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CERTAIN SUBCLASSES OF MULTIVALENT P R E S T A R L I K E 
F U N C T I O N S W I T H N E G A T I V E COEFFICIENTS 

Abstract. The object of the present paper is to investigate coefficient estimates and 
closure theorems for functions belonging to the class B, a] of p-valent prestarlike 
functions with negative coefficients. We also consider integral operators associalted with 
functions belonging to the class B, a]. Furthermore, distortion theorems involving 
a generalized fractional integral (derivative) opertaor for functions in this class are proved. 

1. Introduction 
Let A(p) denote the class of functions of the form: 

oo 
(1.1) f ( z ) = + ap+kzP+k (P e N = { 1 , 2 . . . }) 

fc=l 

which are analytic and p-valent in the unit disc U = {z : \z\ < 1}. A 
function f ( z ) £ A(p) is called p-valent starlike of order 7(0 < 7 < p) if f ( z ) 
satisfies the conditions 

(1-2) R e { ^ } > 7 (z€U) 

and 

(1.3) \ R e j ^ ® j d 0 = 27rp ( z e U ) . 

We denote by S* (p, 7) the class of all p-valent starlike functions of order 7. 
The class S* (p, 7)'was introduced by Patil and Thakare [14]. The function 

( L 4 ) s " { z ) = (1 - ^ ( r - 7 ) ( 0 < 7 < i > ; p e i V ) 
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is the familiar extremal function for the class S*(p, 7). Setting 

I I [2(p — 7) + m — 2] 
m=2 (1.5) ^ 

Sj(z) can be written in the form 

(fc G iV\{l}; 0 < 7 < p), 

( 1 . 6 ) S P ( z ) = z? + J 2 G P ( 7 , k + l ) z ? + k . 
k= 1 

Clearly , s^ (z) € 7) and Gp(7, fc + 1) is a decreasing function in 7 
(0 < 7 < p € N) and satisfies 

'00 ( 7 < ^ ) 

lim Gp(7, A; + 1) = < 1 (7 = ^ ) 
fc—>00 

l o ( 7 > ^ ) -
For yl and B fixed, - 1 < A < B < 1, 0 < B < 1, 0 < a < p and p € N , we 
say that a function f ( z ) € A(p) is in the class S * ( A , B, a) if and only if 

z f ' ( z ) 

(1.7) M 
•p 

B ^ - - \ p B + ( A ~ B ) ( p - a ) ] 

< 1 (z G U ) . 

The class S * ( A , B, a) was introduced by Aouf [3]. 
Let ( / * g) (z) denote the Hadamard product (or convolution) of the 

functions f ( z ) and g(z),that is, if f ( z ) is given by (1.1) and g(z) is given by 
00 

g ( z ) = ZP + J 2 b p + k z P + k , 
k=1 

( 1 . 8 ) 

then 
00 

( 1 . 9 ) ( / * g ) ( z ) = zP + Y . % + k b P + k z p + k . 

k=1 

A function f ( z ) G A(p) is said to be p-valent prestarlike function of order 
7 (0 < 7 < p) if 
(1-10) ( f * S r ) ( z ) € S * ( p , 7), 

where s^(z) is defined by (1.4).We denote by the class of all p-valent 
prestarlike functions of order 7 (see [9] and [18]). 

For a function f ( z ) G A ( p ) , we define the following differential operator: 

(1-11) D l p f ( z ) = f ( z ) , 
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(1.12) D\}Pf(z) = (l-X)f(z)+^zf'(z) = Dx>p(Dlpf(z)) (A > 0; p € N), 

(1-13) D2
xJ(z) = Dx,p(D{pf(z)), 

and 

(1 .14) D l J { z ) = D x , p ( D ^ f ( z ) ) (p, n € N; A > 0) . 

It can be easily seen that 

(1.15) Dn
x,pf (z) = * + f ^ ( ^ ß r a p + k z ^ k 

k=l P 

We note that: 

(i) D?J(z) = Dnf(z) (Salagean [16]); 
(ii) D l J ( z ) = D l f { z ) (AL-Oboudi [2]); 
(iii) When A = 1, the operator D™pf{z) = D p f ( z ) was introduced by 

Shenan et al. [18]. 

Let B, a) be the subclass of A(p) consisting of functions f(z) 
such that 

zh'(z) 

(1.16) 
h(z) -P 

BZ-^±-\pB + ( A - B ) ( p - a ) ) 
<1 (z G U) 

(.A and B fixed; - 1 < A < B < 1; 0 < B < 1; 0 < a < p,p € N), 

where 

h{z) = {DIJ * s?){z) ( n € No = N U {0}; A > 0; 0 < 7 < p; P € N). 

We note that: 

(i) 1, l , a ) = Ry(a)(0 < 7, a < 1), is the class of 7— prestarlike 
functions of order a , which was introduced by Sheil-Small et al. [17]; 

(ii) i?7'0(—/3, /?, a ) = Ry(ct, (3)(0 < 7 , a < 1), is the class of 7— prestarlike 
functions of order a and type 0, which was studied by Ahuja and Silver-
man [1]; 

(iii) R\'°0(A,B,a) = Ry(A,B,a) (Aouf et al. [6]). 

Denoting by T(p) the subclass of A(p) consisting of functions of the form: 
00 

(1.17) / (*) = * " - J2ap+kzP+k ( a p + k > 0 ; p e N ) . 
k=1 
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We denote by T*(A, B, a) and R^n
x[A, B, a] the classes obtained by tak-

ing intersections, respectively, of the classes S*(A,B,a) and R^[A,B,a] 
with the class Tip). The class T*(A, B, cc) was studied by Aouf [3]. 

Also we note that, by specializing the parameters \,p,n,A and B, we 
obtain the following subclasses studied by various authors: 

(i) 0[—1, l , a ] = -R^a] (0 < 7, a < 1) (Silverman an and Silvia [19], 
Uralegaddi and Sarangi [25], Aouf and Salgean [7], Srivastava and Aouf [20] 
and Raina and Sirvastava [15]); 

(ii) 3, (3, a) = Ry[a,p] (0 < 7, a < 1; 0 < 0 < 1) (Ahuja and 
Silverman [1] and Owa and Ahuja [11]); 

(iii) ¿ t j ; " [ - l , l , a ] = Ry[-y,a,n)} (0 < 7, a < 1, ra e N0) (Aouf and 
Salagean [8] and Aouf et al. [4]); 

(iv) = Ry[A,B,a] (Aouf et al. [6]); 

(v) Rp
p° 0[-l,l,pa'} = RP[a'] (0 < a' < l;p G N) (Kumar and Reddy 

[9]); 
(vi )RP

1>°1[-(3,(3,a] = R*[a,(3} 

zh'(z 

f ( z ) € T{p) : 
h(z) P 

zh'(z) 
+ p-2a 

<(3 (ze U), 

where h(z) = (/ * &,){z)\ 0 < a < p; 0 < ¡3 < 1; p € N}. 
We further, observe that the special choices of n, A, A and B our class 

R^[A, B, a] give rise the following new subclasses of T(p): 

(i) -R '̂q[—1,1, a] = is the class of p-valent 7-prestarlike functions 
of order a (0 < 7, a < p); 

(ii) [-/?,/?, a] = F»[a,0\ (0 < 7 , a < P\ 0 < (3 < 1; p € JV); is the 
class of p-valent 7-prestarlike functions of order a and type ¡3] 

(iii )Rp'°[A,B,a} = Rp[A,B,a] 

f ( z ) € T{p) : 

zh'jz) 
h(z) p 

BZ-^--\pB + (A-B)ip-a)} 
< 1 (ze U), 

where h(z) = (/ * - 1 < A < B < 1; 0 < B < 1; 0 < a < p; p € N}; 
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(i v)F£;»[A,B,a] = I%n[A,B,a] 

zh'(z) 

f ( z ) e T(p) : 
h(z) 

P 

B ^ - \ p B + ( A - B ) ( p - a ) ] 

< 1 (z 6 U), 

where h(z) = (D™f * s^X-2), < A < B < 1, 0 < B < 1; 0 < a < p; 
•p E N}-, 

(v)Rp^[-ß,ß,a] = RZi'n[a,ß] 

zh'(z) 

f ( z ) G T(jp) : 
h(z) -P 

zh'(z) 
+ p-2a 

< ß ( z e U), 

where h(z) = (D%f * &,){z), - 1 < A < B < 1; 0 < B < 1; 0 < a < p; 
p e N } . 

In the present paper we propose to investigate several important prop-
erties and characterisics of the class R^[A, B, a]. Furthermore, distortion 
theorems involving generalized fractional derivative operator for functions 
in the class R^'^A, B, a] are given. 

2. Coefficients est imates 

THEOREM 1. Let the function f ( z ) be defined by (1.17). Then f ( z ) e 
R^'^IA, B, a] if and only if 

(2 .1 ) £ [ ( 1 + B)k + (B - A)(p - a ) ] ( ) GP(7, k + 1 )ap+k 

k=1 V P / 
< (B - A ) ( p - a ) . 

P r o o f . It is known that [3] a necessary and sufficient condition for f(z) € 
T(p) to be in the class T* (A, B, a ) is that 

oo 
53(1 + B)k + (B - A)(p - a)]ap+k < (B - A)(p - a). 
¿fc=i 

Since 
00 / « + A k \ n 

( D l p f * sp)(z) = z p - J 2 l ~ — G P k + ^P+kZ^ (ap+k > 0 ) , 

k=l ^ P ' 

where s^(z) is given by (1.4), the result (2.1) follows. This completes the 
proof of Theorem 1. 
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COROLLARY 1. Let the function f(z) defined by (1.17) be in the class 
Rp'^[A,B,a\. Then 

(2-2) ap+k < { B ~ A ) i P ~ a L (p, k € N). 

P+k ~ [(1 + B)k + (B - A)(p - a ) ] ( ^ ) » G » ( 7 > k + 1) 

Equality in (2.2) holds true for the function f(z) given by 

(2 3) f(z) = zp (B-A)(p-a) l(l + B)k + (B-A)(p-a)](^)-GP(7,k + l) 
(p,k E N). 

3. Closure theorems 

THEOREM 2. The class R^[A,B,a] is closed under convex linear combi-
nation. 

P r o o f . Let each of the functions fi(z) and f2(z) given by 
oo 

(3.1) fj(z) = aP+kjZp+k (ap+k,j >0-,P€N-J = 1, 2) 
k=1 

be in the class igVJ [A, B, a\. Then it is sufficient to show that the function 
h(z) defined by 

(3.2) h{z) = th{z) + {l~t)f2{z) (0 < i < 1) 

is also in the class RP,T^ [A, B, a]. Since, for 0 < t < 1, 
oo 

(3.3) h(z) = zp- tap+kA + (1 - t)ap+kt2}zp+k, 
k=l 

with the aid of Theorem 1, we have 
oo 

(3.4) £ [ ( 1 + B)k + (B-A)(p-a)} 
k= 1 

fv + \k\n 

x ( j Gp (7, k + 1) [iop+fc.1 + (1 - t)ap+ki2] 

<(B- A)(p -a) (0 < t < 1) which implies that h(z) G Rp,r^ [A, B, a ] . 

As a consequence of Theorem 2, there exist the extreme points of the 
class Rp'"x [A, B, a]. 

THEOREM 3. Let 

(3.5) fp(z) = * p 
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and 

(3.6) fp+k(z) 

= zp ( B - A ) ( p - a ) z P + k 

[(1 + B)k + ( B - A ) ( p - a)] ( 2 ^ ) " Gp (7, k + 1) 

(p,k€N). 

Then f(z) € B, a] if and only if it can be expressed in the form, 

oo 
(3.7) f(z) = Y,»P+kfP+k{z), 

k=1 

oo 
where /¿p+/b > 0 and ^ ßp+k = 1-

A ; = 0 

Proo f . Suppose that 
oo 

( 3 . 8 ) f ( z ) = J2»P+kfP+k(z) 

k=0 

_ zp _ V ( B - A ) ( p - a ) k 

t i [(1 + B)k + (B — A){p — a)] Gf (7, k + 1) 

Then it follows that 

« [(1 + B)k + (B - A)(P - a)] ( ^ V GP (7, k + 1) 
(3-9) y 7= V * 1 x 

k=l 

( . B - A ) ( p - a ) 
Mp+fc 

[(1 + B)k + {B- A){p - a)] GP (7, k + 1) 

oo 

= "YjVp+k = 1 - /ip < 1. 
k= 1 

Therefore, by Theorem 1, f(z) g ¿2JJ [A,B,a]. 

Conversely, assume that the function f(z) defined by (1.17) belongs to 
the class [A, B, a]. Then 

(3-10) ap+k < n 

[(l + B)k + ( B - A ) ( p - a ) } { ^ ) Gp ( 7 , A; + 1) 

( p , k € N ) . 
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Setting 

(3.11) » P + k = - ' V * 
[(1 + B)k + (B — A)(p — a)} C ( 7 , k + 1) 
— — ___ — ..._ _ — , 

(p,k € N), 

and 
oo 

(3.12) ij,p = 1 - J^/Xp+fc-
k= 1 

Hence, we can see that/(z) can be expressed in the form (3.7). This com-
pletes the proof of Theorem 3. 

COROLLARY 2. The extreme points of the class i?̂ '™ [A, B, a] are the func-

tions fp(z) = zp and 

f + ( z ) = zP (B-A)(p-a) zP+k 

[(l + B)k + (B-A)(p-a)](^)nGP^k + l) 

(j),k € N). 

4. Integral operators 

THEOREM 4. Let the function f(z) defined by (1.17) be in the class 

RV'llA, B, a] and let c be a real number such that c > —p. Then the function 

F(z) defined by 

(4.1) F { z ) = C-±l\tc-if{z)dt 

z o 
also belongs to the class i?^'" [A, B, a]. 

P r o o f . From the representation of F(z), it follows that 
oo 

(4.2) F ( z ) = z V - J 2 b P + k Z P + k , 
k= 1 

where 
c + p 

op+k = y-

Therefore 
°° „ i \ u 

V [(1 + B)k + (B — A)(p — a)] (P—TCP (7, k + 1) bp+k 

t i P 

= j r [(1 + B)k + (B — A)(p - a)] { P ± 2 ± r G P ( 7 > k + 1) 
k= 1 P C + p + K 

b p + k = \JT^Tk)ap+k-
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< £ [(1 + B)k + ( B - A ) ( p - a ) ] TCP ( 7 , k + 1) ap+k 

k=l P 

< (B — A)(p — a), 

since f ( z ) G Rp'n
x [A, B, a]. Hence by Theorem 1, F{z) <G Rp^x [A, B, a ] . 

oo 
THEOREM 5. Let the function F(z) = zp — ^ ap+kzP+k{ap+k > 0) be in the 

k=1 
class [A, B, a] and let c be a real number such that c > —p. Then the 

function f ( z ) defined by ( 4 .1 ) is p-valent in \z\ < R*, where 

(4.3) 
f P(c + p)[(l + B)k + ( B - A)(p - a)] 7, k + 1) ^ 

p *fc I (p + A;)(c + p + fc)(B-A)(p-a) J 
(fc > 1). The result is sharp. 

P r o o f . From (4.1), we have 
.1-c r„c zcF(z)] 

(c + p) 
(c > - p ) 

To prove the result it suffices to show that 

zP - l P < p for \z\ < R*, 

where R* is defined by (4.3). Now 
oo 

ZP-1 P 
fc=l 
oo 

c + p + k k 
; ap+k z 

c + p 

^ E (p + k ) ( C - ^ ^ ) a p + k \ z \ k . 
k=l ^ P 

Thus 

(4 .4 ) 

m 
zP -1 •p < p if 

E i ^ f ^ ' l - w w ' s i . 
k=1 P c + p 

But Theorem 1 confirms that 

(4-5) £ 
k=l 

[(1 + ß)k + { B - A){p - a)] ( ^ ) G P ( 7 , k + 1) 

( B - A ) ( p - a ) 
a-p+k < 1-



808 M. K. Aouf 

Thus (4.4) will be satisfied if 

cp + k)(c + p + k) k < [(1 + B)k + (B-A)(P- g)] {^)nGP(7, k + 1) 

p(c + p) ~ (B — A) (p — a) 

or if 

f P(c + p)[(l + B)k + (B — A){p — a)] 7, k + 1) ^ 

( j | 2 | - \ (p + k)(c + p + k)(B-A)(p-a) J 

(k > 1). The required result follows now from (4.6). The result is sharp for 
the function 

(4.7) 

F(Z) = ZP (c + p + k)(B-A)(p-a) zP+k 

(c + p)[(l + B)k + (B-A)(p-a)]{^)nGP(1,k + l) 

(p, k € N). 

5. D i s t o r i o n p r o p e r t i e s a s s o c i a t e d w i t h general ized f rac t ional 
ca lculus 
In terms of the Gauss hypergeometric function: 

(5-1) = 

( . z e U ; a , 7 G C ; 7 / 0, —1, — 2 , . . . ) , 

where (and 
in what follows) (o)n denotes the Pochhammer symbol defined, 

in terms of Gamma function, by 
r(a + n) j 1 (n = 0) 

(a)n = 
r ( a ) l a ( a + l ) . . . ( a + n - l ) ( n e J V ) , 

the generalized fractional calculus operators/Q and are defined be-
low (cf., e.g., [12] and [24]). 

DEFINITION 1 (Generalized Fractional Integral Operator). For real numbers 
(3 > 0 ,6 and?7, the generalized fractional integral of order (3 is defined, for a 
function f(z), by 

(5.2) I ^ f ( z ) = \{z - Ot'Fi (ft + 6,-v, A 1 " / ( C R 

(/? > 0; G> m a x { 0 , 8 - rj) - 1 ) , 

where f(z) is analytic function in a simply - connected region of the z-
plane containing the origin and the multiplicity of (z — is removed by 
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requiring log (z — () to be real when z — C > 0, provided further that 

(5.3) f(z) = 0(\zf)(z^ 0). 

DEFINITION 2 (Generalized fractional derivative operator). Under the hy-
potheses of Definition 1, the generalized fractional derivative of order ¡3 is 
defined, for a function f(z), by 

(5 .4 ) Jgj»f{z) = 

F ( T = T ) i z {Z0~6 ~~ O - ' a f i P ~ & 1 " * 1 - & 1 - § ) / ( 0 d c } 

(0 < P < 1), 

^ l J t n A v f { z ) (n < (3 < n + 1; n € N) 

(G> max{0, S — rj} - 1), 

where f(z) is constrained, and the multiplicity of (z — is removed, as in 
Definition 1, and 6 is given, as in Definition 1, by the order estimate (5.3). 

It follows from Defintion 1 and Definition 2 that 

(5 .5 ) I g ^ m = D - f f ( z ) (/? > 0 ) 

and 

(5.6) J ^ f ( z ) = D^zf(z) (0<l3<l)t 

where D%(0 e R) is the fractional calculus operator considered by Owa [10] 
and (subsequently) by Owa and Srivastava [13] and in many other works 
(cf., e.g., [5], [21], [22] and [23]). Furthermore, in terms of Gamma function, 
Definitions 1 and 2 readily yield 

LEMMA 1 ([24]). The generalized, fractional integral and the generalized 
fractional derivative of a power function are given by 

(5.7) 

and 

(5.8) 

rP,s,vzp = T(p+l)T(p-8 + ri + l) s 

°'z r{p-S + l)F(p + (3 + r] + l) 

(/3 > 0; p > max{0,6 - r)} - 1) 

JPAV7P = r ( p + i ) r ( p - a + »7 + i ) s 

°'z T(p-5 + l)T(p-l3 + ri + l) 

( O < 0 < l ; p > max{0, S - rj} - 1). 

Our main results on the growth and distortion properties of a function 
f(z) G [A, B, a] , associated with the ( generalized ) fractional calculus 
operators IQ'^ and are contained in the following: 
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THEOREM 6. Let the function f ( z ) defined by (1.17) is in the class 

igJJ [A, B, a] (with 0 < 

(5.9) I ^ f ( z ) 

In — 1 
[A, B, a] (with 0 < 7 < ; p e N). Then 

A\ 
T(p+l)T{p-5 + f , + l) , 

- T(p-s + i)r(p + p + Ti + iy 1 

x K (B-A)(p-a)(p+l)(p-6 + r] + 1) 
\ 2[(l + B) + (B-A)){p-a)}(p-1){^)n(p-S + l)(p + (3 + r1 + iy 

and 
< r ( p + i ) r (p — + 77 + 1 ) g 

- I\p-6 + l)T{p + l3 + r] + iy 1 (5.10) I ^ f ( z ) 

x L ( g - i 4 ) ( p - a ) ( p + l ) ( p - ^ + ty + l) 

( z G [ / 0 ; / 3 > 0 ; p > max{5 - rj, S, - / ? - 77} - 1; p + 2 > <5(1 + p € iV) 

where 

(5.11) 

Equalities in (5.9) and (5.10) are attained by the function 

(5.12) / (*) = *•» ( * - A ) ( p - a ) - j - ^ . 
2[(1 + B) + (B - A))(p - a)](p - 7 ) ( ^ ) n 

P r o o f . First of all, we note that 

Gp (7, k + 2) > Gp (7, k + 1) (0 < 7 < ; p,k E N) 

by means of (1.5). Consequently, by using Theorem 1, we have 

[(l + B) + (B-A))(p-a)} f ^ ' " 
V P ' fc=i 

< f ; [(1 + B)k +(B-A)(p - a)] G" (7, fc + 1) ap+fe 
fc=i \ P / 

< (B-A)(p-a), 

which implies that 

V « < (B-A)(p-a) 
(5.13) ^ - 2[(1 + B) + (B- A))(p - a)](p - 7)(*±*)"" 
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Next, making use of the assertion (5.7) of Lemma 1, we find from (1.17) 
that 
( 5 14) F(z) - r<p-6 + l)r(p + fi + v + l) s PA, ( ) 

k=1 

where, for convenience, 

Since 

( 5 . 1 5 ) 

V ' (p-S+l)k(p + ß + T]+l) 

(p + l)(p-5 + ri + l) 
0 < tf(fc) < \&(1) = 

(p-6 + l)(p + 0 + ri + l) 

(p > max{6 - 7?,<5, -/? - ?/} - 1; p + 2 > <5(l + ; p € i v ) 

the assertions ( 5 . 9 ) and ( 5 . 1 0 ) would follow from ( 5 . 1 3 ) , ( 5 . 1 4 ) and ( 5 . 1 5 ) , 

respectively. 
Finally, it is easily seen that the results ( 5 . 9 ) and ( 5 . 1 0 ) are sharp for 

the function f(z) given by ( 5 . 1 2 ) . This evidenlty completes the proof of 
Theorem 6. 

By applying the assertion (5.8) of Lemma 1, instead of (5.7) , we can 
similarly prove the following theorem: 

T H E O R E M 7 . Let the function f(z) defined by ( 1 . 1 7 ) be in the class 
RP^X[A, B, A] (with 0 < 7 < p e N ) . Then 

Tjp + l)T(p - S + ri + 1) j 

- T{p-6 + l)T(p-0 + r] + iy 1 
( 5 . 1 6 ) J^'Viz) 

(.B - A)(p - a)(p + l)(p -S + Tj + l) 

2[(l + B) + (B-A))(P-a)](p-1){£f)n(p-6 + l)(p-ß + rl + iy 

TßÄV 
0,z m < T(p+l)T{p-S + r, + l) 

• t -
and 

( 5 . 1 7 ) 

x J l + 

z e U 0 ] 0 < ß < l ; p > max{ô-T],ô, S,ß-r)}-l; p+2<ô[ ) ; p € iV ) , 

r(p - (5 + l)I\p - ß + 77 + 1)1 1 

(B-A)(p-a){p+l)(p-ô + ri + Î) 

2[(1 + B) + (B- A))(p - a ) ] ( p - 7)(^)n(p - S + l)(p - 0 + r, + l) 
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where UQ is defined as before by ( 5 . 1 1 ) . Equalities in (5 .16 ) and (5 .17 ) are 
attained by the function f ( z ) given by ( 5 .12 ) . 

6. App l i ca t ions 
In view of the relationships (5 .5) and ( 5 . 6 ) , by setting 5 = —0 and 5 = 

—0in our assertions ( 5 .9 ) , ( 5 . 1 0 ) , (5 .16) and ( 5 . 17 ) , respectively, we obtain: 

COROLLARY 3. .Let the function f ( z ) defined by (1 .17 ) be in the class 
R f f l A , B, a] (with 0 < 7 < p G N). Then 

(6.1) 
T(p + 1) 

r ( p + /? + l) 

x / l -

I 

(B-A)(p-a)(p + 1) 
2[(1 + B) + (B - A){p - a)](p - 7 K ^ H P + 0 + 1) 

< D ^ f ( z ) < 

r ( P + D 
r ( p + /? + i ) ' 

(B-A)(p-a)(p + 1) 
2[(1 + B) + (B- A)(p - a)](p - 7 ) ( ^ ) " ( P + P + 1) 

{z G U- 0 > 0) 

and 

(6.2) r (P + D , . p - ^ 
T{p-0 + 1) 

* { l (B-A)(p-a)(p+ 1) 
2[(1 + B) + (B- A){p - a)](p - 7 ) ( ^ ) n ( p -0 + 1) 

< < 

r ( p - 0 + i f l 

x i l + 
(B-A)(p-a)(p+l) } 2[(1 + B) + (B- A)(p - a)](p - 7 ) ( ^ ) n ( P ~0 + l) 

(z G U\ 0 < 0 < 1). 

Each of these results is sharp for the function f ( z ) given by(5.12). 
The assertions (6.1) and (6.2) of Corollary 3 can indeed be applied in 

order to deduce the following interesting results (Corollary 4 and Corollary 5, 
respectively) for functions in the class B, a\. 
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COROLLARY 4. Under the hypotheses of Corollary 3, Dz
/3f(z)(f3 > 0) is 

included in a disc with its center at the origin and radius r\ given by 

r ( p + i ) „ (6.3) n = 
T(p + ß + l ) 

1 + ( B - A ) ( p - a ) ( p + l ) 1 

2[(1 + B) + (B — A)(p - a)](p - 7 ) ( 2 ± * ) " ( P + 0+1)) 

COROLLARY 5. Under the hypotheses of Corollary 3, D%f(z)(0 < f3 < 1) is 
included in a disc with its center at the origin and radius r2 given by 

r ( p + i ) „ (6.4) r2 = 
T ( p - ß + l ) 

: ( l + ( * - > D ( p - « ) ( p + l ) Ì ( o < / 3 < 1 ) . 
I 2[(l + B) + ( B - A ) ( p - a ) } ( p - y ) ( ^ n p - ß + l)J 
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