

I. Chajda, R. Halaš, J. Kühr

WHEN IS A BCC-ALGEBRA EQUIVALENT
TO AN MV-ALGEBRA?

Abstract. The aim of this paper is to characterize BCC-algebras which are term equivalent to MV-algebras. It turns out that they are just the bounded commutative BCC-algebras. Further, we characterize congruence kernels as deductive systems. The explicit description of a principal deductive system enables us to prove that every subdirectly irreducible bounded commutative BCC-algebra is a chain (with respect to the induced order).

1. Introduction

By a **BCC-algebra** we mean an algebra $\mathcal{A} = (A; \rightarrow, 1)$ of type $(2, 0)$ satisfying the following axioms

$$(\text{BCC1}) \quad (x \rightarrow y) \rightarrow ((z \rightarrow x) \rightarrow (z \rightarrow y)) = 1;$$

$$(\text{BCC2}) \quad x \rightarrow x = 1;$$

$$(\text{BCC3}) \quad x \rightarrow 1 = 1;$$

$$(\text{BCC4}) \quad 1 \rightarrow x = x;$$

$$(\text{BCC5}) \quad (x \rightarrow y = 1 \text{ and } y \rightarrow x = 1) \text{ implies } x = y.$$

These algebras were introduced by Y. Komori [9] in connection with the problem whether the class of all BCK-algebras forms a variety. The problem was solved in the negative.

Let us note that for a BCC-algebra \mathcal{A} the relation defined by

$$(*) \quad x \leq y \quad \text{if and only if} \quad x \rightarrow y = 1$$

is an order on A with greatest element 1, see e.g. [9]. Due to this fact, the

Research is supported by the Research and Development Council of Czech Government via project MSM 6198959214.

Key words and phrases: BCC-algebra, BCK-algebra, quasi-commutativity, MV-algebra, double negation law, subdirectly irreducible MV-algebra.

1991 *Mathematics Subject Classification:* 06F35, 06D35, 08A30, 08B26.

identity (BCC1) can be read as

$$x \rightarrow y \leq (z \rightarrow x) \rightarrow (z \rightarrow y).$$

This equivalent formulation will be used in our paper.

We can prove the following

LEMMA 1. *Let $\mathcal{A} = (A; \rightarrow, 1)$ be a BCC-algebra. Then*

- (i) $x \leq y$ implies $z \rightarrow x \leq z \rightarrow y$;
- (ii) $x \leq y$ implies $y \rightarrow z \leq x \rightarrow z$;
- (iii) $y \leq x \rightarrow y$.

Proof. Suppose $x \leq y$. Then $x \rightarrow y = 1$ and, by (BCC1),

$$\begin{aligned} 1 &= (x \rightarrow y) \rightarrow ((z \rightarrow x) \rightarrow (z \rightarrow y)) = 1 \rightarrow ((z \rightarrow x) \rightarrow (z \rightarrow y)) = \\ &= (z \rightarrow x) \rightarrow (z \rightarrow y) \end{aligned}$$

thus $z \rightarrow x \leq z \rightarrow y$ proving (i). Similarly,

$$\begin{aligned} 1 &= (y \rightarrow z) \rightarrow ((x \rightarrow y) \rightarrow (x \rightarrow z)) = (y \rightarrow z) \rightarrow (1 \rightarrow (x \rightarrow z)) = \\ &= (y \rightarrow z) \rightarrow (x \rightarrow z) \end{aligned}$$

whence $y \rightarrow z \leq x \rightarrow z$ proving (ii).

Applying (ii) and the fact that $x \leq 1$ for each $x \in A$ we conclude $y = 1 \rightarrow y \leq x \rightarrow y$. ■

The concept of a **BCK-algebra** was introduced by K. Iséki and Y. Imai [7] as an algebra $\mathcal{A} = (A; \rightarrow, 1)$ of type $(2, 0)$ satisfying the following axioms

$$(BCK1) \quad (x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) = 1;$$

$$(BCK2) \quad x \rightarrow ((x \rightarrow y) \rightarrow y) = 1;$$

$$(BCK3) \quad x \rightarrow x = 1;$$

$$(BCK4) \quad x \rightarrow 1 = 1;$$

$$(BCK5) \quad (x \rightarrow y = 1 \text{ and } y \rightarrow x = 1) \text{ implies } x = y.$$

Moreover, a BCK-algebra \mathcal{A} is called **commutative** if it satisfies the so-called **commutative law** (see [1] for this notation)

$$(C) \quad (x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x.$$

It is well-known (see [8], [10]) that if \mathcal{A} is a commutative BCK-algebra then it is a \vee -semilattice where $x \vee y = (x \rightarrow y) \rightarrow y$.

Analogously as for BCC-algebras, the relation \leq defined by $(*)$ is an order on the support of a BCK-algebra \mathcal{A} and 1 is the greatest element.

The following three lemmas are known but their proofs were published in a different way in several hardly attainable papers. Thus we present our proofs for the reader's convenience.

LEMMA 2. Let $\mathcal{A} = (A; \rightarrow, 1)$ be a BCK-algebra. Then

- (i) $1 \rightarrow x = x$;
- (ii) $x \leq y$ implies $y \rightarrow z \leq x \rightarrow z$;
- (iii) $x \leq y$ implies $z \rightarrow x \leq z \rightarrow y$;
- (iv) $y \leq x \rightarrow y$.

Proof. (i) Using of (BCK3) and (BCK2), we get $1 \rightarrow x = (x \rightarrow x) \rightarrow x \geq x$. However, $(1 \rightarrow x) \rightarrow x = ((x \rightarrow x) \rightarrow x) \rightarrow x \geq x \rightarrow x = 1$ thus $1 = (1 \rightarrow x) \rightarrow x$ whence $1 \rightarrow x \leq x$. Together we have $1 \rightarrow x = x$.

(ii) Suppose $x \leq y$. Then $x \rightarrow y = 1$ and, by (i) and (BCK1),

$$\begin{aligned} 1 &= (x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) = 1 \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) = \\ &= (y \rightarrow z) \rightarrow (x \rightarrow z) \end{aligned}$$

giving $y \rightarrow z \leq x \rightarrow z$.

(iii) If $x \leq y$ then by (i) and (BCK1) we derive

$$\begin{aligned} 1 &= (z \rightarrow x) \rightarrow ((x \rightarrow y) \rightarrow (z \rightarrow y)) = (z \rightarrow x) \rightarrow (1 \rightarrow (z \rightarrow y)) = \\ &= (z \rightarrow x) \rightarrow (z \rightarrow y) \end{aligned}$$

proving $z \rightarrow x \leq z \rightarrow y$.

(iv) Since $x \leq 1$ by (BCK4), we apply (i) and (ii): $y = 1 \rightarrow y \leq x \rightarrow y$. ■

LEMMA 3. Every BCK-algebra satisfies the so-called **exchange identity**

(EI) $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$.

Proof. Substituting y by $y \rightarrow z$ in (BCK1), we get

$$x \rightarrow (y \rightarrow z) \leq ((y \rightarrow z) \rightarrow z) \rightarrow (x \rightarrow z).$$

By (BCK2) we have $y \leq (y \rightarrow z) \rightarrow z$, thus, by Lemma 2 (ii),

$$((y \rightarrow z) \rightarrow z) \rightarrow (x \rightarrow z) \leq y \rightarrow (x \rightarrow z).$$

Together it yields $x \rightarrow (y \rightarrow z) \leq y \rightarrow (x \rightarrow z)$. Swapping x, y , we obtain the converse inequality. ■

LEMMA 4. Every BCK-algebra is a BCC-algebra. A BCC-algebra is a BCK-algebra if and only if it satisfies the exchange identity (EI).

Proof. To prove the first assertion, we need to verify only (BCC1). By Lemma 3, a BCK-algebra satisfies (EI) thus, using this and (BCK1), we compute

$$(x \rightarrow y) \rightarrow ((z \rightarrow x) \rightarrow (z \rightarrow y)) = (z \rightarrow x) \rightarrow ((x \rightarrow y) \rightarrow (z \rightarrow y)) = 1.$$

Conversely, let a BCC-algebra \mathcal{A} satisfy (EI). We need to verify only (BCK1) and (BCK2). By (BCC1) and (EI) we have

$$1 = (y \rightarrow z) \rightarrow ((x \rightarrow y) \rightarrow (x \rightarrow z)) = (x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)),$$

which is (BCK1), and

$$1 = (x \rightarrow y) \rightarrow (x \rightarrow y) = x \rightarrow ((x \rightarrow y) \rightarrow y),$$

which is (BCK2). ■

We can apply the previous lemmas to state

THEOREM 1. *Every BCC-algebra satisfying (BCK2) is a BCK-algebra.*

Proof. By (BCK2) we have $y \leq (y \rightarrow z) \rightarrow z$. Applying (BCC1) we compute

$$y \leq (y \rightarrow z) \rightarrow z \leq (x \rightarrow (y \rightarrow z)) \rightarrow (x \rightarrow z)$$

thus, by Lemma 1 (ii) and (BCK2),

$$y \rightarrow (x \rightarrow z) \geq ((x \rightarrow (y \rightarrow z)) \rightarrow (x \rightarrow z)) \rightarrow (x \rightarrow z) \geq x \rightarrow (y \rightarrow z).$$

Interchanging the roles of x and y , we obtain the converse inequality proving the exchange identity (EI). By Lemma 4, we have shown that the given BCC-algebra is in fact a BCK-algebra. ■

2. Bounded BCC-algebras

We say that a BCC-algebra \mathcal{A} is **bounded** if it has a least element 0, i.e. if $0 \leq x$ for each $x \in A$. Clearly, this property can be characterized by the identity

$$(Z) \quad 0 \rightarrow x = 1$$

and such an algebra will be denoted by $\mathcal{A} = (A; \rightarrow, 1, 0)$ to indicate the existence of a new nullary operation explicitly.

A bounded BCC-algebra \mathcal{A} satisfies the **double negation law** if the identity

$$(DN) \quad (x \rightarrow 0) \rightarrow 0 = x$$

holds in \mathcal{A} .

For the sake of brevity, we will denote $x \rightarrow 0$ by $\neg x$ and call it the **negation** of x . Hence, (DN) can be read as

$$\neg \neg x = x.$$

The concept of an MV-algebra was introduced by C.C. Chang [4] as an axiomatization of the Łukasiewicz many-valued logic. We present the definition taken from the monograph [5]:

By an **MV-algebra** we mean an algebra $\mathcal{M} = (M; \oplus, \neg, 0)$ of type $(2, 1, 0)$ satisfying the following identities

- (MV1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z;$
- (MV2) $x \oplus y = y \oplus x;$
- (MV3) $x \oplus 0 = x;$
- (MV4) $\neg\neg x = x;$
- (MV5) $x \oplus \neg 0 = \neg 0$ ($\neg 0$ is denoted by 1);
- (MV6) $\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x.$

The following result was proved by D. Mundici [10]:

PROPOSITION. *Let $\mathcal{M} = (M; \oplus, \neg, 0)$ be an MV-algebra. Define $x \rightarrow y = \neg x \oplus y$ and $1 = \neg 0$. Then $\mathcal{A}(\mathcal{M}) = (M; \rightarrow, 1, 0)$ is a bounded commutative BCK-algebra.*

Let $\mathcal{A} = (A; \rightarrow, 1, 0)$ be a bounded commutative BCK-algebra. Define $x \oplus y = (x \rightarrow 0) \rightarrow y$ and $\neg x = x \rightarrow 0$. Then $\mathcal{M}(\mathcal{A}) = (A; \oplus, \neg, 0)$ is an MV-algebra.

In the sequel, we are going to modify the Proposition for BCC-algebras. At first we prove

LEMMA 5. *Every bounded BCK-algebra satisfying the double negation law satisfies the contraposition law*

$$(CL) \quad x \rightarrow y = \neg y \rightarrow \neg x.$$

Proof. $\neg y \rightarrow \neg x = (y \rightarrow 0) \rightarrow (x \rightarrow 0) = x \rightarrow ((y \rightarrow 0) \rightarrow 0) = x \rightarrow \neg\neg y = x \rightarrow y.$ ■

REMARK. Of course, the contraposition law entails the double negation law since

$$x = 1 \rightarrow x = \neg x \rightarrow \neg 1 = \neg x \rightarrow 0 = \neg\neg x.$$

It is well-known that commutative BCK-algebras form a variety which can be axiomatized by the following identities

- (i) $(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x;$
- (ii) $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z);$
- (iii) $x \rightarrow x = 1;$
- (iv) $1 \rightarrow x = x.$

Just as in case of BCK-algebras, we say that a BCC-algebra $(A; \rightarrow, 1)$ is **commutative** if it satisfies the identity (C).

It easily follows that these algebras are precisely the commutative BCK-algebras:

THEOREM 2. *Every commutative BCC-algebra $(A; \rightarrow, 1)$ is a commutative BCK-algebra.*

Proof. By Lemma 1 (iii) and (C) we have

$$x \leq (y \rightarrow x) \rightarrow x = (x \rightarrow y) \rightarrow y.$$

Thus $(A; \rightarrow, 1)$ satisfies (BCK2), which by Theorem 1 entails that it is a BCK-algebra. ■

COROLLARY. *Let $(A; \rightarrow, 1, 0)$ be a bounded commutative BCC-algebra. Define*

$$x \oplus y = (x \rightarrow 0) \rightarrow y \quad \text{and} \quad \neg x = x \rightarrow 0.$$

Then $(A; \oplus, \neg, 0)$ is an MV-algebra.

Proof. This is an immediate consequence of the previous Theorem 2 and Mundici's proposition. ■

3. Congruence kernels

Let $\mathcal{A} = (A; \rightarrow, 1)$ be a BCC-algebra and $\Theta \in \text{Con}\mathcal{A}$. The congruence class $[1]_\Theta$ is called the **kernel of Θ** .

Congruence kernels of BCC-algebras are in a close relationship with congruences and hence it is important to have their characterization.

Let $\mathcal{A} = (A; \rightarrow, 1)$ be a BCC-algebra. A subset $D \subseteq A$ is called a **deductive system** of \mathcal{A} if

- (a) $1 \in D$;
- (b) if $a \in D$ and $a \rightarrow b \in D$ then also $b \in D$.

Of course, the condition (b) is in fact the deduction rule **Modus Ponens** which justifies the name "deductive system".

However, the class of BCC-algebras is not closed under homomorphic images thus there is not a one-to-one correspondence between congruences and their kernels. This correspondence exists only for the so-called relative congruences, i.e. such $\Theta \in \text{Con}\mathcal{A}$ that \mathcal{A}/Θ is a BCC-algebra again.

Further, note that every deductive system of a BCC-algebra \mathcal{A} is an order filter (i.e. an upset) with respect to the induced order.

THEOREM 3. *Let $\mathcal{A} = (A; \rightarrow, 1, 0)$ be a bounded BCC-algebra satisfying the contraposition law (CL). Then $D \subseteq A$ is a congruence kernel if and only if D is a deductive system of \mathcal{A} .*

Proof. Obviously, if $D = [1]_\Theta$ for some $\Theta \in \text{Con}\mathcal{A}$, $a \in D$ and $a \rightarrow b \in D$ then $\langle a, 1 \rangle \in \Theta$, $\langle a \rightarrow b, 1 \rangle \in \Theta$ thus also $\langle a \rightarrow b, b \rangle = \langle a \rightarrow b, 1 \rightarrow b \rangle \in \Theta$ and, due to transitivity of Θ , $\langle b, 1 \rangle \in \Theta$ proving $b \in D$. Thus D is a deductive system.

To prove the converse, we only need to show that the relation defined by

$$\langle x, y \rangle \in \Theta_D \text{ if and only if } x \rightarrow y, y \rightarrow x \in D$$

is a congruence on \mathcal{A} whenever D is a deductive system. It is clear that then $[1]_{\Theta_D} = D$.

Suppose that D is a deductive system of \mathcal{A} . By definition, Θ_D is a reflexive and symmetric binary relation on A . Assume $\langle x, y \rangle \in \Theta_D$ and $\langle y, z \rangle \in \Theta_D$. Then $x \rightarrow y, y \rightarrow x, y \rightarrow z, z \rightarrow y \in D$ and, by (BCC1),

$$(y \rightarrow x) \rightarrow ((z \rightarrow y) \rightarrow (z \rightarrow x)) = 1 \in D.$$

Since $y \rightarrow x \in D$ and $z \rightarrow y \in D$, we conclude $z \rightarrow x \in D$. Analogously, it can be shown $x \rightarrow z \in D$, thus $\langle x, z \rangle \in \Theta_D$ proving that Θ_D is an equivalence of A . It remains to show that Θ_D has the Substitution Property with respect to \rightarrow .

Since \mathcal{A} satisfies the contraposition law, we have

$$(P) \quad \langle x, y \rangle \in \Theta_D \quad \text{iff} \quad \langle \neg x, \neg y \rangle \in \Theta_D.$$

Suppose now $\langle x, y \rangle \in \Theta_D$, i.e. $x \rightarrow y, y \rightarrow x \in D$. By (BCC1) we have $(x \rightarrow y) \rightarrow ((z \rightarrow x) \rightarrow (z \rightarrow y)) = 1 \in D$ thus, due to Modus Ponens, also

$$(z \rightarrow x) \rightarrow (z \rightarrow y) \in D.$$

Analogously, we can show $(z \rightarrow y) \rightarrow (z \rightarrow x) \in D$, thus $\langle z \rightarrow x, z \rightarrow y \rangle \in \Theta_D$. Using (P), we obtain $\langle \neg z \rightarrow \neg x, \neg z \rightarrow \neg y \rangle \in \Theta_D$, thus also $\langle x \rightarrow z, y \rightarrow z \rangle \in \Theta_D$. Due to transitivity of Θ_D , we have shown the Substitution Property of Θ_D thus Θ_D is a congruence on \mathcal{A} . ■

Of course, the set of all congruence kernels of a BCC-algebra \mathcal{A} forms a complete lattice with respect to set inclusion. Hence, for a given subset $X \subseteq A$ there exists the least congruence kernel containing X , which will be denoted by $F(X)$. If $X = \{a\}$ is a singleton, $F(X)$ will be denoted briefly by $F(a)$.

In what follows we are going to characterize $F(a)$ explicitly:

LEMMA 6. *Let $\mathcal{A} = (A; \rightarrow, 1, 0)$ be a bounded BCC-algebra satisfying (CL) and $a \in A$. Define $F_0^a = \{x \in A; a \leq x\}$ and $F_i^a = \{x \in A; \alpha \rightarrow x = \beta \text{ for some } \alpha, \beta \in F_{i-1}^a\}$ for $i = 1, 2, \dots$. Then $F(a) = \bigcup\{F_i^a; i = 0, 1, \dots\}$.*

P r o o f. Certainly, $1 \in F_0^a$. If $1 \in F_i^a$ then also $1 \in F_{i+1}^a$ since $1 \rightarrow 1 = 1$. Thus $1 \in F_i^a$ for all $i = 0, 1, 2, \dots$. In particular, $1 \in F = \bigcup\{F_i^a; i = 0, 1, 2, \dots\}$.

Furthermore, $F_i^a \subseteq F_{i+1}^a$. Indeed, if $x \in F_i^a$ then $1 \rightarrow x = x$, thus $x \in F_{i+1}^a$. Now we assume $x, x \rightarrow y \in F$. By the previous observation, there is an integer j such that $x, x \rightarrow y \in F_j^a$. By definition, this means $y \in F_{j+1}^a$ and hence $y \in F$. We have shown that F is a deductive system.

It is obvious that $F(a) \subseteq F$ since F is a deductive system containing a . We show the converse inclusion by induction. Trivially, $F_0^a \subseteq F(a)$. Assume

$F_i^a \subseteq F(a)$ and let $x \in F_{i+1}^a$. Then there are $\alpha, \beta \in F_i^a \subseteq F(a)$ such that $\alpha \rightarrow x = \beta$. This yields $x \in F(a)$ and hence $F(a) = F$. ■

Moreover, if \mathcal{A} is a bounded commutative BCC-algebra, we can prove the following

LEMMA 7. *Let $\mathcal{A} = (A; \rightarrow, 1, 0)$ be a bounded commutative BCC-algebra and $a, b \in A$, $a \parallel b$ and $a \vee b = 1$. Then for each $x \in F(a)$ and $y \in F(b)$ we have $x \vee y = 1$.*

Proof. (i) At first we prove that $x \vee y = 1$ for each $x \in F(a)$ and $y \in F_0^b$. This is clearly equivalent with $x \vee b = 1$. Since $x \in F(a)$, there is an index i such that $x \in F_i^a$. Evidently, $x \vee b = 1$ for $i = 0$. Suppose now $z \vee b = 1$ for all $z \in F_i^a$ and let $x \in F_{i+1}^a$. Then there are $\alpha, \beta \in F_i^a$ with $\alpha \rightarrow x = \beta$. Since $\alpha \vee b = \beta \vee b = 1$ by the induction hypothesis, we obtain

$$\begin{aligned} x \rightarrow b &\leq (\alpha \rightarrow x) \rightarrow (\alpha \rightarrow b) = \beta \rightarrow ((\alpha \vee b) \rightarrow b) = \beta \rightarrow (1 \rightarrow b) = \\ &= \beta \rightarrow b = (\beta \vee b) \rightarrow b = 1 \rightarrow b = b. \end{aligned}$$

Since $b \leq x \rightarrow b$, we have $x \rightarrow b = b$, thus $x \vee b = (x \rightarrow b) \rightarrow b = b \rightarrow b = 1$.

(ii) Suppose now generally $x \in F(a)$, $y \in F(b)$. Then $y \in F_j^b$ for some index j . If $j = 0$ then $x \vee y = 1$ by (i). Assume $x \vee z = 1$ for all $z \in F_i^b$ and take $y \in F_{i+1}^b$. Then $\alpha \rightarrow y = \beta$ for $\alpha, \beta \in F_i^b$ thus, by the induction hypothesis, $x \vee \alpha = x \vee \beta = 1$. Hence

$$\begin{aligned} y \rightarrow x &\leq (\alpha \rightarrow y) \rightarrow (\alpha \rightarrow x) = \beta \rightarrow (\alpha \rightarrow x) = \beta \rightarrow ((\alpha \vee x) \rightarrow x) = \\ &= \beta \rightarrow (1 \rightarrow x) = \beta \rightarrow x = (\beta \vee x) \rightarrow x = 1 \rightarrow x = x. \end{aligned}$$

Since $x \leq y \rightarrow x$, we conclude $y \rightarrow x = x$ thus

$$y \vee x = (y \rightarrow x) \rightarrow x = x \rightarrow x = 1. ■$$

We are able to prove our main result.

THEOREM 4. *Let $\mathcal{A} = (A; \rightarrow, 1, 0)$ be a bounded commutative BCC-algebra. If \mathcal{A} is subdirectly irreducible then \mathcal{A} is a chain with respect to the induced order.*

Proof. Suppose that \mathcal{A} is not a chain, i.e. there exist $a', b' \in A$ such that $a' \parallel b'$. Since \mathcal{A} is commutative, it is a \vee -semilattice where $x \vee y = (x \rightarrow y) \rightarrow y$. The commutative law (C) implies

$$\neg\neg x = (x \rightarrow 0) \rightarrow 0 = (0 \rightarrow x) \rightarrow x = 1 \rightarrow x = x$$

thus \mathcal{A} satisfies also the double negation law and, due to Lemma 2 (ii), the mapping $x \mapsto \neg x$ is an antitone involution. Hence, \mathcal{A} is in fact a lattice where $x \wedge y = \neg(\neg x \vee \neg y)$.

The same is in fact true for every section $[p, 1]$. The mapping assigning to $x \in [p, 1]$ the element $x \rightarrow p$ is an antitone involution on $[p, 1]$ and hence

$$x \wedge y = ((x \rightarrow p) \vee (y \rightarrow p)) \rightarrow p$$

for any $x, y \in [p, 1]$.

$$\text{Therefore, } a \rightarrow (a \wedge b) = a \rightarrow (((a \rightarrow 0) \vee (b \rightarrow 0)) \rightarrow 0) =$$

$$= ((a \rightarrow 0) \vee (b \rightarrow 0)) \rightarrow (a \rightarrow 0) =$$

$$= (((b \rightarrow 0) \rightarrow (a \rightarrow 0)) \rightarrow (a \rightarrow 0)) \rightarrow (a \rightarrow 0) =$$

$$= (b \rightarrow 0) \rightarrow (a \rightarrow 0) = a \rightarrow b \text{ and hence}$$

$$(a \rightarrow b) \vee (b \rightarrow a) = (a \rightarrow (a \wedge b)) \vee (b \rightarrow (a \wedge b)) = (a \wedge b) \rightarrow (a \wedge b) = 1.$$

Thus for $a = a' \rightarrow b' \neq 1$ and $b = b' \rightarrow a' \neq 1$ we obtain

$$\begin{aligned} a \vee b &= (a' \rightarrow b') \vee (b' \rightarrow a') = (a' \rightarrow (a' \wedge b')) \vee (b' \rightarrow (a' \wedge b')) = \\ &= (a' \wedge b') \rightarrow (a' \wedge b') = 1. \end{aligned}$$

By Lemma 7 we have $x \vee y = 1$ for each $x \in F(a)$ and $y \in F(b)$. This yields $F(a) \cap F(b) = \{1\}$. Since $F(a) \neq \{1\} \neq F(b)$ and $F(a)$ or $F(b)$ uniquely determines the congruence $\Theta(a, 1)$ or $\Theta(b, 1)$ on \mathcal{A} , respectively, we have $\Theta(a, 1) \neq \omega \neq \Theta(b, 1)$ but $\Theta(a, 1) \cap \Theta(b, 1) = \omega$ thus \mathcal{A} is not subdirectly irreducible. ■

This result together with Theorem 2 and the Proposition yields that if an MV-algebra is subdirectly irreducible then it is a chain with respect to the induced order. This result is known, see e.g. [5], however, our new proof is much more simple.

References

- [1] J. C. Abbott, *Semi-boolean algebras*, Math. Vesnik 4 (1967), 177–198.
- [2] I. Chajda, G. Eigenthaler, H. Länger, *Congruence Classes in Universal Algebra*, Heldermann Verlag (2003).
- [3] I. Chajda and J. Kühr, *Algebraic structures derived from BCK-algebras*, Miskolc Mathem. Notes, to appear.
- [4] C. C. Chang, *Algebraic analysis of many-valued logics*, Trans. Amer. Math. Soc. 88 (1958), 467–490.
- [5] R. L. O. Cignoli, I. M. L. D’Ottaviano, D. Mundici, *Algebraic Foundation of Many-valued Reasoning*, Kluwer, Dordrecht-Boston-London, 2000.
- [6] R. Halaš, L. Plojhar, *Weakly standard BCC-algebras*, J. Mult.-Val. Log. Soft Comput. 12 (2006), to appear.
- [7] Y. Imai, K. Iséki, *On axiom systems of propositional calculi*, Proc. Japan Acad. 42 (1966), 19–22.
- [8] K. Iséki, S. Tanaka, *An introduction to the theory of BCK-algebras*, Math. Japon. 23 (1978), 1–26.

- [9] Y. Komori, *The class of BCC-algebras is not a variety*, Math. Japon. 29 (1984), 391–394.
- [10] D. Mundici, *MV-algebras are categorically equivalent to bounded commutative BCK-algebras*, Math. Japon. 31 (1986), 889–894.

DEPARTMENT OF ALGEBRA AND GEOMETRY
PALACKÝ UNIVERSITY OLOMOUC
Tomkova 40
779 00 OLOMOUC, CZECH REPUBLIC
E-mails: chajda@inf.upol.cz, halas@inf.upol.cz, kuhr@inf.upol.cz

Received November 28, 2006; revised version May 18, 2007.

Ivan Chajda, Helmut Länger

A COMMON GENERALIZATION OF ORTHOLATTICES AND BOOLEAN QUASIRINGS

Abstract. In [2] a common generalization of Boolean algebras and Boolean rings was introduced. In a similar way we introduce a common generalization of ortholattices and Boolean quasirings.

In [2] a common generalization of Boolean algebras and Boolean rings was considered under the name N-algebra. In [1] the natural one-to-one correspondence between Boolean algebras and Boolean rings was generalized from Boolean algebras to ortholattices. The ring-like structures corresponding to ortholattices this way were called Boolean quasirings. Hence it is natural to ask for a common generalization of ortholattices and Boolean quasirings.

1. Ortholattices and Boolean quasirings

We start with the definition of an ortholattice:

DEFINITION 1.1. An *ortholattice* is an algebra $(L, \vee, \wedge, ', 0, 1)$ of type $(2, 2, 1, 0, 0)$ such that $(L, \vee, \wedge, 0, 1)$ is a bounded lattice and

$$(x')' = x, (x \vee y)' = x' \wedge y', (x \wedge y)' = x' \vee y', x \vee x' = 1 \text{ and } x \wedge x' = 0$$

for all $x, y \in L$.

Next we define Boolean quasirings.

DEFINITION 1.2 ([1]). A *Boolean quasiring* is an algebra $(R, +, \cdot, ', 0, 1)$ of type $(2, 2, 1, 0, 0)$ satisfying

Support of the research of the first author by Czech Government Research Project MSM 6198959214 is gratefully acknowledged.

Key words and phrases: ortholattice, Boolean quasiring, QN-algebra, a -mutation.

1991 *Mathematics Subject Classification:* 08A62, 06C15.

$$\begin{aligned}
x + y &= y + x, \\
x + x &= 0, \\
x + 0 &= x, \\
(xy)z &= x(yz), \\
xy &= yx, \\
xx &= x, \\
x0 &= 0, \\
x1 &= x, \\
(xy + 1)(x + 1) + 1 &= x, \\
((x + 1)(y + 1) + 1)(xy + 1) &= x + y \text{ and} \\
x' &= x + 1.
\end{aligned}$$

REMARK 1.3. The definition given here is a slight modification of the original one given in [1] since the operation $': x \mapsto x + 1$ was added to the family of fundamental operations.

Now we can state the the correspondence between the two algebras introduced above:

THEOREM 1.4 ([1]). *Let $\mathcal{L} = (L, \vee, \wedge, ', 0, 1)$ be an ortholattice. Define*

$$x + y := (x \vee y) \wedge (x \wedge y)' \text{ and } xy := x \wedge y$$

for all $x, y \in L$. Then $\mathbf{R}(\mathcal{L}) := (L, +, \cdot', 0, 1)$ is a Boolean quasiring. Conversely, let $\mathcal{R} = (R, +, \cdot', 0, 1)$ be a Boolean quasiring. Define

$$x \vee y := (x + 1)(y + 1) + 1 \text{ and } x \wedge y := xy$$

for all $x, y \in R$. Then $\mathbf{L}(\mathcal{R}) := (R, \vee, \wedge, ', 0, 1)$ is an ortholattice. Moreover, $\mathbf{L}(\mathbf{R}(\mathcal{L})) = \mathcal{L}$ and $\mathbf{R}(\mathbf{L}(\mathcal{R})) = \mathcal{R}$ for every ortholattice \mathcal{L} and every Boolean quasiring \mathcal{R} .

2. QN-algebras

In this section we present a common generalization of ortholattices and Boolean quasirings. Since the common generalization of Boolean algebras and Boolean rings introduced in [2] was called an *N-algebra* we call our algebras *Quasi-N-algebras* or *QN-algebras*.

DEFINITION 2.1. A *QN-algebra* is an algebra $(R, +, \cdot', 0, 1)$ of type $(2, 2, 1, 0, 0)$ satisfying

$$\begin{aligned}
(xy)z &= x(yz), \\
xy &= yx, \\
x0 &= 0,
\end{aligned}$$

$$\begin{aligned}
x1 &= x, \\
(x')' &= x, \\
xx' &= 0, \\
(x'y')'x &= x, \\
((xy)'x')' &= x \text{ and} \\
x + y &= ((1 + 1)'xy)'(x'y')'.
\end{aligned}$$

We first prove that every QN-algebra induces an ortholattice.

LEMMA 2.2. *Let $(R, +, \cdot', 0, 1)$ be a QN-algebra. Define $x \vee y := (x'y')'$ for all $x, y \in R$. Then $(R, \vee, \cdot', 0, 1)$ is an ortholattice.*

Proof. Because of

$$\begin{aligned}
(xy)z &= x(yz), \\
xy &= yx, \\
(x \vee y) \vee z &= (((x'y')')'z')' = ((x'y')z')' = (x'(y'z'))' = (x'((y'z')')')' \\
&= x \vee (y \vee z), \\
x \vee y &= (x'y')' = (y'x')' = y \vee x, \\
(x \vee y)x &= (x'y')'x = x, \\
(xy) \vee x &= ((xy)'x')' = x, \\
x0 &= 0, \\
x1 &= x, \\
(x')' &= x, \\
(x \vee y)' &= ((x'y')')' = x'y' \text{ and} \\
(xy)' &= ((x')'(y')')' = x' \vee y'
\end{aligned}$$

for all $x, y, z \in R$, $(R, \vee, \cdot', 0, 1)$ is a bounded lattice and ' an antitone involution. Hence $0' = 1$ and $1' = 0$ which finally for all $x \in R$ implies

$$x \vee x' = (x'(x')')' = (x'x)' = (xx')' = 0' = 1 \text{ and } xx' = 0. \blacksquare$$

THEOREM 2.3. *The ortholattices are exactly the QN-algebras $(R, +, \cdot', 0, 1)$ satisfying $1 + 1 = 1$.*

Proof. Let $(L, \vee, \wedge', 0, 1)$ be an ortholattice and define $(L, +, \cdot', 0, 1) := (L, \vee, \wedge', 0, 1)$. Then $1 + 1 = 1 \vee 1 = 1$ and all axioms of a QN-algebra are satisfied since

$$\begin{aligned}
((1 + 1)'xy)'(x'y')' &= ((1 \vee 1)' \wedge x \wedge y)' \wedge (x' \wedge y')' = \\
&= (1' \wedge x \wedge y)' \wedge (x \vee y) = \\
&= (0 \wedge x \wedge y)' \wedge (x \vee y) =
\end{aligned}$$

$$\begin{aligned}
&= 0' \wedge (x \vee y) = 1 \wedge (x \vee y) = \\
&= x \vee y = x + y
\end{aligned}$$

for all $x, y \in L$.

Conversely, assume $(R, +, \cdot', 0, 1)$ to be a QN-algebra satisfying $1 + 1 = 1$. Put $x \vee y := (x'y')'$ for all $x, y \in R$. According to Lemma 2.2, $(R, \vee, \cdot', 0, 1)$ is an ortholattice. Because of

$$\begin{aligned}
x + y &= ((1 + 1)'xy)'(x'y')' = (1'xy)'(x'y')' = (0xy)'(x'y')' = 0'(x'y')' \\
&= 1(x'y')' = (x'y')' = x \vee y
\end{aligned}$$

for all $x, y \in R$, $(R, +, \cdot', 0, 1)$ is an ortholattice. ■

THEOREM 2.4. *The Boolean quasirings are exactly the QN-algebras $(R, +, \cdot', 0, 1)$ satisfying $1 + 1 = 0$.*

P r o o f. First let $(R, +, \cdot', 0, 1)$ be a Boolean quasiring. Define $x \vee y := (x'y')'$ for all $x, y \in R$. According to Theorem 1.4, $(R, \vee, \cdot', 0, 1)$ is an ortholattice and $1 + 1 = 1' = 0$. Moreover,

$$((1 \vee 1)'x)'(x'y')' = (0'xy)'(x \vee y) = (1xy)'(x \vee y) = (xy)'(x \vee y) = x + y$$

for all $x, y \in R$.

Conversely, assume $(R, +, \cdot', 0, 1)$ to be a QN-algebra satisfying $1 + 1 = 0$. Define $x \vee y := (x'y')'$ for all $x, y \in R$. According to Lemma 2.2, $(R, \vee, \cdot', 0, 1)$ is an ortholattice. Put $x \oplus y := (x \vee y)(xy)'$ for all $x, y \in R$. According to Theorem 1.4, $(R, \oplus, \cdot', 0, 1)$ is a Boolean quasiring. Now

$$\begin{aligned}
x \oplus y &= (x \vee y)(xy)' = (x'y')'(xy)' = (xy)'(x'y')' = (1xy)'(x'y')' = \\
&= (0'xy)'(x'y')' = ((1 + 1)'xy)'(x'y')' = x + y
\end{aligned}$$

for all $x, y \in R$ and hence $(R, +, \cdot', 0, 1)$ is a Boolean quasiring. ■

3. Mutations of QN-algebras

DEFINITION 3.1. *Let $\mathcal{R} = (R, +, \cdot', 0, 1)$ be a QN-algebra and $a \in R$. Then the algebra $\mathcal{R}_a := (R, +_a, \cdot', 0, 1)$ with $x +_a y := (a'xy)'(x'y')'$ for all $x, y \in R$ is called the a -mutation of \mathcal{R} .*

We can now prove a theorem analogous to Theorem 3 of [2].

THEOREM 3.2. *Let $\mathcal{R} = (R, +, \cdot', 0, 1)$ be a QN-algebra and $a, b \in R$. Then the following hold:*

- (i) $1 +_a 1 = a$.
- (ii) \mathcal{R}_a is a QN-algebra.
- (iii) \mathcal{R}_1 is an ortholattice.
- (iv) \mathcal{R}_0 is a Boolean quasiring.
- (v) $\mathcal{R}_{1+1} = \mathcal{R}$.
- (vi) $(\mathcal{R}_a)_b = \mathcal{R}_b$.
- (vii) $\{\mathcal{R}_c \mid c \in R\}$ is the set of all QN-algebras with base set R having the same multiplication and the same unary operation as \mathcal{R} .
- (viii) \mathcal{R} and \mathcal{R}_a admit the same congruences.

Proof. (i) $1 +_a 1 = (a'11)'(1'1)' = (a')'(1')' = a1 = a$.

(ii) $((1 +_a 1)'xy)'(x'y')' = (a'xy)'(x'y')' = x +_a y$ for all $x, y \in R$.

(iii) According to (ii), \mathcal{R}_1 is a QN-algebra and according to (i), $1 +_1 1 = 1$ and hence \mathcal{R}_1 is an ortholattice according to Theorem 2.3.

(iv) According to (ii), \mathcal{R}_0 is a QN-algebra and according to (i), $1 +_0 1 = 0$ and hence \mathcal{R}_0 is an Boolean quasiring according to Theorem 2.4.

(v) $x +_{1+1} y = ((1 + 1)'xy)'(x'y')' = x + y$ for all $x, y \in R$.

(vi) Since \mathcal{R} is a QN-algebra, the same is true for $\mathcal{R}_a = (R, +_a, \cdot', 0, 1)$ according to (ii), and $x +_a y = (a'xy)'(x'y')'$ for all $x, y \in R$. Since \mathcal{R}_a is a QN-algebra, the same is true for $(\mathcal{R}_a)_b = (R, (+_a)_b, \cdot', 0, 1)$ according to (ii), and $x (+_a)_b y = (b'xy)'(x'y')' = x +_b y$ for all $x, y \in R$.

(vii) Let $\mathcal{S} = (R, \oplus, \cdot', 0, 1)$ be a QN-algebra. Then $x \oplus y = ((1 \oplus 1)'xy)'(x'y')' = x +_{1 \oplus 1} y$ for all $x, y \in R$ and hence $\mathcal{S} = \mathcal{R}_{1 \oplus 1}$.

(viii) \mathcal{R} and \mathcal{R}_a admit the same congruences as (R, \cdot') . ■

Finally, we describe the correspondence stated in Theorem 1.4 in a simple way by means of mutations:

THEOREM 3.3. *The mappings $\mathcal{R} \mapsto \mathcal{R}_0$ and $\mathcal{R} \mapsto \mathcal{R}_1$ coincide with the mappings \mathbf{R} and \mathbf{L} introduced in Theorem 1.4, respectively.*

Proof. If $\mathcal{L} = (L, \vee, \wedge, ', 0, 1)$ is an ortholattice then it is a QN-algebra and $x \vee_0 y = (0' \wedge x \wedge y)' \wedge (x' \wedge y')' = (1 \wedge x \wedge y)' \wedge (x \vee y) = (x \wedge y)' \wedge (x \vee y)$ for all $x, y \in L$. Hence $\mathcal{L}_0 = \mathbf{R}(\mathcal{L})$. If, conversely, $\mathcal{R} = (R, +, \cdot', 0, 1)$ is a Boolean quasiring then it is a QN-algebra and

$$x +_1 y = (1'xy)'(x'y')' = (0xy)'(x'y')' = 0'(x'y')' = 1(x'y')' = (x'y)'$$

for all $x, y \in L$ and hence $\mathcal{R}_1 = \mathbf{L}(\mathcal{R})$. ■

References

- [1] D. Dorninger, H. Länger and M. Mączyński, *The logic induced by a system of homomorphisms and its various algebraic characterizations*, Demonstratio Math. 30 (1997), 215–232.
- [2] H. Dobbertin, *Note on associative Newman algebras*, Algebra Universalis 9 (1979), 396–397.

Ivan Chajda

PALACKÝ UNIVERSITY OLOMOUC

DEPARTMENT OF ALGEBRA AND GEOMETRY

Tomkova 40

779 00 OLOMOUC, CZECH REPUBLIC

E-mail: chajda@inf.upol.cz

Helmut Länger

VIENNA UNIVERSITY OF TECHNOLOGY

INSTITUTE OF DISCRETE MATHEMATICS AND GEOMETRY

Wiedner Hauptstraße 8–10

1040 VIENNA, AUSTRIA

E-mail: h.laenger@tuwien.ac.at

Received February 26, 2007; revised version May 18, 2007.