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WHEN IS A BCC-ALGEBRA EQUIVALENT
TO AN MV-ALGEBRA?

Abstract. The aim of this paper is to characterize BCC-algebras which are term
equivalent to MV-algebras. It turns out that they are just the bounded commutative BCC-
algebras. Further, we characterize congruence kernels as deductive systems. The explicit
description of a principal deductive system enables us to prove that every subdirectly
irreducible bounded commutative BCC-algebra is a chain (with respect to the induced
order).

1. Introduction
By a BCC-algebra we mean an algebra A = (A; —,1) of type (2,0)
satisfying the following axioms
(BCCl) (z—y)—((z—z)=(2—-y) =1
(BCC2) z—oz=1,;
(BCC3) z—-1=1;
(BCC4) 1—z=u;
(BCC5) (x —y=1andy— z=1) implies z = y.

These algebras were introduced by Y. Komori [9] in connection with the
problem whether the class of all BCK-algebras forms a variety. The problem
was solved in the negative.

Let us note that for a BCC-algebra .A the relation defined by

(*) r<y if and only if z—oy=1
is an order on A with greatest element 1, see e.g. [9]. Due to this fact, the
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identity (BCC1) can be read as
zoy< (2o 3) - (20 y).

This equivalent formulation will be used in our paper.
We can prove the following

LEMMA 1. Let A = (A;—,1) be a BCC-algebra. Then
(i) z <y implies z > x < z > y;
(il) z <y impliesy — 2 <z — z;
(i) y<z > y.
Proof. Suppose z < y. Then z — y =1 and, by (BCC1),
l=(@—-y)—((z-z)>(-y)=1-(z—2)>(2->y) =
=(z—z)—>(z—-y)
thus z — z < z — y proving (i). Similarly,
l=@y—-z2)~(z-y)—(—2)=@U—2)>(1-(z—2)=
=@y—2)—(z—2)
whence y — z < x — z proving (ii).

Applying (ii) and the fact that £ < 1 for each z € A we conclude y =
loy<z—y. =

The concept of a BCK-algebra was introduced by K. Iséki and Y. Imai
[7] as an algebra 4 = (A4; —, 1) of type (2, 0) satisfying the following axioms
(BCK1) (z—y)—-(y—2)—(z—2)=1
(BCK2) z—-(z—y)—y) =1
(BCK3) z—z=1;
(BCK4)
(BCK5) (z—y=1and y — z=1) implies z = y.
Moreover, a BCK-algebra A is called commutative if it satisfies the
so-called commutative law (see [1] for this notation)

z—1=1,;

C) @—y —y=(y—z) >z

It is well-known (see [8], [10]) that if A is a commutative BCK-algebra
then it is a V-semilattice where z Vy = (z - y) — v.

Analogously as for BCC-algebras, the relation < defined by () is an
order on the support of a BCK-algebra A and 1 is the greatest element.

The following three lemmas are known but their proofs were published
in a different way in several hardly attainable papers. Thus we present our
proofs for the reader’s convenience.
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LEMMA 2. Let A= (A;—,1) be a BCK-algebra. Then

(i) 1-oz=ug;
(il) z <y impliesy — 2z <z — z;
(iii) z <y tmplies z > ¢ < z — y;
(iv) y<z —y.

Proof. (i) Using of (BCK3) and (BCK2),wegetl »z=(z - z) -z > z.
However, (1 - z) > z = (. - ) > ) > ¢ > 2 — z = 1 thus
1=(1— z) — z whence 1 — z < z. Together we have 1 — z = z.

(ii) Suppose z < y. Then z — y = 1 and, by (i) and (BCK1),

l=(@—-y) = (y—2)—(e—2)=1-((y—2)—(z—-2)=
=@y—2)—(z—2)

givingy - 2 <z — 2.
(iii) If ¢ < y then by (i) and (BCK1) we derive

l=(z—=2)= (=Y - (z-y)=(F—2)2(1-(2-y)=
=(z—=2)—=(2-y)

proving z > r <z — y.
(iv) Since z < 1 by (BCK4), we apply (i) and (ii): y=1—-y<z—>y. =

LEMMA 3. FEvery BCK-algebra satisfies the so-called exchange identity
ED)z—-(y—2)=y—(z—2).
Proof. Substituting y by y — 2z in (BCK1), we get
o (y—2z)<((y—2)—2) > (x—2).
By (BCK2) we have y < (y — 2) — 2, thus, by Lemma 2 (ii),
(y—2)—2) > (x—2)<y—(z—2).
Together it yields z — (y — 2) < y — (z — z). Swapping z,y, we obtain
the converse inequality. =

LEMMA 4. Every BCK-algebra is a BCC-algebra. A BCC-algebra is a BCK-
algebra if and only if it satisfies the exchange identity (EI).

Proof. To prove the first assertion, we need to verify only (BCC1). By
Lemma 3, a BCK-algebra satisfies (EI) thus, using this and (BCK1), we
compute

-y - ((zo2)2(oy))=G-2)>(z—-y) > (oY) =1

Conversely, let a BCC-algebra A satisfy (EI). We need to verify only (BCK1)
and (BCK2). By (BCC1) and (EI) we have

l=(y—2)=(z-y) - (@E—2)=(@—y)—~(y—2) (@ -2),
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which is (BCK1), and
l=(@—-y -y =z (c—y) —y)
which is (BCK2). =
We can apply the previous lemmas to state
THEOREM 1. Every BCC-algebra satisfying (BCK2) is a BCK-algebra.

Proof. By (BCK2) we have y < (y —» 2z) — z. Applying (BCC1) we
compute

ySy—2)—z2<(@—(y—2)—(z—2)
thus, by Lemma 1 (ii) and (BCK2),

y—=(@—2)2(@-(y—-2)-2@-2)-(—-2)22—-(y—2).

Interchanging the roles of z and y, we obtain the converse inequality proving
the exchange identity (EI). By Lemma 4, we have shown that the given
BCC-algebra is in fact a BCK-algebra. =

2. Bounded BCC-algebras

We say that a BCC-algebra A is bounded if it has a least element 0,
i.e. if 0 € z for each x € A. Clearly, this property can be characterized by
the identity

(ZYy0—-z=1

and such an algebra will be denoted by A = (A; —,1,0) to indicate the
existence of a new nullary operation explicitly.

A bounded BCC-algebra A satisfies the double negation law if the
identity

(DN) (zx - 0) - 0=z

holds in A.
For the sake of brevity, we will denote £ — 0 by —z and call it the
negation of z. Hence, (DN) can be read as

T =T,

The concept of an MV-algebra was introduced by C.C. Chang [4] as
an axiomatization of the FLukasiewicz many-valued logic. We present the
definition taken from the monograph [5):

By an MV-algebra we mean an algebra M = (M;®,,0) of type
(2,1, 0) satisfying the following identities
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(MV1) z&(y@2)=(zdy) %

(MV2) zy=yduz;

(MV3) z@0=uz; |

(MV4) -z =uz;

(MV5) z@-0=-0 (-0 is denoted by 1);
(MV6) —(z0y)dy=—-(-y®z)Pz.

The following result was proved by D. Mundici [10]:

PROPOSITION. Let M = (M;®,-,0) be an MV-algebra. Define z — y =
~z®y and 1 = -0. Then A(M) = (M;—,1,0) is a bounded commutative
BCK-algebra.

Let A = (A;—,1,0) be a bounded commutative BCK-algebra. Define
z®y=(x—0) —yand -z =x — 0. Then M(A) = (4;®,-,0) is an
MV-algebra.

In the sequel, we are going to modify the Proposition for BCC-algebras.
At first we prove

LEMMA 5. FEvery bounded BCK-algebra satisfying the double negation law
satisfies the contraposition law

(CL) T —y=-y— .

Proof. -y - z2=(y—-0—-(z—-0=2—->(y—0 —-0=z—
—|—|y:a','—>y_.

REMARK. Of course, the contraposition law entails the double negation law
since

r=1—-z=-z—-1=-2—-0=-z

It is well-known that commutative BCK-algebras form a variety which
can be axiomatized by the following identities

) -y ~y=@y—-z) -z

(i) 2= (y = 2) =y = (z — 2);

(ili) z »xz=1;

(iv) 1 -z ==z

Just as in case of BCK-algebras, we say that a BCC-algebra (4;—,1) is
commutative if it satisfies the identity (C).

It easily follows that these algebras are precisely the commutative BCK-
algebras:

THEOREM 2. Every commutative BCC-algebra (A; —,1) is a commutative
BCK-algebra.
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Proof. By Lemma 1 (iii) and (C) we have
z<(y—z)—z=(z—oy -y

Thus (A4;—,1) satisfies (BCK2), which by Theorem 1 entails that it is a
BCK-algebra. =

COROLLARY. Let (A;—,1,0) be a bounded commutative BCC-algebra. De-
fine

zdy=(x—0)—>y and -z =1z — 0.
Then (A;®,—,0) is an MV-algebra.

Proof. This is an immediate consequence of the previous Theorem 2 and
Mundici’s proposition. =

3. Congruence kernels

Let A = (A;—,1) be a BCC-algebra and © € ConA. The congruence
class {1]g is called the kernel of ©.

Congruence kernels of BCC-algebras are in a close relationship with con-
gruences and hence it is important to have their characterization.

Let A = (A4;—,1) be a BCC-algebra. A subset D C A is called a
deductive system of A if

(a) 1€ D;
(b) ifa € D and a — b € D then also b € D.

Of course, the condition (b) is in fact the deduction rule Modus Ponens
which justifies the name “deductive system”.

However, the class of BCC-algebras is not closed under homomorphic
images thus there is not a one-to-one correspondence between congruences
and their kernels. This correspondence exists only for the so-called relative
congruences, i.e. such © € ConA that A/0 is a BCC-algebra again.

Further, note that every deductive system of a BCC-algebra A is an order
filter (i.e. an upset) with respect to the induced order.

THEOREM 3. Let A = (A;—,1,0) be a bounded BCC-algebra satisfying the
contraposition law (CL). Then D C A is a congruence kernel if and only if
D is a deductive system of A.

Proof. Obviously, if D = [1]g for some © € ConA,a € Danda —be D
then (a,1) € ©,(a — b,1) € © thus also (a — b,b) = (a —» b,1 - b) € O
and, due to transitivity of ©, (b,1) € © proving b € D. Thus D is a deductive
system.

To prove the converse, we only need to show that the relation defined by

(z,y) €Op ifand onlyifz - y,y >z €D
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is a congruence on A whenever D is a deductive system. It is clear that then
1le, = D.

Suppose that D is a deductive system of .A. By definition, ©p is a
reflexive and symmetric binary relation on A. Assume (z,y) € ©p and
(y,2) € ©p. Then z — y,y — =,y — 2,z — y € D and, by (BCC1),

(y—z)>((z—y) —(z—z))=1€D.

Since y — z € D and z — y € D, we conclude z — z € D. Analogously,
it can be shown x — z € D, thus (z,z) € Op proving that ©p is an
equivalence of A. It remains to show that ©p has the Substitution Property
with respect to — .

Since A satisfies the contraposition law, we have

(P) (z,y)€Op iff (-z,-w)€Op.

Suppose now (z,y) € Op, i.e. £ — y,y — z € D. By (BCC1) we have
(z = y) = ((z—>z) » (z > y)) =1 € D thus, due to Modus Ponens, also

(z—zx)—> (2—y)eD.

Analogously, we can show (z — y) — (2 — z) € D, thus (z — =z,
z — y) € Op. Using (P), we obtain (-z — —z,-z — —y) € Op, thus
also (z — z,y — z) € Op. Due to transitivity of ©p, we have shown the
Substitution Property of ©p thus ©p is a congruence on A.

Of course, the set of all congruence kernels of a BCC-algebra A forms
a complete lattice with respect to set inclusion. Hence, for a given subset
X C A there exists the least congruence kernel containing X, which will be
denoted by F(X). If X = {a} is a singleton, F/(X) will be denoted briefly
by F(a).

In what follows we are going to characterize F'(a) explicitly:

LEMMA 6. Let A = (A;—,1,0) be a bounded BCC-algebra satisfying (CL)
and a € A. Define F§ = {x € Aja <z} and F? = {z € A;a - = = for
some a, B € F2 |} fori=1,2,.... Then F(a) = {F*i=0,1,...}.

Proof. Certainly, 1 € F§. If 1 € F}® then also 1 € F{} | since 1 — 1 = 1.
Thus 1 € F? for all i = 0,1,2,.... In particular, 1 € F = |J{F%i =
0,1,2,...}.

Furthermore, F C F2 . Indeed, if x € F® then 1 — z = z, thus
z € F# |. Now we assume x,z — y € F. By the previous observation, there
is an integer j such that z,z — y € F}. By definition, this means y € F?,,
and hence y € F. We have shown that F' is a deductive system.

It is obvious that F(a) C F since F is a deductive system containg a.
We show the converse inclusion by induction. Trivially, F§ C F'(a). Assume
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F# C F(a) and let x € F2 ;. Then there are a,8 € F C F(a) such that
a — z = (. This yields z € F(a) and hence F(a) = F. u

Moreover, if A is a bounded commutative BCC-algebra, we can prove
the following

LEMMA 7. Let A = (A;—,1,0) be a bounded commutative BCC-algebra and
a,be A, a| bandaVvb=1. Then for each z € F(a) and y € F(b) we have
zVy=1.

Proof. (i) At first we prove that z Vy = 1 for each z € F(a) and y € F}.
This is clearly equivalent with z V b = 1. Since z € F(a), there is an index
i such that z € F. Evidently, £ Vb = 1 for ¢ = 0. Suppose now z Vb =1
for all z € F and let = € F{, ;. Then there are o, 8 € F with a — z = .
Since @ Vb= 3V b=1 by the induction hypothesis, we obtain

z—ob<(a—-z)—>(a—-b=8->(avVd) =b=0—-(1—-0b)=
=8—-b=(BVb—ob=1—>b=0b.

Since b<z — b, wehavez - b=»b,thuszVb=(z—>b -b=b—ob=1.
(ii) Suppose now generally z € F'(a), y € F(b). Then y € FJ’? for some

index j. If = 0 then z Vy = 1 by (i). Assume zV z =1 for all z € F?
and take y € Fiﬂl. Then @ — y = B for a,0 € Fib thus, by the induction
hypothesis, £ Va =z V = 1. Hence

y—z<(a—-y)—-(a—z)=F—>(a—-z)=F—>((aVz) >z)=
=f—-(1—-z)=Ff—-z=(BVz)—z=1—z=n1
Since z < y — x, we conclude y — z = x thus
yVe=(y—z)—-szc=cz—-z=1n
We are able to prove our main result.

THEOREM 4. Let A = (A;—,1,0) be a bounded commutative BCC-algebra.
If A is subdirectly irreducible then A is a chain with respect to the induced
order.

Proof. Suppose that A is not a chain, i.e. there exist a’,b’ € A such that
a' || ¥. Since A is commutative, it is a V-semilattice where z Vy = (z — y)
— y. The commutative law (C) implies

—|—.1;=(;1;—>0)—)O=(0—>:L‘)—>:L'=1—+.’L‘=Cl?

thus A satisfies also the double negation law and, due to Lemma 2 (ii), the
mapping z — —x is an antitone involution. Hence, A is in fact a lattice
where z Ay = ~(—-z V ~y).
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The same is in fact true for every section [p, 1]. The mapping assigning
to z € [p, 1] the element z — p is an antitone involution on [p, 1] and hence

zAy=((z—p)V(y—p)—p

for any z,y € [p,1].
Therefore, a — (aAb)=a— (((e—>0)V(b—0)) - 0) =

=((e—0)Vv(®—0)—(a—0)=
=({((6—0)—(@—0)—(@a—0)—(@—0)=
=(b—0)— (a—>0)=a—b and hence
(a-=bVd-oa)=(a—(aAb)V(b—(aAb)=(aAb)—>(and) =1
Thus fora=a' - b #1and b=b — d’ # 1 we obtain
aVb=(ad - )V¥ —d)=(d - (@ AY)) vV - (d AV)) =
=(d AV) - (d AY)=1.

By Lemma 7 we have z Vy = 1 for each z € F(a) and y € F(b). This yields
F(a) N F(b) = {1}. Since F(a) # {1} # F(b) and F(a) or F(b) uniquely
determines the congruence ©(a,1) or ©(b,1) on A, respectively, we have

O(a,1) # w # O(b,1) but B(a,1) N O(b,1) = w thus A is not subdirectly

irreducible. =

This result together with Theorem 2 and the Proposition yields that if
an MV-algebra is subdirectly irreducible then it is a chain with respect to
the induced order. This result is known, see e.g. [5], however, our new proof
is much more simple.
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Ivan Chajda, Helmut Linger

A COMMON GENERALIZATION OF ORTHOLATTICES
AND BOOLEAN QUASIRINGS

Abstract. In [2] a common generalization of Boolean algebras and Boolean rings was
introduced. In a similar way we introduce a common generalization of ortholattices and
Boolean quasirings.

In [2] a common generalization of Boolean algebras and Boolean rings was
considered under the name N-algebra. In [1] the natural one-to-one corre-
spondence between Boolean algebras and Boolean rings was generalized from
Boolean algebras to ortholattices. The ring-like structures corresponding to
ortholattices this way were called Boolean quasirings. Hence it is natural to
ask for a common generalization of ortholattices and Boolean quasirings.

1. Ortholattices and Boolean quasirings
We start with the definition of an ortholattice:

DEFINITION 1.1. An ortholattice is an algebra (L,V, A, ,0,1) of type (2,2,1,
0,0) such that (L,V, A,0,1) is a bounded lattice and

(Y =z,(zVy) =2 Ay, (zAy) =2’ Vy,zve' =1landz Az’ =0
for all z,y € L.
Next we define Boolean quasirings.

DEFINITION 1.2 ([1]). A Boolean quasiring is an algebra (R, +,-,,0,1) of
type (2,2,1,0,0) satisfying
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zt+y=y+r,
z+x=0,
z4+0=uzx,
(zy)z = z(y2),
Ty =y,
Iz =z,
z0 =0,
Tl =z,
(zy+1)(z+1)+1=x,
(z+)(y+1)+1)(zy+1) =z +y and
=z+1.
REMARK 1.3. The definition given here is a slight modification of the original

one given in [1] since the operation ' : ¢ — z 4+ 1 was added to the family of
fundamental operations.

Now we can state the the correspondence between the two algebras in-
troduced above:

THEOREM 1.4 ([1]). Let £ = (L,V,A,,0,1) be an ortholattice. Define
z+y:=(VyYA(rAy) andzy:=z Ay

for all z,y € L. Then R(L) :=(L,+,-,,0,1) is a Boolean quasiring. Con-

versely, let R = (R,+,-,,0,1) be a Boolean quasiring. Define
zVy:=(z+1)(y+1)+1andxz Ay :=zxy

for allz,y € R. Then L(R) :=(R,V,A,,0,1) is an ortholattice. Moreover,

L(R(L)) = £ and R(L(R)) = R for every ortholattice L and every Boolean
quasiring R.

2. QN-algebras
In this section we present a common generalization of ortholattices and

Boolean quasirings. Since the common generalization of Boolean algebras
and Boolean rings introduced in [2] was called an N-algebra we call our
algebras Quasi-N-algebras or @N-algebras.
DEFINITION 2.1. A QN-algebra is an algebra (R, +,-,,0,1) of type (2,2,1,
0,0) satisfying

(zy)z = z(y2),

Ty = yr,

z0 =0,
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zl ==z,

(xl)/ =7z,

zz' =0,

(z'y)z =z,

((zy)'z’) = z and
z+y=(1+1)zy)(z'y)"

We first prove that every QN-algebra induces an ortholattice.
LEMMA 2.2. Let (R,+,-,,0,1) be a QN-algebra. Define z Vy := (z'y’)’ for
all z,y € R. Then (R,V,-,,0,1) is an ortholattice.

Proof. Because of

(zy)z = z(yz),

Ty = yzx,

(zVvy)Vz=(((z"y))7) = ((z'y)) = (&' (y)) = (@' ((H'Z)))

=zV(yVz),

zVy=(z"y) =) =yvuz,

(zVylr = (ay)z =1z,

(zy) vz = ((zy)'z) ==,

z0 =0,
zl ==z,
(xl), =7z,

(zVvy) =("y)) =2y and
(zy) = (") (")) =2 Vy
for all z,y,z € R, (R,V,+,0,1) is a bounded lattice and ' an antitone invo-
lution. Hence 0/ =1 and 1’ = 0 which finally for all x € R implies
zVz =(2(z)) =(2'z) = (z2') =0 =1and zz’ = 0. =
THEOREM 2.3. The ortholattices are ezactly the QN-algebras (R, +,-,,0,1)
satisfying 1 +1=1.

Proof. Let (L,V,A,,0,1) be an ortholattice and define (L, +,-,,0,1) :=
(L,V,A,,0,1). Then 1+1=1V1=1 and all axioms of a QN-algebra are
satisfied since

(A+Day) @'y) =(QAV1) Az Ay) A Ay') =
=1'AzAy) A(zVy) =
=0AzAY)Y A(zVy)=
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=0A(zVy) =1A(zVy) =
=rzVy=zc+y
for all z,y € L.
Conversely, assume (R, +,-,,0,1) to be a QN-algebra satisfying 1 + 1
= 1. Put zVy := (zy) for all z,y € R. According to Lemma 2.2,
(R,V,-,,0,1) is an ortholattice. Because of
z+y=((1+1)2y)(zy") = Vzy)'("y) = 0zy) (z'y') = 0'(z"y)
=1(z'y) = (a'y) ==z vy
for all z,y € R, (R, +,-,,0,1) is an ortholattice. =

THEOREM 2.4. The Boolean quasirings are ezactly the QN-algebras (R, +,
-/,0,1) satisfying 1 +1=0.

Proof. First let (R,+,-,/,0,1) be a Boolean quasiring. Define z V y :=
(z'y') for all z,y € R. According to Theorem 1.4, (R,V,-/,0,1) is an
ortholattice and 1 + 1 = 1’ = 0. Moreover,

(AVv1)2)(@'y) = (0zy)(z Vy) = (1ay) (& Vy) = (zy) (aVy) =z +y

for all z,y € R.

Conversely, assume (R, +,-,”,0, 1) to be a QN-algebra satisfying 1+1 = 0.
Define zVy := (z'y’) forall z,y € R. According to Lemma 2.2, (R,V,-,,0,1)
is an ortholattice. Put z @y := (z V y)(zy) for all z,y € R. According to
Theorem 1.4, (R, ®,-,,0,1) is a Booloean quasiring. Now

z®y=(zVy)(zy) = (@) (zy) = (zy)(e"y) = (lzy) (z'y') =
= (V'zy)'(z'y) = (1 + D) zy) (@'y) =z +y
for all z,y € R and hence (R, +,-,,0,1) is a Boolean quasiring. m
3. Mutations of QN-algebras
DEFINITION 3.1. Let R = (R, +,-,,0,1) be a QN-algebra and a € R. Then
the algebra R, := (R, +q,-, ,0,1) with z+,y := (a'zy) (z'y’)’ for allz,y € R
1s called the a-mutation of R.

We can now prove a theorem analogous to Theorem 3 of [2].

THEOREM 3.2. Let R = (R,+,-,,0,1) be a QN-algebra and a,b € R. Then
the following hold:
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(i
(it

(iii) Ra is an ortholattice.

1+,1=a.
o 45 a QN-algebra.

(v) Rip1=
( vi

Vll

(Ra)s = Rb
{R.|c € R} is the set of all QN-algebras with base set R having

the same multiplication and the same unary operation as R.

)
) R
)
(iv) Ry is a Boolean quasiring.
)
i)
i)

(viii) R and R, admit the same congruences.

Proof. (i) 1441 = (a’'11)(1'1) = (a’)' (1) = al = a.

(i) (1 +a 1)'zy)(«'y")' = (d'zy)(¢'y") =z +oy for all 2,y € R.

(iii) According to (ii), R is a QN-algebra and according to (i), 1+11 =1
and hence R; is an ortholattice according to Theorem 2.3.

(iv) According to (ii), Rg is a QN-algebra and according to (i), 1+¢1 =0
and hence Ry is an Boolean quasiring according to Theorem 2.4.

V) z+im1y=((1+D'zy)(2y) =z +y for all z,y € R.

(vi) Since R is a QN-algebra, the same is true for R, = (R, +4,-,’,0,1)
according to (ii), and = +, y = (d'zy)'(z'y’)’ for all z,y € R. Since R, is
a QN-algebra, the same is true for (Rq)p = (R, (+a)b, s ,0,1) according to
(i), and z(+q)poy = (V'zy)'(2'y') =z +py for all z,y € R.

(vii) Let S = (R,®,-,,0,1) be a QN-algebra. Then z ®y = ((1 ®
1Yzy)' (z'y) = z +1¢1 y for all z,y € R and hence S = Rig1.

(viii) R and R, admit the same congruences as (R,-,). w

Finally, we describe the correspondence stated in Theorem 1.4 in a simple
way by means of mutations:

THEOREM 3.3. The mappings R — Ro and R — Ry coincide with the
mappings R and L introduced in Theorem 1.4, respectively.

Proof. If L =(L,V,A,,0,1) is an ortholattice then it is a QN-algebra and
zVoy=(0'AzAY)AE@ AY)Y =QAzAY) A(zVy) =(xAy) A(zVy)
for all z,y € L. Hence Lo = R(L). If, conversely, R = (R, +,-,,0,1) is a
Boolean quasiring then it is a QN-algebra and

z+1y = (Vzy) (z'y) = (Ozy)'(«'y) = 0'(z'y) = 1(a'y) = (='y)’
for all z,y € L and hence R; = L(R). u
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