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LUKASIEWICZ RESIDUATION ALGEBRAS WITH INFIMUM 

Abstract . Lukasiewicz residuation algebras with an underlying ordered structure of 
meet semilattice (or iLR-algebras) are studied. These algebras are the algebraic counter-
part of the {—>, A}-fragment of Lukasiewicz's many-valued logic. An equational basis for 
this class of algebras is shown. In addition, the subvariety of ( n + 1)—valued iLR-algebras 
for 0 < n < u> is considered. In particular, the structure of the free finitely generated 
(n + 1)—valued iLR-algebra is described. Moreover, a formula to compute its cardinal 
number in terms of n and the number of free generators is obtained. 

1. Preliminares 
B. Bosbach ([5, 6]) undertook the investigation of a class of residuated 

structures that were related to but considerably more general than Brouwe-
rian semilattices and the algebras associated with {—A}-fragment of Luka-
siewicz's many valued logic. 

In a manuscript by J . Büchi and T. Owens ([8]) devoted to a study of 
Bosbach's algebras, written in the mid-seventies, the commutative members 
of this equational class were given the name hoops. More precisely, they are 
algebras (A,—•, 1) of type (2, 2,0) that satisfy: 

(HI) (A, •, 1) is a commutative monoid, 
(H2) x ^ x = 1, 
(H3) x-y(y^>z) = (x • 
(H4) x • (x^>y) = y • (y^x). 

An important subclass of the variety of hoops is the variety of Wajsberg 
hoops, so named and studied by W. Blok and I. Ferreirim in [3]. These 
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algebras were defined as hoops that satisfy the additional identity: 

(T) (a:->y)->y = (y->x)->x, 

and they constitute the {•,—>, l}-subreducts of Wajsberg algebras. 
On the other hand, J. Berman and W. Blok ([2]) investigated the {—1}-

subreducts of hoops which they called hoop residuation algebras. It seems 
worth mentioning that the algebras which verify (HI), (H2), (H3) and the 
following two axioms: 

(H5) = 1, 
(H6) x—>y = 1 and y—>x = 1 imply x = y, 

are known as pocrims and the {—l}-subreducts of them are precisely the 
BCK-algebras; hoop residuation algebras are therefore BCK-algebras. 

It was conjectured by A. Wronski and proved by Ferreirim ([11]) that 
hoop residuation algebras form a variety that can be defined by any axiom-
atization of BCK-algebras together with the axiom 

(Hra) (x->y)-y(x^-z) = ( y x ) ( y z ) . 

An important subvariety of this variety is that of {—>, l}-subreducts of 
Wajsberg hoops which in [2], were called Lukasiewicz residuation algebras (or 
LR-algebras, for short). It is well-known that in these algebras the relation 
< defined by x < y if and only if x —> y = 1 is a partial order on A and 
x < 1 for every x G A. In addition, (A, <) is a join semilattice where 
x V y = (x—>y)—>y is the supremum of the elements x and y. 

On the other hand, a bounded LR-algebra (or LR°-algebra) is an algebra 
(A,—>, 0,1} where the reduct (A,—1) is an LR-algebra and 0 is the least 
element for <. 

We shall denote by LRA and LRA° the varieties of LR-algebras and 
LR°-algebras respectively. In [17] (see also [19]), it was proved that the vari-
ety LRA0 coincides with that of Wajsberg algebras which are MV-algebras, 
up to term equivalence (see [9]). 

Let A &LRA or A £LRA°. Then, if S is a subalgebra of A, we shall 
write S < A. Besides, if X C A, we shall represent by [X] the subalgebra 
generated by X. For the concepts on universal algebra we direct the reader 
to the bibliography quoted in [7]. 

2. LR-algebras with infimum 
In [10], W. Cornish defined the commutative BCK-algebras with supre-

mum which were studied by T. Traczyk in [20]. In this section, we intro-
duce a new class of Lukasiewicz residuation algebras and we show that this 
notion coincides with the {—>, A, 1}— subreducts of MV-algebras. Further-
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more, we establish the relationship between the dual notion of commutative 
BCK-algebras with supremum and the new ones. 

DEFINITION 2.1. An iLR-algebra is an algebra (A,-*, A, 1) of type (2,2,0) 
where the reduct 1) GLRA and the following identity is verified: 

(LI) ( I A y)-+z = (x^>y)->(x^yz). 

In what follows we shall denote by iLRA the variety of iLR-algebras. 

Notice that if A is a Wajsberg algebra or A G LRA° and we define 
x A y = ~ xV ~ y) or x A y = ((x —• 0) V (y —> 0)) —> 0 respectively, then 
{A, A, — 1 ) G iLRA. 

THEOREM 2.1. iLR-algebras are exactly the { — A , 1 }—subreducts of MV-al-
gebras. 

P r o o f . The {—>, A, 1}—subreducts of MV-algebras are clearly iLR-algebras, 
since MV-algebras satisfy x A y = x • (x —»y) and therefore, (x A y) —> z = 
(x • {x^y))^z = (x^>y)-*(x^z). 

For the converse, observe that every iLR-algebra is downward directed. 
Indeed, it follows easily from (LI) that x A y is a lower bound of each pair 
x,y of elements in the algebra with respect to the definable order (x < y 
iff x—>y — 1). Since iLR-algebras are special BCK-algebras with an addi-
tional binary operation A, taking into account [20] we conclude that every 
iLR-algebra is a meet-semilattice where the greatest lower bound operation 
will be denoted by IT On the other hand, from the results established in 
[11], any downward directed BCK-algebra can be naturally embedded into 
a bounded one that satisfies all the same identities, namely an ultraprod-
uct of its principal order-filters which are subalgebras. The ultraproduct 
is lattice-ordered and it is easy to see that the embedding preserves the 
undistinguished operation 11. Besides, the ultraproduct satisfies the iden-
tity {x —> ?/) —> y = (y —> x) —> x because it holds in all LR-algebra. So 
the ultraproduct is an MV-algebra, up to term equivalence. Thus, the 
{—1}—reduct of an iLR-algebra embeds in an MV-algebra with preserva-
tion of the implicit operation n. To see that every iLR-algebra embeds in 
an MV-algebra, it is therefore enough to show that in any iLR-algebra, A 
and n coincide. Indeed, since n is the greatest lower bound and A is a 
lower bound, we have x A y < x n y. For the reverse inequality, recall that 
(x n y) —* z = (x —> y) —> {x —> z) holds in every MV-algebra, so in an 
iLR-algebra, both A and n satisfy (LI). Since these two laws have the same 
right hand side, every iLR-algebra satisfies (1) (x n y) —> z = (x A y) —> z. 
Substituting x A y for z in (1), we obtain (x n y) —> (a: A y) = 1 and so, 
x n y < x A y. Hence, x A y = x I~1 y. Thus, iLR-algebras are exactly the 
{—>, A, 1}—subreducts of MV-algebras. • 
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In particular, from the above theorem we conclude 

PROPOSITION 2.1. Let (A,—>, A, 1) be an algebra of type ( 2 , 2 , 0 ) . Then the 
following conditions are equivalent: 

(i) (-A,—», 1} is an LR-algebra such that every pair of elements has a com-
mon lower bound where x Ay is the infimum of the elements x, y, 

(ii) (.A,—», A, 1) is an iLR-algebra. 

Proposition 2.1 justifies the name of LR-algebras with infimum given to 
iLR-algebras. 

It is well known that MV-algebras constitute the algebraic counterpart of 
the infinite-valued logic CJ-LPC of Lukasiewicz, and that the only connective 
really used in the algebraization process is — I t follows on general grounds 
(see [4, Cor. 2.12]) that the various subreducts of MV-algebras that retain 
—•algebraize the corresponding fragments of CJ-LPC. Then, by Theorem 2.1 
we can conclude that iLR-algebras constitute the algebraic counterpart of 
the {—A}—fragment of w-LPC. 

An axiomatization for this calculus can be obtained from the one given 
by Wozniakowska in [21] for CJ-LPC. Taking into account this paper, the 
{—A}—fragment is captured by adopting the detachment rule, the substi-
tution rule and the following set of axioms: 

(AO) 
(Al) 
(A2) ( ( x - > y ) ^ y ) ^ ( ( y - + x ) ^ x ) ) , 
(A3) ( l A y)->x, 
(A4) (xA y)->y, 
(A5) (x^y)^{(x^z))^(x-+(yAz))). 

In what follows our attention is focused on the subvariety of iLRA con-
sisting of (ra + 1)—valued iLR-algebras (or iLR n + i —algebras) for 0 < n < u, 
which we shall denote by iLRAn+1. 

DEFINITION 2.2. An iLRn+i-algebra for 0 < n < u is an iLR-algebra which 
satisfies the identity 

(L2) (x -> n y) V x = 1, 

where x—>°y = y and x—>t+1y = x—>(x—>ly) for i <ui. 

Now we shall indicate some properties of iLRAn+1 in order to determine 
the free finitely generated algebras. 

(PI) Let L n + i = {e°, e 1 , . . . , en} with 1 = e° > e1 > . . . > en = 0. Then, 
Ln+i = (L n + i ,—A, 1) € iLRAn+1, where 
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| 1 . if a n d g i A &j = emax{i,j} 
e-* otherwise 

Besides, if S < L n +i and |5| > 1, then S ~ L t+i for 1 < t < n. 

Prom Theorem 2.1 and well kown result we obtain 

(P2) The variety iLRAn+i is generated by L n + i and its subalgebras. 

On the other hand, it holds 

(P3) L n +i is a quasiprimal algebra for 0 < n < ui. 
Indeed, taking into account [16, Theorem 2] it follows immediately 
that iLRAn+1 is an arithmetical variety. Besides, every non trivial 
subalgebra of t n + i is simple. Then by a result due to Pixley (see [7, 
Section 10]) we have that L n +i is quasiprimal. 

3. Free iLR n + i -algebras 
In what follows, we shall denote by £ n + i ( c ) the (n+l)-valued iLR-algebra 

with a set G of free generators, such that |G| = c where c is a cardinal 
number. The notion of free iLR^+i-algebra is defined in the usual way and 
since iLRn+i-algebras are equationally definable, for any cardinal number 
c > 0 the free algebra <Cn+i(c) exists and it is unique up to isomorphism. 

In 1982, J. Berman ([1]) and later on A. V. Figallo and J . Tolosa ([14]) 
obtained the free itRn+i-algebra in the case that n = 2, independently. 

The aim of this paper is to determine the structure of £ n + i ( m ) and 
the formula which provides |£n +i(m)| for every pair n, m such that 0 < 
n, m < u. 

Now, as L n + i is a quasiprimal algebra with the property that every sub-
algebra of it has no automorphisms other than the identity map, then by 
well known results of universal algebra we have that 

n 

(1) ¿ n + l M = l[h+T\ 
¿=1 

where 

(2) a m , i = | { / G L i + 1 : [ / ( G ) ] = L i + 1 } | 
-* G 

and L i + 1 denotes the set of all the mappings from G into L l + i . 
On the other hand, observe that 

(3) [f(G)] = Lj+i implies e* G / (G) . 

Indeed, if el (ji f(G) then there is el = minf(G) with 0 < t < i and 
since [e£, e°] = {x G Li+i : e* < x < < Li+1, then [/(G)] C [e^e0] and 
therefore, [/(G)] C Li+1. 
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Besides, from the theory of Wajsberg algebras (see [19]) it follows that 

(4) any subalgebra of £¿+1 that contains e% must be of the form 
{e°, eJ, e 2 j , . . . , efej} for any j with i = jk for some integer k. 

Now, we are going to compute am>i. 
For every i, 1 < i < n let us consider the set 

^ ^ { / e l ^ e ' e / i G ) } . 
Then we have that 

(5) | Tm,i |= (i + l ) m - im. 
On the other hand, taking into account (3) and (4), it is simple to check that 

(6) I r m , i 1=1 L K / G h + i •• [/(G)l = W I • 
¿1» 

Therefore, from (6) and (2) we obtain 

(7) | J~m,i |= ^ ^ = "I" ^ ^ Oimj. 
j\i jlhj^i 

Finally, from (5) and (7) we conclude that 
(8) am,i = ( i + l ) m - i m - £ Vrnj. 

Hence we have shown the main result of this paper which is the following 
Theorem 3.1. Let £ n + i (m) be a free iLRn+i-algebra with m free generators. 
Then its cardinality is given by the following formula: 

n 

|£„+ 1(m)| = ;Q(* + l) am ' i 
i=i 

where 

am,i = (j + l ) m - j m - a m j -

Remark 3.1. From Theorem 3.1 we obtain that 
£n+i(m) = £n(m) x ( W i ) a m , n 

which makes clear the recursive structure of the free algebras in iLRAn+\. 
Note that for n = 1 we have 

<C2(m) = (La)*"-1 = 
On the other hand, for m = 1 we get 

= 1 and ti = 0, for i > 1. 
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Hence, 
£ n + i ( l ) = £ i ( l ) = (&) 1 for all n. 

Finally, for n = 2 we have 
-Cs(m) = (L2)2 m"1 x (L 3 ) 3 m - 2 m + 1 + 1 , 

and then it follows 
| £ 3 ( m ) | = 2 2 m - 1 - 3 3 m - 2 m + 1 + 1 . 

These formulas were obtained both in [1] and [14]. 
Acknowledgement. The authors are truly thankfull to the referee for 

several helpful suggestions for improvements in this paper. 
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