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W H E N IS A BCC-ALGEBRA EQUIVALENT 
TO A N MV-ALGEBRA? 

Abstract. The aim of this paper is to characterize BCC-algebras which are term 
equivalent to MV-algebras. It turns out that they are just the bounded commutative BCC-
algebras. Further, we characterize congruence kernels as deductive systems. The explicit 
description of a principal deductive system enables us to prove that every subdirectly 
irreducible bounded commutative BCC-algebra is a chain (with respect to the induced 
order). 

1. Introduction 
By a BCC-algebra we mean an algebra A = (A; — 1 ) of type (2,0) 

satisfying the following axioms 
(BCC1) (x - y) - ((z - x) -> (z^ y)) = 1; 
(BCC2) x x = 1; 
(BCC3) x -> 1 = 1; 
(BCC4) 1 -f x = x; 
(BCC5) (x —> y — 1 and y —> x — 1) implies x = y. 

These algebras were introduced by Y. Komori [9] in connection with the 
problem whether the class of all BCK-algebras forms a variety. The problem 
was solved in the negative. 

Let us note that for a BCC-algebra A the relation defined by 

(*) x < y if and only if x —> y = 1 

is an order on A with greatest element 1, see e.g. [9]. Due to this fact, the 
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identity (BCC1) can be read as 

x -> y < (z -> x) -> (z -> y). 

This equivalent formulation will be used in our paper. 
We can prove the following 

LEMMA 1. Let A = (A; 1) be a BCC-algebra. Then 

(i) x < y implies z —• x < z —> y; 

(ii) x < y implies y —> z < x —> z; 

(iii) y<x^y. 

Proo f . Suppose x < y. Then x —> y = 1 and, by (BCCl), 

l = (x->y)-*((z->x)-+(z-*y)) = l^> {(z x) (z y)) = 

= (z x) - f (z y) 

thus 2 —• x < z y proving (i). Similarly, 

1 = (y z) ((® y) (X z ) ) = (y - » z) (1 (a -» 2)) = 

= (y z ) -»• 
whence y —> z < a; —> z proving (ii). 

Applying (ii) and the fact that x < 1 for each x € A we conclude y = 

1 —> y < x —> y. m 

The concept of a BCK-algebra was introduced by K. Iseki and Y. Imai 

[7] as an algebra A = (-4; — 1 ) of type (2,0) satisfying the following axioms 

(BCK1) (x y) -> ((y z)) = 1; 

(BCK2) x ^ ( ( x - > y ) ^ y ) = 1; 

(BCK3) x -»• x = 1; 

(BCK4) x -> 1 = 1; 

(BCK5) (x —> y = 1 and y —> x = 1) implies x = y. 
Moreover, a BCK-algebra .4 is called commutative if it satisfies the 

so-called commutative law (see [1] for this notation) 

(C) (x -> y) y = (y x) x. 

It is well-known (see [8], [10]) that if A is a commutative BCK-algebra 
then it is a V-semilattice where x V y = (x —> y) —» y. 

Analogously as for BCC-algebras, the relation < defined by (*) is an 
order on the support of a BCK-algebra A and 1 is the greatest element. 

The following three lemmas are known but their proofs were published 
in a different way in several hardly attainable papers. Thus we present our 
proofs for the reader's convenience. 
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L E M M A 2. Let A = (A; —», 1) be a BCK-algebra. Then 

(i) 1 —• x = X] 
(ii) x < y implies y —» z < x —> z; 

(iii) x < y implies z —> x < z —> y; 
(iv) y < x y. 

P r o o f , (i) Using of (BCK3) and (BCK2), we get 1 x = (x -» x) x > x. 
However, (1 —• x) —> x = ((x —• x) —> x) —> x > x —> x = 1 thus 
1 = (1 —• x) —> x whence 1 —> x < x. Together we have 1 —> x — x. 

(ii) Suppose x < y. Then x —> y = 1 and, by (i) and (BCK1), 
1 = (x -»• y) -» ((y -»• 2) (x -» z)) = 1 ((y - > z) (x -»• 2)) = 

giving y —> 2 < x —> 
(iii) If x < y then by (i) and (BCK1) we derive 

1 = (z -»• x) -»• ((x y) - f (2 -»• y)) = (z x) - » ( 1 (2 y)) = 

= (2 x) (2 y) 

proving 2 —> x < 2 —> y. 

(iv) Since x < 1 by (BCK4), we apply (i) and (ii): y = 1 —;> y < x —• y. m 
L E M M A 3 . Every BCK-algebra satisfies the so-called exchange identity 
(EI) x (y -> 2) = y -f (x 2). 

P r o o f . Substituting y by y —> 2 in (BCK1), we get 

z (y - > 2) < ((y -> 2) 2) -» (x 2). 

By (BCK2) we have y < {y z) z, thus, by Lemma 2 (ii), 

((y 2) - > 2) (x 2) < y (x 2). 
Together it yields x —> (y —> 2) < y —> (x —• 2). Swapping x,y, we obtain 
the converse inequality. • 
L E M M A 4 . Every BCK-algebra is a BCC-algebra. A BCC-algebra is a BCK-
algebra if and only if it satisfies the exchange identity (EI). 

P r o o f . To prove the first assertion, we need to verify only (BCC1). By 
Lemma 3, a BCK-algebra satisfies (EI) thus, using this and (BCK1), we 
compute 

(x -f y) -»• ((2 x) (2 - f y)) = (2 x) -» ((x -> y) (z -» y)) = 1. 
Conversely, let a BCC-algebra A satisfy (EI). We need to verify only (BCK1) 
and (BCK2). By (BCC1) and (EI) we have 

1 = (y 2) ((x -»• y) (x -» 2)) = (x -» y) ((y 2) (x -f 2)), 
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which is (BCK1), and 

1 = (x y) (x -»• y) = x -» ((x y) y), 

which is (BCK2). • 

We can apply the previous lemmas to state 

THEOREM 1. Every BCC-algebra satisfying ( B C K 2 ) is a BCK-algebra. 

Proo f . By (BCK2) we have y < (y -» z) z. Applying (BCC1) we 
compute 

y < (y z) ^ z < (x ^ (y z)) (x z) 

thus, by Lemma 1 (ii) and (BCK2), 

y (x ->• z) > ((x -> (y z)) (x z)) (x 2) > x -> (y 2). 
Interchanging the roles of x and y, we obtain the converse inequality proving 
the exchange identity (EI). By Lemma 4, we have shown that the given 
BCC-algebra is in fact a BCK-algebra. • 

2. Bounded B C C-algebras 
We say that a BCC-algebra A is bounded if it has a least element 0, 

i.e. if 0 < x for each x G A. Clearly, this property can be characterized by 
the identity 

(Z) 0 —• x = 1 

and such an algebra will be denoted by A = {A]—>,1,0) to indicate the 
existence of a new miliary operation explicitly. 

A bounded BCC-algebra A satisfies the double negation law if the 
identity 

(DN) (x -f 0) -f 0 = x 

holds in A. 
For the sake of brevity, we will denote x —> 0 by ->x and call it the 

negation of x. Hence, (DN) can be read as 

-1-1X = x. 

The concept of an MV-algebra was introduced by C.C. Chang [4] as 
an axiomatization of the Lukasiewicz many-valued logic. We present the 
definition taken from the monograph [5]: 

By an MV-algebra we mean an algebra M. = (M; ©, -1,0) of type 
(2,1,0) satisfying the following identities 



When is a BCC-algebra equivalent to an MV-algebra? 763 

(MV1) x © (y < © z) = (x © y) © 2; 
(MV2) x © y = = y ©x; 
(MV3) xffiO = = x; 
(MV4) —I—IX — X] 
(MV5) x © —>0 = ->0 (-i0 is denoted by 1); 
(MV6) > y) © y = -'{-'y © x) © x. 

The following result was proved by D. Mundici [10]: 

PROPOSITION. Let M = ( M ; © , - > , 0) be an MV-algebra. Define x —• y = 
-ix © y and 1 = -i0. Then A(M) = (M; —>,1,0) is a bounded commutative 
BCK-algebra. 

Let A = (A\ —>,1,0) be a bounded commutative BCK-algebra. Define 
x®y = {x —>0)—y y and ->x = x —> 0. Then M(A) = ©, 0) is an 
MV-algebra. 

In the sequel, we are going to modify the Proposition for BCC-algebras. 
At first we prove 
LEMMA 5. Every bounded BCK-algebra satisfying the double negation law 
satisfies the contraposition law 
(CL) x —> y = ->y —> -ix. 
Proof , -.y -» ^ r = (y -» 0) -f (x -* 0) = x ((y 0) 0) = x 
-i-iy = x —> y. • 

REMARK . Of course, the contraposition law entails the double negation law 
since 

x = 1 —> x = -ix —> -il = -ix —• 0 = -i-ix. 
It is well-known that commutative BCK-algebras form a variety which 

can be axiomatized by the following identities 

(i) ( x - ^ y ) ^ y = ( y ^ x ) ^ x ; 
(ii) = 

(iii) x —> x = 1; 
(iv) 1 —> x = x. 
Just as in case of BCK-algebras, we say that a BCC-algebra (A] —>, 1) is 

commutative if it satisfies the identity (C). 
It easily follows that these algebras are precisely the commutative BCK-

algebras: 

THEOREM 2. Every commutative BCC-algebra (A-,—>,1) is a commutative 
BCK-algebra. 
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Proof . By Lemma 1 (iii) and (C) we have 

x < {y -> x) -> x = (x -> y) -> y. 
Thus (A; —>, 1) satisfies (BCK2), which by Theorem 1 entails that it is a 
BCK-algebra. • 

COROLLARY. Let (A; —>,1,0) be a bounded commutative BCC-algebra. De-
fine 

x®y — (x ^ 0) —> y and -¡x = x —> 0. 

Then (A; ©, ->, 0) is an MV-algebra. 
Proof . This is an immediate consequence of the previous Theorem 2 and 
Mundici's proposition. • 

3. Congruence kernels 
Let A = (A; —>,1) be a BCC-algebra and 0 G Con A. The congruence 

class [1]© is called the kernel of 0 . 
Congruence kernels of BCC-algebras are in a close relationship with con-

gruences and hence it is important to have their characterization. 
Let A — {A\—>,1) be a BCC-algebra. A subset D C A is called a 

deductive system of A if 

(a) 1 G D; 
(b) if a G D and a —> b G D then also b € D. 

Of course, the condition (b) is in fact the deduction rule Modus Ponens 
which justifies the name "deductive system". 

However, the class of BCC-algebras is not closed under homomorphic 
images thus there is not a one-to-one correspondence between congruences 
and their kernels. This correspondence exists only for the so-called relative 
congruences, i.e. such 0 G ConA that «4/0 is a BCC-algebra again. 

Further, note that every deductive system of a BCC-algebra A is an order 
filter (i.e. an upset) with respect to the induced order. 

THEOREM 3. Let A = (^4; —>,1 ,0 ) be a bounded BCC-algebra satisfying the 
contraposition law (CL). Then D C A is a congruence kernel if and only if 
D is a deductive system of A. 

Proof . Obviously, if D = [1]© for some 0 G ConA, a G D and a —> b G D 
then (a, 1) G 0 , (a —> b, 1) G 0 thus also (a -> b, b) = (a -> b, 1 -> b) G 0 
and, due to transitivity of 0 , (6,1) G 0 proving b G D. Thus D is a deductive 
system. 

To prove the converse, we only need to show that the relation defined by 

(x, y) G ©d if and only ifx—>y, y —> x £ D 
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is a congruence on A whenever D is a deductive system. It is clear that then 
[1]©d = D. 

Suppose that D is a deductive system of A. By definition, ©£> is a 
reflexive and symmetric binary relation on A. Assume (x,y) G ©d and 
(y,z) G ©£>. Then x —> y,y x,y —> z,z —• y G D and, by (BCC1), 

{y x) -> ((z -> y) (z -> x)) = 1 G D. 

Since y —> x G D and z ^ y € D, we conclude z x £ D. Analogously, 
it can be shown x z € D, thus (x,z) G ©r> proving that 0£> is an 
equivalence of A. It remains to show that 0E> has the Substitution Property 
with respect to —> . 

Since A satisfies the contraposition law, we have 

(P) (x, y) G ©£> iff ( - x , - 2 / ) G © d . 

Suppose now (x,y) G ©d, i.e. x —> y, y —• x G D. By (BCC1) we have 
(x —> y) —> ((z —> x) —> (z y)) = 1 G D thus, due to Modus Ponens, also 

(z -» x) -> (2 -> y) G £>. 

Analogously, we can show (z y) —> (2 —> x) G -D, thus (z —> x, 
2 —> y) G ©£>. Using (P), we obtain (-12; —» - > x , — > ->y) G ©d, thus 
also (x —» z,y —> z) G ©£>. Due to transitivity of ©£>, we have shown the 
Substitution Property of ©^ thus ©^ is a congruence on A. • 

Of course, the set of all congruence kernels of a BCC-algebra A forms 
a complete lattice with respect to set inclusion. Hence, for a given subset 
X C A there exists the least congruence kernel containing X, which will be 
denoted by F(X). If X = {a} is a singleton, F(X) will be denoted briefly 
by F(a). 

In what follows we are going to characterize F(a) explicitly: 

LEMMA 6. Let A = (A; — 1 , 0 ) be a bounded BCC-algebra satisfying ( C L ) 
and a € A. Define Fft = {x G A\ a < x} and F? = {x G A\ a —> x = (3 for 
some a,/3e for i = 1 , 2 , . . . . Then F(a) = U i - f f ; » = 0 , 1 , . . . }. 

P r o o f . Certainly, 1 G F0
a. If 1 G F? then also 1 G Ft

a
+l since 1 ^ 1 = 1. 

Thus 1 G Ff for all i = 0 , 1 , 2 , . . . . In particular, 1 G F = = 
0 ,1 ,2 , . . . } . 

Furthermore, F" C F?+1. Indeed, if x G then 1 —> x = x, thus 
x G F,°+1. Now we assume x ,x —> y G F. By the previous observation, there 
is an integer j such that x, x —> y G Fj. By definition, this means y G F?+1 

and hence y G F. We have shown that F is a deductive system. 
It is obvious that F(a) C F since F is a deductive system containg a. 

We show the converse inclusion by induction. Trivially, C F(a). Assume 
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Ff C F(a) and let x £ F"+1. Then there are a,f3 <E F? C F(a) such that 
a —• x = (3. This yields x £ F(a) and hence F(a) = F. • 

Moreover, if A is a bounded commutative BCC-algebra, we can prove 
the following 

LEMMA 7. Let A = (.A; —>,1 ,0 ) be a bounded commutative BCC-algebra and 
a,b £ A, a \\ b and a V b = 1. Then for each x £ F(a) and y £ F(b) we have 
x V y = 1. 

P r o o f , (i) At first we prove that x V y = 1 for each x £ F(a) and y £ FQ. 
This is clearly equivalent with x V b = 1. Since x £ F(a), there is an index 
i such that x £ -Ff. Evidently, x V b = 1 for i = 0. Suppose now z V b = 1 
for all z G F°- and let a; G Then there are a,(3 £ Ff with a —> x = (3. 
Since a V 6 = /3V& = l b y the induction hypothesis, we obtain 

x 6 < ( a -> x ) -» (a 6) = 0 -» ((a V 6) 6) = ¡3 -f (1 6) = 

Since 6 < x —> 6, we have x ^ b = b, thus xVb = (x—*b)—*b = b—*b = l. 
(ii) Suppose now generally a: G F(a) , y G F(6). Then y £ Fj for some 

index j. If j = 0 then x V y = 1 by (i). Assume x V z = 1 for all z £ Ff 
and take y G Ff+l. Then a y = ¡3 for a,¡3 £ Ff thus, by the induction 
hypothesis, x\/a = x\/(3 — I. Hence 

y —> x < (a —> y) —• (a —» x) — (3 —> (a —> x) = ¡3 —»• ((a V i ) - n ) = 

= ¡3 {I ^ x) = ¡3 ^ x = {¡3y x) ^ x = \ ^ x = x. 

Since x < y —> x, we conclude y —> x = x thus 

y\/x = {y—*x')—>x = x—>x = \. m 

We are able to prove our main result. 

THEOREM 4. Let A = (A; —>, 1 , 0 ) be a bounded commutative BCC-algebra. 
If A is subdirectly irreducible then A is a chain with respect to the induced 
order. 

P r o o f . Suppose that A is not a chain, i.e. there exist a', b' £ A such that 
a' || b'. Since A is commutative, it is a V-semilattice where x V y = (x —> y) 
—> y. The commutative law (C) implies 

->->£ = (x —>0)—>0 = ( 0 — = * x = x 

thus A satisfies also the double negation law and, due to Lemma 2 (ii), the 
mapping x > ->x is an antitone involution. Hence, A is in fact a lattice 
where x A y = —•(—¡a? V ->y). 
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The same is in fact true for every section [p, 1]. The mapping assigning 
to x £ [p, 1] the element x —> p is an antitone involution on [p, 1] and hence 

x A y = ((x -> p) V (y p)) p 

for any x,y G [p, 1]. 
Therefore, a (a A 6) = a (((a 0) V (b -» 0)) ->()) = 

= ( ( a 0) V (6 - f 0 ) ) - f (a - » 0) = 

= (((& ^ 0) - (a - 0)) - (a ^ 0)) -> (a - 0) = 
= (b —» 0) —• (a —> 0) = a —> 6 and hence 

(a 6) V (6 -»• a) = (a (a A 6)) V (6 —> (a A 6)) = (a A i>) —> (a A 6) = 1. 
Thus for a = a' —• 6' ^ 1 and 6 = b' —> a' 1 we obtain 

a V b = (a' &') V (6' a') = (a' -> (a' A 6')) V (b' -> (a' A 6')) = 
= (a' A b') (a' A b') = 1. 

By Lemma 7 we have x V y = 1 for each x € F(a) and y 6 F(6). This yields 
F(o) n F(b) = {1}. Since F(a) ^ {1} ^ F(6) and F(o) or F(6) uniquely 
determines the congruence 0(a, 1) or 0(6,1) on .4., respectively, we have 
©(a, 1) ^ CJ ^ 0(6,1) but ©(a, 1) fl ©(6,1) = w thus .A is not subdirectly 
irreducible. • 

This result together with Theorem 2 and the Proposition yields that if 
an MV-algebra is subdirectly irreducible then it is a chain with respect to 
the induced order. This result is known, see e.g. [5], however, our new proof 
is much more simple. 

References 

[1] J. C. A b b o t t , Semi-boolean algebras, Math. Vesnik 4 (1967), 177-198. 
[2] I. Chajda , G. E i g e n t h a l e r , H. Länger, Congruence Classes in Universal Algebra, 

Heldermann Verlag (2003). 
[3] I. C h a j d a and J. Kühr, Algebraic structures derived from BCK-algebras, Miskolc 

Mathem. Notes, to appear. 
[4] C. C. Chang , Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 

(1958), 467-490. 
[5] R. L. O. C igno l i , I. M. L. D ' O t t a v i a n o , D. Mundic i , Algebraic Foundation of 

Many-valued Reasoning, Kluwer, Dordrecht-Boston-London, 2000. 
[6] R. Hala§, L. P lo jhar , Weakly standard BCC-algebras, J. Mult.-Val. Log. Soft Com-

put. 12 (2006), to appear. 
[7] Y. Imai, K. Iseki , On axiom systems of propositional calculi, Proc. Japan Acad. 42 

(1966), 19-22. 
[8] K. Iseki , S. T a n a k a , An introduction to the theory of BCK-algebras, Math. Japon. 

23 (1978), 1-26. 



768 I. C h a j d a , R. Hala§, J. Kühr 

[9] Y. Komor i , The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 
391-394. 

[10] D. Mundic i , MV-algebras are categorically equivalent to bounded commutative BCK-
algebras, Math. Japon. 31 (1986), 889-894. 

DEPARTMENT OF ALGEBRA AND GEOMETRY 
PALACKY UNIVERSITY OLOMOUC 
Tomkova 40 
779 00 OLOMOUC, CZECH REPUBLIC 
E-mails: chajda@inf.upol.cz, halas@inf.upol.cz, kuhr@inf.upol.cz 

Received November 28, 2006; revised version May 18, 2007. 



DEMONSTRATIO MATHEMATICA 
Vol. XL No 4 2007 

Ivan Chajda, Helmut Länger 

A C O M M O N GENERALIZATION OF ORTHOLATTICES 
A N D B O O L E A N Q U A S I R I N G S 

Abstract. In [2] a common generalization of Boolean algebras and Boolean rings was 
introduced. In a similar way we introduce a common generalization of ortholattices and 
Boolean quasirings. 

In [2] a common generalization of Boolean algebras and Boolean rings was 
considered under the name N-algebra. In [1] the natural one-to-one corre-
spondence between Boolean algebras and Boolean rings was generalized from 
Boolean algebras to ortholattices. The ring-like structures corresponding to 
ortholattices this way were called Boolean quasirings. Hence it is natural to 
ask for a common generalization of ortholattices and Boolean quasirings. 

1. Ortholattices and Boolean quasirings 
We start with the definition of an ortholattice: 

DEFINITION 1 . 1 . An ortholattice is an algebra ( L , V, A,' , 0 , 1 ) of type ( 2 , 2 , 1 , 

0,0) such that (L, V, A, 0,1) is a bounded lattice and 

(x'Y = I , ( I V y)' = x' A y', ( x A y)' = x' V y', x V x' = 1 a n d x A x' = 0 

for all x,y G L. 

Next we define Boolean quasirings. 

DEFINITION 1 . 2 ( [ 1 ] ) . A Boolean quasiring is an algebra (R, + , • / , 0 , 1 ) of 
type (2,2,1,0,0) satisfying 
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x + y = y + x, 
x + x = 0, 

x + 0 = x, 
(;xy)z = 
xy = j/x, 
xx — «r j 
x0 = 0, 
x\ = x, 
(xy + l)(x + l) + l = x, 
((x + l ) (y + 1) + l ) ( s y + 1) = x + y and 

x' = x + 1. 
REMARK 1.3. The definition given here is a slight modification of the original 
one given in [1] since the operation ' : x h-> x + 1 was added to the family of 
fundamental operations. 

Now we can state the the correspondence between the two algebras in-
troduced above: 

THEOREM 1.4 ([1]). LetC = (L, V,A , ' , 0 , 1 ) be an ortholattice. Define 
x + y (x V y) A (x A y)' and xy := x Ay 

for all x,y € L. Then R ( £ ) := (L, +, •/, 0,1) is a Boolean quasiring. Con-
versely, let 1Z = (R, +, •/, 0,1) be a Boolean quasiring. Define 

I V J / : = ( I + 1)(J/ + 1) + 1 and x Ay := xy 

for all x,y G R. Then L(1Z) := (R, V, A / , 0,1) is an ortholattice. Moreover, 
L(R(£) ) = £ and R(L(7?.)) = 1Z for every ortholattice £ and every Boolean 
quasiring 1Z. 

2. QN-algebras 
In this section we present a common generalization of ortholattices and 

Boolean quasirings. Since the common generalization of Boolean algebras 
and Boolean rings introduced in [2] was called an N-algebra we call our 
algebras Quasi-N-algebras or QN-algebras. 
DEFINITION 2.1. A QN-algebra is an algebra (R, +, •/, 0,1) of type (2,2,1, 
0,0) satisfying 

(xy)z = x(yz), 
xy = yx, 
xO = 0, 
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xl = X, 

(x')' = x, 

xx' - 0, 

(x'y')'x = x, 

((xy)'x')' = x a n d 

x + y = {{l + \)'xy)'{x'y')'. 

We first prove that every QN-algebra induces an ortholattice. 

L e m m a 2.2. Let (R, +,-,', 0 , 1 ) be a QN-algebra. Define x V y := (x'y')' for 
all x,y G R. Then (R, V, • / , 0 , 1 ) is an ortholattice. 

P r o o f . Because of 
(xy)z = x(yz), 

xy = yx, 

( x V y ) V z = (((x'y'YYzJ = {{x'y')z')' = {x'{y'z>))> = (x'((y'zj)')' 

= x \ / { y V z ) , 

xVy = {x'y')' = ( y ' x j = y V x, 

(x V y)x = (x'y'Yx = x, 

(xy) V x = ((xy)'x')' = x, 

xO = 0, 
xl = X, 

{x'Y = X, 

{x V y)' = ((x'y')'Y = x'y' a n d 

{xy)' = {(x')>{y')')' = x'Vy' 

for all x,y,z € R, (R, V, •, 0,1) is a bounded lattice and ' an antitone invo-
lution. Hence 0' = 1 and 1' = 0 which finally for all x G R implies 

xVx' = (x'(x')')' = (x'x)' = (xx'Y = 0' = 1 a n d xx' = 0. • 

THEOREM 2.3. The ortholattices are exactly the QN-algebras (R, + , • / , 0 , 1 ) 
satisfying 1 + 1 = 1. 

P r o o f . Let (L, V, A / ,0 ,1 ) be an ortholattice and define (L, 
(L, V, A/ , 0,1). Then 1 + 1 = 1 V 1 = 1 and all axioms of a QN-algebra are 
satisfied since 

( ( 1 + l)'xy)'(x'y'Y = ( ( 1 V 1) ' A x A y)' A (x' A y')' = 

- (1' Ax Ay)' A ( i V | / ) = 

= (0 A x A y)' A [x V y) = 
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= 0' A (x V y) = 1 A (x V y) = 

= x V y = x + y 

for all x,y € L. 
Conversely, assume (R, +, •/, 0,1) to be a QN-algebra satisfying 1 + 1 

= 1. Put x V y := (x'y')' for all x, y 6 R. According to Lemma 2.2, 
(R, V, •/ , 0,1) is an ortholattice. Because of 

x + y = (( 1 + 1 )'xy)'{x'y')' = (1 'xy)'(x'y')' = ^xy)'{x'y')' = 0 '{x'y')' 
= 1 (x'y')' = (x'y')' = x^y 

for all x,y 6 R, (R, +, •/, 0,1) is an ortholattice. • 

THEOREM 2.4. The Boolean quasirings are exactly the QN-algebras (R, +, 
•/ , 0,1) satisfying 1 + 1 = 0. 

P r o o f . First let (R, +, •/ ,0 ,1) be a Boolean quasiring. Define x V y := 
{x'y')' for all x,y 6 R. According to Theorem 1.4, (R, V, •/, 0,1) is an 
ortholattice and 1 + 1 = 1' = 0. Moreover, 

((1 V l)'x)'(x'y')' = (0'xy)'(x V y) = (1 xy)'{x V y) = (xy)'(x V y) = x + y 

for all x,y E R. 
Conversely, assume (R, +,-,', 0,1) to be a QN-algebra satisfying 1 + 1 = 0. 

Define xVy := (x'y')' for all x, y € R. According to Lemma 2.2, (R, V, •/, 0,1) 
is an ortholattice. Put i ® i / := ( i V y){xy)' for all x,y G R. According to 
Theorem 1.4, (R, ©, •/ , 0,1) is a Booloean quasiring. Now 

x © y = (x V y)(xy)' = (x'y')'(xy)' = (xy)'(x'y')' = (lxy)'(x'y')' = 
= (0 'xy)'(x'y')' = ((1 + 1 Yxy)'(x'y')' = x + y 

for all x,y e R and hence (R, +, •/ ,0 ,1) is a Boolean quasiring. • 

3. Mutations of QN-algebras 
DEFINITION 3.1. Let 7Z = (R, +, •/, 0,1) be a QN-algebra and a E R. Then 
the algebra lZa := (R, + a ) •/ , 0,1) with x+ay := (a'xy)'(x'y')' for all x,y G R 
is called the a-mutation of TZ. 

We can now prove a theorem analogous to Theorem 3 of [2], 

THEOREM 3.2. Let 1Z = (R, +, • / , 0,1) be a QN-algebra and a,b e R. Then 
the following hold: 
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(i) l + 0 l = a. 

(ii) 1 Z a i s a Q N - a l g e b r a . 

(iii) I Z i i s a n o r t h o l a t t i c e . 

(iv) TZQ i s a B o o l e a n q u a s i r i n g . 

(v) K i + 1 = 1 Z . 

(vi) ( K a ) b = l Z b . 

(vii) {7ZC | c € -R} i s t h e s e t o f a l l Q N - a l g e b r a s w i t h b a s e s e t R h a v i n g 

t h e s a m e m u l t i p l i c a t i o n a n d t h e s a m e u n a r y o p e r a t i o n a s 1 Z . 

(viii) 1Z a n d 1 Z a a d m i t t h e s a m e c o n g r u e n c e s . 

P r o o f , (i) 1 + a 1 = ( a ' l l / U ' l ' ) ' = (aO'il ' ) ' = a l = a. 
(ii) ((1 + a l ) ' x y ) ' { x ' y ' ) ' = ( a ' x y Y i x ' y ' Y = x + a y for all x , y G R . 

(iii) According to (ii), TZ\ is a QN-algebra and according to (i), l + i 1 = 1 
and hence TZi is an ortholattice according to Theorem 2.3. 

(iv) According to (ii), TZQ is a QN-algebra and according to (i), 1 +o 1 = 0 
and hence TZQ is an Boolean quasiring according to Theorem 2.4. 

(v) x -H+i y = ((1 + 1 ) ' x y ) ' { x ' y ' ) ' = x + y for all x , y G R . 

(vi) Since H is a QN-algebra, the same is true for 1Za = ( R , + a , • / , 0,1) 
according to (ii), and x + a y = ( a ' x y ) ' ( x ' y ' ) ' for all x , y G R . Since 7Za is 
a QN-algebra, the same is true for (7Za)b = (-R, (+a)b, • / , 0,1) according to 
(ii), and x ( + a ) b y = ( b ' x y ) ' ( x ' y ' ) ' = x + b y for all x , y G R . 

(vii) Let S = ( R , ©, • / , 0,1) be a QN-algebra. Then x © y = ((1 © 
x y ) ' ( x ' y ' ) ' = x +i©i y for all x , y G R and hence <S = 
(viii) H and 1Za admit the same congruences as ( R , • / ) . m 

Finally, we describe the correspondence stated in Theorem 1.4 in a simple 
way by means of mutations: 

THEOREM 3.3. T h e m a p p i n g s 1Z i—> TZo a n d 7Z i—> 1 Z \ c o i n c i d e w i t h t h e 
m a p p i n g s R a n d L i n t r o d u c e d i n T h e o r e m 1 . 4 , r e s p e c t i v e l y . 

P r o o f . If C — ( L , V, A,', 0,1) is an ortholattice then it is a QN-algebra and 

x V0 y = (0' A x A y ) ' A { x ' A y ' ) ' = (1 A x A y ) ' A ( x V y ) = { x A y ) ' A (x V y) 

for all x , y G L . Hence £o = R-(jC). If, conversely, 1Z = ( R , + , •/ ,0,1) is a 
Boolean quasiring then it is a QN-algebra and 

x + 1 y = (1 ' x y ) ' { x ' y ' ) ' = (Oxy) ' (xV) ' = 0 \ x ' y ' ) ' = l ( x ' y ' ) ' = ( x ' y j 

for all x , y G L and hence T Z \ = h ( T Z ) . • 
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