, we introduced a new class of polynomial defined as

$$(1.7) \quad T_{kn}^{(\alpha, \beta+s-1)}(x) = \frac{1}{n!} x^{-\beta-n} E_\alpha \{ p_k(x) \} \theta^n \left[x^\beta E_\alpha \{ -p_k(x) \} \right]$$

where $\alpha \geq 0$, $n = 0, 1, 2, \dots$, k is finite and non-negative integer, $E_\alpha(z)$ is Mittag-Leffler function (Mario N. Berberan e Santos [4]) which is defined as:

$$(1.8) \quad E_\alpha(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + 1)}.$$

Generalized Laguerre polynomials (Srivastava and Manocha[14]):

It is denoted by the symbol $L_n^{(\alpha)}(x)$ and defined as

$$(1.9) \quad L_n^{(\alpha)}(x) = \frac{x^{-\alpha-n-1}}{n!} (x^2 D)^n [x^{\alpha+1} e^{-x}].$$

Hermite polynomials (Rainville [10]):

It is denoted by the symbol $H_n(x)$ and defined as

$$(1.10) \quad H_n(x) = (-1)^n \exp(x^2) D^n [\exp(-x^2)].$$

Konhauser polynomials of first kind (Srivastava [13]):

It is denoted by the symbol $Y_n^\alpha(x; k)$ and defined as:

$$(1.11) \quad Y_n^\alpha(x; k) = \frac{x^{-kn-\alpha-1}}{k^n n!} (x^{k+1} D)^n [x^{\alpha+1} e^{-x}].$$

Konhauser polynomials of second kind (Srivastava [13]):

It is denoted by the symbol $Z_n^\alpha(x; k)$ and defined as:

$$(1.12) \quad Z_n^\alpha(x; k) = \frac{\Gamma(kn + \alpha + 1)}{n!} \sum_{j=0}^n (-1)^j \binom{n}{j} \frac{x^{kj}}{\Gamma(kj + \alpha + 1)}$$

where k is a positive integer.

$L_n^{\alpha, \beta}(x)$ **polynomials** (Prabhakar and Suman [9]) which is defined as:

$$(1.13) \quad L_n^{\alpha, \beta}(x) = \frac{\Gamma(\alpha n + \beta + 1)}{n!} \sum_{k=0}^n \frac{(-n)_k x^k}{\Gamma(\alpha k + \beta + 1) k!},$$

$\operatorname{Re}(\beta) > -1$ and α is any complex number with $\operatorname{Re}(\alpha) > 0$.

The following relations are also established by Prabhakar and Suman [9]

$$(1.14) \quad L_n^{k, \beta}(x^k) = Z_n^{\beta}(x; k),$$

$$(1.15) \quad L_n^{1, \beta}(x) = L_n^{\beta}(x).$$

Srivastava and Manocha [14] verified following result by using induction method,

$$(1.16) \quad (x^2 D)^n \{f(x)\} = x^{n+1} D^n \{x^{n-1} f(x)\}.$$

We are also using the operational formulae (based on Mittal [7], Patil and Thakare [8] work)

$$(1.17) \quad \theta^n(xuv) = x \sum_{m=0}^{\infty} \binom{n}{m} \theta^{n-m}(v) \theta_1^m(u) \quad \text{where } \theta_1 \equiv x(1 + xD),$$

$$(1.18) \quad e^{t\theta} \left(x^{\alpha} f(x) \right) = x^{\alpha} (1 - xt)^{-(\alpha+s)} f[x(1 - xt)^{-1}],$$

$$(1.19) \quad e^{t\theta} \left(x^{\alpha-n} f(x) \right) = x^{\alpha} (1 + t)^{-1+\alpha+s} f[x(1 + t)].$$

2. Generating relations

We obtained some generating relations of (1.7) as:

$$(2.1) \quad \sum_{n=0}^{\infty} T_{kn}^{(\alpha, \beta+s-1)}(x) t^n = (1 - t)^{-(\beta+s)} E_{\alpha}[p_k(x)] E_{\alpha}[-p_k\{x(1 - t)^{-1}\}],$$

$$(2.2) \quad \sum_{n=0}^{\infty} T_{kn}^{(\alpha, \beta-n+s-1)}(x) t^n = (1 + t)^{\beta+s-1} E_{\alpha}[p_k(x)] E_{\alpha}[-p_k\{x(1 + t)\}],$$

$$(2.3) \quad \sum_{n=0}^{\infty} \binom{m+n}{n} T_{k(n+m)}^{(\alpha, \beta+s-1)}(x) t^m = (1 - t)^{-(\beta+s+n)} \frac{E_{\alpha}[p_k(x)]}{E_{\alpha}[p_k\{x(1 - t)^{-1}\}]} \\ \times T_{kn}^{(\alpha, \beta+s-1)}\{x(1 - t)^{-1}\}$$

where $0 < t < 1$.

Proof of (2.1): From (1.7), we consider

$$\sum_{n=0}^{\infty} x^n T_{kn}^{(\alpha, \beta+s-1)}(x) t^n = x^{-\beta} E_{\alpha}\{p_k(x)\} e^{t\theta} [x^{\beta} E_{\alpha}\{-p_k(x)\}]$$

using (1.18), above equation reduces to,

$$\begin{aligned} \sum_{n=0}^{\infty} x^n T_{kn}^{(\alpha, \beta+s-1)}(x) t^n \\ = x^{-\beta} E_{\alpha}\{p_k(x)\} x^{\beta} (1-xt)^{-(\beta+s)} E_{\alpha}[-p_k\{x(1-xt)^{-1}\}] \end{aligned}$$

and replacing t by t/x , which gives (2.1).

Proof of (2.2): From (1.7), we consider

$$\sum_{n=0}^{\infty} T_{kn}^{(\alpha, \beta-n+s-1)}(x) t^n = x^{-(\beta-n)-n} E_{\alpha}\{p_k(x)\} e^{t\theta} [x^{\beta-n} E_{\alpha}\{-p_k(x)\}]$$

using (1.19) and simplifying the above equation which reduces to:

$$\begin{aligned} \sum_{n=0}^{\infty} T_{kn}^{(\alpha, \beta-n+s-1)}(x) t^n \\ = x^{-\beta} E_{\alpha}\{p_k(x)\} x^{\beta} (1+t)^{-1+(\beta+s)} E_{\alpha}[-p_k\{x(1+t)\}]. \end{aligned}$$

Proof of (2.3): Again from (1.7) we consider

$$\theta^n [x^{\beta} E_{\alpha}\{-p_k(x)\}] = n! x^{\beta+n} \frac{1}{E_{\alpha}\{p_k(x)\}} T_{kn}^{(\alpha, \beta+s-1)}(x)$$

or

$$e^{t\theta} (\theta^n [x^{\beta} E_{\alpha}\{-p_k(x)\}]) = n! e^{t\theta} \left[x^{\beta+n} \frac{1}{E_{\alpha}\{p_k(x)\}} T_{kn}^{(\alpha, \beta+s-1)}(x) \right]$$

applying operational formula, above equation can be written as

$$\begin{aligned} \sum_{m=0}^{\infty} \frac{t^m t^{m+n}}{m!} [x^{\beta} E_{\alpha}\{-p_k(x)\}] \\ = n! x^{\beta+n} (1-xt)^{-(\beta+s+n)} \frac{1}{E_{\alpha}[p_k\{x(1-xt)^{-1}\}]} T_{kn}^{(\alpha, \beta+s-1)}\{x(1-xt)^{-1}\}. \end{aligned}$$

Therefore, we get

$$\begin{aligned} \sum_{m=0}^{\infty} \frac{1}{m! n!} (m+n)! x^{\beta+m+n} \frac{1}{E_{\alpha}\{p_k(x)\}} T_{k(m+n)}^{(\alpha, \beta+s-1)}(x) t^m \\ = x^{\beta+n} (1-xt)^{-(\beta+s+n)} \frac{1}{E_{\alpha}[p_k\{x(1-xt)^{-1}\}]} T_{kn}^{(\alpha, \beta+s-1)}\{x(1-xt)^{-1}\}. \end{aligned}$$

Above equation can be written as:

$$\sum_{m=0}^{\infty} x^m \binom{m+n}{n} T_{k(m+n)}^{(\alpha, \beta+s-1)}(x) t^m \\ = (1-xt)^{-(\beta+s+n)} \frac{E_{\alpha}\{p_k(x)\}}{E_{\alpha}[p_k\{x(1-xt)^{-1}\}]} T_{kn}^{(\alpha, \beta+s-1)}\{x(1-xt)^{-1}\}$$

and replacing t by t/x , which immediately leads to (2.3).

3. Finite summation formulae

We obtained two finite summation formulae for (1.7) as

$$(3.1) \quad T_{kn}^{(\alpha, \beta+s-1)}(x) = \sum_{m=0}^n \frac{1}{m!} (\beta)_m T_{k(n-m)}^{(\alpha, s-1)}(x), \quad \text{where } \beta > 0,$$

$$(3.2) \quad T_{kn}^{(\alpha, \beta+s-1)}(x) = \sum_{m=0}^n \frac{1}{m!} (\beta-\gamma)_m T_{k(n-m)}^{(\alpha, \gamma+s-1)}(x), \quad \text{where } \beta-\gamma > 0.$$

Proof of (3.1): We can write (1.7) as,

$$T_{kn}^{(\alpha, \beta+s-1)}(x) = \frac{1}{n!} x^{-\beta-n} E_{\alpha}\{p_k(x)\} \theta^n [x x^{\beta-1} E_{\alpha}\{-p_k(x)\}],$$

using (1.17) we get,

$$T_{kn}^{(\alpha, \beta+s-1)}(x) = \frac{1}{n!} x^{-\beta-n} E_{\alpha}\{p_k(x)\} x \sum_{m=0}^n \binom{n}{m} \theta^{n-m} [E_{\alpha}\{-p_k(x)\}] \theta_1^m (x^{\beta-1})$$

which yields

$$(3.1.1) \quad \frac{1}{n!} x^{-\beta-n} E_{\alpha}\{p_k(x)\} x \sum_{m=0}^n \frac{n!}{m!(n-m)!} \\ \times x^{n-m} [(s+xD)(s+1+xD)(s+2+xD) \dots (s+(n-m-1)+xD)] \\ \times [E_{\alpha}\{-p_k(x)\}] x^m [(1+xD)(2+xD)(3+xD) \dots (m+xD)] x^{\beta-1} \\ = E_{\alpha}\{p_k(x)\} \sum_{m=0}^n \frac{1}{m! (n-m)!} \prod_{i=0}^{n-m-1} (s+i+xD) [E_{\alpha}\{-p_k(x)\}] (\beta)_m,$$

where $(\beta)_m$ is a factorial function defined (Rainville [10]) as

$$(\beta)_m = \beta(\beta+1)(\beta+2) \dots (\beta+m-1), \quad m-1 \geq 0$$

and

$$(\beta)_0 = 1.$$

If $\beta = 0$ in (1.7) and n is replaced by $n - m$ then (1.7) becomes

$$T_{k(n-m)}^{(\alpha, s-1)}(x) = \frac{1}{(n-m)!} x^{-(n-m)} E_{\alpha}\{p_k(x)\} \theta^{n-m} [E_{\alpha}\{-p_k(x)\}]$$

thus, we have

$$\frac{1}{(n-m)!} \theta^{n-m} [E_{\alpha}\{-p_k(x)\}] = x^{n-m} \frac{1}{E_{\alpha}\{p_k(x)\}} T_{k(n-m)}^{(\alpha, s-1)}(x).$$

Above equation can be written as:

$$(3.1.2) \quad \frac{1}{(n-m)!} \prod_{i=0}^{n-m-1} (s+i+xD) [E_{\alpha}\{-p_k(x)\}] = \frac{1}{E_{\alpha}\{p_k(x)\}} T_{k(n-m)}^{(\alpha, s-1)}(x).$$

Use of (3.1.2) and (3.1.1), yields (3.1).

Proof of (3.2): From (1.7) we consider,

$$\sum_{n=0}^{\infty} x^n T_{kn}^{(\alpha, \beta+s-1)}(x) t^n = x^{-\beta} E_{\alpha}\{p_k(x)\} e^{t\theta} [x^{\beta} E_{\alpha}\{-p_k(x)\}],$$

using (1.18) above equation reduces to,

$$\sum_{n=0}^{\infty} x^n T_{kn}^{(\alpha, \beta+s-1)}(x) t^n = (1-xt)^{-(\beta+s)} E_{\alpha}[p_k(x)] E_{\alpha}[-p_k\{x(1-xt)^{-1}\}].$$

Above result can be written as:

$$\begin{aligned} \sum_{n=0}^{\infty} x^n T_{kn}^{(\alpha, \beta+s-1)}(x) t^n \\ = (1-xt)^{-(\gamma+s)} \sum_{m=0}^{\infty} (\beta-\gamma)_m \frac{(xt)^m}{m!} E_{\alpha}[p_k(x)] E_{\alpha}[-p_k\{x(1-xt)^{-1}\}]. \end{aligned}$$

Using result (2.1), we get

$$\begin{aligned} \sum_{n=0}^{\infty} x^n T_{kn}^{(\alpha, \beta+s-1)}(x) t^n \\ = \sum_{m=0}^{\infty} (\beta-\gamma)_m \frac{(xt)^m}{m!} x^{-\gamma} E_{\alpha}\{p_k(x)\} e^{t\theta} [x^{\gamma} E_{\alpha}\{-p_k(x)\}] \\ = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (\beta-\gamma)_m \frac{x^m t^{n+m}}{m! n!} x^{-\gamma} E_{\alpha}\{p_k(x)\} \theta^n [x^{\gamma} E_{\alpha}\{-p_k(x)\}] \end{aligned}$$

$$\begin{aligned}
&= \sum_{n=0}^{\infty} \sum_{m=0}^n (\beta - \gamma)_m \frac{x^m t^n}{m! (n-m)!} x^{-\gamma} E_{\alpha}\{p_k(x)\} \theta^{n-m} [x^{\gamma} E_{\alpha}\{-p_k(x)\}] \\
&= \sum_{n=0}^{\infty} \sum_{m=0}^n \frac{1}{m!} x^m (\beta - \gamma)_m \frac{x^{-\gamma}}{(n-m)!} E_{\alpha}\{p_k(x)\} \theta^{n-m} [x^{\gamma} E_{\alpha}\{-p_k(x)\}] t^n.
\end{aligned}$$

Equating the coefficients of t^n , we get

$$\begin{aligned}
&x^n T_{kn}^{(\alpha, \beta+s-1)}(x) \\
&= \sum_{m=0}^n \frac{1}{m!} x^m (\beta - \gamma)_m \frac{x^{-\gamma}}{(n-m)!} E_{\alpha}\{p_k(x)\} \theta^{n-m} [x^{\gamma} E_{\alpha}\{-p_k(x)\}]
\end{aligned}$$

therefore, we obtain

$$\begin{aligned}
&T_{kn}^{(\alpha, \beta+s-1)}(x) \\
&= \sum_{m=0}^n \frac{1}{m!} (\beta - \gamma)_m \frac{x^{-\gamma-(n-m)}}{(n-m)!} E_{\alpha}\{p_k(x)\} \theta^{n-m} [x^{\gamma} E_{\alpha}\{-p_k(x)\}]
\end{aligned}$$

applying (1.7), which follows (3.2).

4. Special cases

Here, we obtained some special cases of $T_{kn}^{(\alpha, \beta+s-1)}(x)$ polynomials.

Putting $\alpha = 1$ and replacing β by α in (1.7), then (1.7) immediately leads to,

$$(4.1) \quad T_{kn}^{(1, \alpha+s-1)}(x) = T_{kn}^{(\alpha+s-1)}(x)$$

therefore, we can say that (1.6) is a particular case of (1.7).

If $\alpha = 1$, replacing β by $\alpha + 1$, $p_k(x) = p_1(x) = x$ and $s = 0$ in (1.7), then this equation reduces to

$$(4.2) \quad T_n^{(1, \alpha)}(x) = L_n^{(\alpha)}(x) = L_n^{1, \alpha}(x) = Z_n^{\alpha}(x; 1) = Y_n^{\alpha}(x; 1).$$

If we replace β by $\alpha + 1$, $\alpha = 1$, $p_k(x) = px^r$ and $s = 0$ in (1.7), gives

$$(4.3) \quad T_{rn}^{(1, \alpha)}(x) = T_{rn}^{(\alpha)}(x, p).$$

Substituting $\alpha = 1$, replacing β by $1 - n$, $p_k(x) = x^2$, $s = 0$ in (1.7) and using (1.16), which yields

$$(4.4) \quad T_{2n}^{(1, 1-n)}(x) = \frac{(-x)^n}{n!} H_n(x).$$

Acknowledgement. Authors are thankful to the anonymous reviewer for valuable comments and suggestions.

References

- [1] A. M. Chak, *A class of polynomials and generalization of Stirling numbers*, Duke J. Math. 23 (1956), 45–55.
- [2] S. K. Chartterjea, *On generalization of Laguerre polynomials*, Rend. Mat. Univ. Padova 34 (1964), 180–190.
- [3] H. W. Gould and A. T. Hopper, *Operational formulas connected with two generalizations of Hermite polynomials*, Duke Math. J. 29 (1962), 51–63.
- [4] Mario N. Berberan e Santos, *Properties of the Mittag-Leffler relaxation function*, J. Math. Chemistry, 38(4) (2005), 629–635.
- [5] H. B. Mittal, *A generalization of Laguerre polynomials*, Publ. Math. Debrecen, 18 (1971), 53–88.
- [6] H. B. Mittal, *Operational representations for the generalized Laguerre polynomials*, Glasnik Mat. Ser III, 6(26) (1971), 45–53.
- [7] H. B. Mittal, *Bilinear and bilateral generating relations*, Amer. J. Math. 99 (1977), 23–45.
- [8] K. R. Patil and N. K. Thakare, *Operational formulas for a function defined by a generalized Rodrigues formula-II*, Sci. J. Shivaji Univ. 15 (1975), 1–10.
- [9] T. R. Prabhakar and Suman Rekha, *Some results on the polynomials $L_n^{\alpha, \beta}(x)$* , Rocky Mountain J. Math. 8(4) (1978), 751–754.
- [10] E. D. Rainville, *Special Functions*, The Macmillan Company, New York, 1960.
- [11] R. P. Singh, *On generalized Truesdell polynomials*, Rivista de Mathematica 8 (1968), 345–353.
- [12] A. N. Srivastava and S. N. Singh, *Some generating relations connected with a function defined by a generalized Rodrigues formula*, Indian J. Pure Appl. Math. 10(10) (1979), 1312–1317.
- [13] H. M. Srivastava, *Some biorthogonal polynomials suggested by the Laguerre polynomials*, Pacific J. Math. 98(1) (1982), 235–250.
- [14] H. M. Srivastava and H. L. Manocha, *A Treatise on Generating Functions*, Ellis Horwood Limited, Chichester, 1984.

DEPARTMENT OF MATHEMATICS
 S.V. NATIONAL INSTITUTE OF TECHNOLOGY
 SURAT-395007, INDIA
 E-mails: ajayshukla2@rediffmail.com (A. K. Shukla)
 jyotindra18@rediffmail.com (J. C. Prajapati)

Received November 2, 2006; revised version December 9, 2006.