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LUKASIEWICZ RESIDUATION ALGEBRAS WITH INFIMUM

Abstract. Lukasiewicz residuation algebras with an underlying ordered structure of
meet semilattice (or iL.R-algebras) are studied. These algebras are the algebraic counter-
part of the {—, A}-fragment of Lukasiewicz’s many-valued logic. An equational basis for
this class of algebras is shown. In addition, the subvariety of (n+ 1)—valued iLR-algebras
for 0 < n < w is considered. In particular, the structure of the free finitely generated
(n + 1)—valued ibR-algebra is described. Moreover, a formula to compute its cardinal
number in terms of n and the number of free generators is obtained.

1. Preliminares

B. Bosbach (|5, 6]) undertook the investigation of a class of residuated
structures that were related to but considerably more general than Brouwe-
rian semilattices and the algebras associated with {—, A}-fragment of Luka-
siewicz’s many valued logic.

In a manuscript by J. Biichi and T. Owens ([8]) devoted to a study of
Bosbach’s algebras, written in the mid—seventies, the commutative members
of this equational class were given the name hoops. More precisely, they are
algebras (A,—, -, 1) of type (2,2,0) that satisfy:

(H1) (A,-,1) is a commutative monoid,
(H2) z—z =1,
(H3) z—(y—2)=(z-y)—z,
(H4) z- (z—y) =y (y—2).
An important subclass of the variety of hoops is the variety of Wajsberg
hoops, so named and studied by W. Blok and I. Ferreirim in [3]. These
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algebras were defined as hoops that satisfy the additional identity:
(T) (z—y)—y=(y—z)—z,

and they constitute the {-,—, 1}-subreducts of Wajsberg algebras.

On the other hand, J. Berman and W. Blok ([2]) investigated the {—, 1}-
subreducts of hoops which they called hoop residuation algebras. It seems
worth mentioning that the algebras which verify (H1), (H2), (H3) and the
following two axioms:

(H5) z—1=1,
(H6) z—y=1and y—z =1 imply z =y,

are known as pocrims and the {—, 1}-subreducts of them are precisely the
BCK-algebras; hoop residuation algebras are therefore BCK-algebras.

It was conjectured by A. Wronski and proved by Ferreirim ([11]) that
hoop residuation algebras form a variety that can be defined by any axiom-
atization of BCK-algebras together with the axiom

(Hra) (z—y)—(z—2) = (y—2)—=(y—2).

An important subvariety of this variety is that of {—, 1}-subreducts of
Wajsberg hoops which in [2], were called Lukasiewicz residuation algebras (or
L.R-algebras, for short). It is well-known that in these algebras the relation
< defined by z < y if and only if x -y = 1 is a partial order on A and
x < 1 for every z € A. In addition, (A, <) is a join semilattice where
zVy = (zx—y)—y is the supremum of the elements = and y.

On the other hand, a bounded FL.R-algebra (or ER%-algebra) is an algebra
(A,—,0,1) where the reduct (4,—,1) is an LR-algebra and 0 is the least
element for <.

We shall denote by ZRA and ERA® the varieties of LR-algebras and
¥.RO-algebras respectively. In [17] (see also [19]), it was proved that the vari-
ety ZRA? coincides with that of Wajsberg algebras which are MV-algebras,
up to term equivalence (see [9]).

Let A €ERA or A c¢ERA®. Then, if S is a subalgebra of A, we shall
write S < A. Besides, if X C A, we shall represent by [X] the subalgebra
generated by X. For the concepts on universal algebra we direct the reader
to the bibliography quoted in [7].

2. LR-algebras with infimum

In [10], W. Cornish defined the commutative BCK-algebras with supre-
mum which were studied by T. Traczyk in [20]. In this section, we intro-
duce a new class of Lukasiewicz residuation algebras and we show that this
notion coincides with the {—, A, 1}—subreducts of MV-algebras. Further-
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more, we establish the relationship between the dual notion of commutative
BCK-algebras with supremum and the new ones.

DEFINITION 2.1. An iLR-algebra is an algebra (A,—, A, 1) of type (2,2,0)
where the reduct (A,—,1) €ZRA and the following identity is verified:

1) (zAy)—z=(z—y)—(z—2).
In what follows we shall denote by ¢£RA the variety of iLR-algebras.

Notice that if A is a Wajsberg algebra or A € ERA® and we define
gANy=~(~zV~y)orzAy=((x—0)V (y—0))— 0 respectively, then
(A,A,—,1) € iLRA.

THEOREM 2.1. iLR-algebras are exactly the {—, A, 1}—subreducts of MV-al-
gebras.

Proof. The {—, A,1}—subreducts of MV-algebras are clearly iL.R-algebras,
since MV-algebras satisfy z Ay = z - (x — y) and therefore, (z Ay) — 2z =
(- (z—y))—z=(z—>y)—(z—2)

For the converse, observe that every iL.R-algebra is downward directed.
Indeed, it follows easily from (L1) that z Ay is a lower bound of each pair
z,y of elements in the algebra with respect to the definable order (z < y
iff z >y = 1). Since iL.R-algebras are special BCK-algebras with an addi-
tional binary operation A, taking into account [20] we conclude that every
iLR-algebra is a meet-semilattice where the greatest lower bound operation
will be denoted by M. On the other hand, from the results established in
[11], any downward directed BCK-algebra can be naturally embedded into
a bounded one that satisfies all the same identities, namely an ultraprod-
uct of its principal order-filters which are subalgebras. The ultraproduct
is lattice-ordered and it is easy to see that the embedding preserves the
undistinguished operation M. Besides, the ultraproduct satisfies the iden-
tity (x — y) -y = (y — =) — z because it holds in all LR-algebra. So
the ultraproduct is an MV-algebra, up to term equivalence. Thus, the
{—, 1} —reduct of an iL.R-algebra embeds in an MV-algebra with preserva-
tion of the implicit operation M. To see that every iL.R-algebra embeds in
an MV-algebra, it is therefore enough to show that in any if.R-algebra, A
and M coincide. Indeed, since M is the greatest lower bound and A is a
lower bound, we have z A y < z My. For the reverse inequality, recall that
(xMNy) —» 2z = (x — y) — (x — 2) holds in every MV-algebra, so in an
iL.R-algebra, both A and M satisfy (L1). Since these two laws have the same
right hand side, every iL.R-algebra satisfies (1) (zMy) —> 2z = (z Ay) — 2.
Substituting z A y for z in (1), we obtain (z My) — (z Ay) = 1 and so,
zMNy <z Ay. Hence, x Ay = xMy. Thus, iLR-algebras are exactly the
{—, A, 1}—subreducts of MV-algebras. =
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In particular, from the above theorem we conclude

PROPOSITION 2.1. Let (A,—, A, 1) be an algebra of type (2,2,0). Then the
following conditions are equivalent:

(i) (A,—,1) is an LR-algebra such that every pair of elements has a com-
mon lower bound where T Ay is the infimum of the elements z,y,
(if) (A,—,A,1) is an iLR-algebra.

Proposition 2.1 justifies the name of L.R-algebras with infimum given to
iLR-algebras.

It is well known that MV-algebras constitute the algebraic counterpart of
the infinite-valued logic w-LPC of Lukasiewicz, and that the only connective
really used in the algebraization process is —. It follows on general grounds
(see [4, Cor. 2.12]) that the various subreducts of MV-algebras that retain
— algebraize the corresponding fragments of w-LPC. Then, by Theorem 2.1
we can conclude that iL.R-algebras constitute the algebraic counterpart of
the {—, A}—fragment of w-LPC.

An axiomatization for this calculus can be obtained from the one given
by Wozniakowska in [21] for w-LPC. Taking into account this paper, the
{—, A}—fragment is captured by adopting the detachment rule, the substi-
tution rule and the following set of axioms:

(A0) z— (y—x),

(Al) ((z—y)—(z—2)) = (y—2)— (Y—2)),
(A2) ((z—y)—y)— ((y—z)— 7)),
(A3) (zNy)— =,

(A4) (zAy)—v,

A5) (

4
5) (z—y)—((z—2))—(z— (YA 2)

(

In what follows our attention is focused on the subvariety of iZRA con-
sisting of (n + 1)—valued iL.R-algebras (or iLR,+1—algebras) for 0 < n < w,
which we shall denote by tERA, 1.

DEFINITION 2.2. An iL.R, ;1-algebra for 0 < n < w is an iL.R-algebra which
satisfies the identity

(L2) (z—-"y)Vz =1,
where z— % =y and z—*ly =z —(z—'y) for i < w.
Now we shall indicate some properties of i£R A, 1 in order to determine
the free finitely generated algebras.
(P1) Let Epy1 = {e%€l,...,e"} with 1 =€’ > el > ... > e® = 0. Then,
Lot1 = (Bn+1,— A, 1) € iERAp 4, where
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(1, iz . g
e—el =¢" . - and €' Ael = egmeelia},
eJ~*, otherwise

Besides, if S<1I__:n+1 and |S| > 1, then S ~ Et+1 forl <t<n.
From Theorem 2.1 and well kown result we obtain
(P2) The variety iERApy1 is generated by E,41 and its subalgebras.
On the other hand, it holds

-

(P3) Ln41 is a quasiprimal algebra for 0 < n < w.
Indeed, taking into account [16, Theorem 2] it follows immediately
that ¢£RA, 1 is an arithmetical variety. Besides, every non trivial
subalgebra of En+1 is simple. Then by a result due to Pixley (see [7,
Section 10]) we have that E,1 is quasiprimal.

3. Free iL.R,,-algebras

In what follows, we shall denote by £,,11(c) the (n+1)-valued iL.R-algebra
with a set G of free generators, such that |G| = ¢ where c is a cardinal
number. The notion of free iL.R,,4;-algebra is defined in the usual way and
since iL.R,+1-algebras are equationally definable, for any cardinal number
¢ > 0 the free algebra L,11(c) exists and it is unique up to isomorphism.

In 1982, J. Berman ([1]) and later on A. V. Figallo and J. Tolosa ([14])
obtained the free iL.R,,;-algebra in the case that n = 2, independently.

The aim of this paper is to determine the structure of L,41(m) and
the formula which provides |Lp41(m)| for every pair n, m such that 0 <
n, m<w.

Now, as E'n,+1 is a quasiprimal algebra with the property that every sub-
algebra of it has no automorphisms other than the identity map, then by
well known results of universal algebra we have that

(M) Lnsi(m) = JTET,
where =
2) oms =| {f € E,51: [f(G)] = Eiga} |

- G
and L, ; denotes the set of all the mappings from G into L.
On the other hand, observe that

(3) [f(G)] =Eir1 implies € € f(G).

Indeed, if € ¢ f(G) then there is et = min f(G) with 0 < ¢t < 4 and
since [ef,e0] = {z € Eyy1 : €8 < z < €'} < Bgpq, then [f(G)] C [et, €] and
therefore, [f(G)] C Eit1.
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Besides, from the theory of Wajsberg algebras (see [19]) it follows that

(4) any subalgebra of 'Ei+1 that contains €' must be of the form
{9, e7,e% ... e} for any j with i = jk for some integer k.

Now, we are going to compute a, ;.
For every i, 1 < ¢ < n let us consider the set

Fmi=A{f€li1: e € f(G)}
Then we have that

(5) | Frmi |= (6 4+ 1)™ -
On the other hand, taking into account (3) and (4), it is simple to check that
- G -
(6) | P 1= F € B0 [F(@)] = Eja} |-
jle

Therefore, from (6) and (2) we obtain

(7 | Frnji |= Z QU j = Qmy + Z Q5

Jlé Jli, j#i
Finally, from (5) and (7) we conclude that
(8) omi =G+ 1™ Z O, j-
Jli, j#

Hence we have shown the main result of this paper which is the following

THEOREM 3.1. Let L, 11(m) be a free iL. Ry 11-algebra with m free generators.
Then its cardinality is given by the following formula:

n

[npa(m)] = [[(+1) @me

i=1

omi=(E+1)"—™ — Z Om,j-
i, 3#i
REMARK 3.1. From Theorem 3.1 we obtain that
Ln1(m) = L(m) X (Eas1) O
which makes clear the recursive structure of the free algebras in tERAp+1.
Note that for n = 1 we have

La(m) = (Eg)*™1 = (E2)*™ .
On the other hand, for m = 1 we get

where

og1=1 and o3;=0, fore>1.
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Hence,

Lny1(1) = £1(1) = (E2)'  for all n.

Finally, for n = 2 we have

L3(m) — (L"‘2)2'"—1 x (L';i)3m—2”’”"”l-f-l7

and then it follows

1Ls(m)| = 92™—1 g3m—2mtl41

These formulas were obtained both in [1] and [14].
Acknowledgement. The authors are truly thankfull to the referee for
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