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ON gB-REGULAR AND gg-NORMAL SPACES

Abstract. The aim of this paper is to introduce and study two new classes of spaces,
called gB-regular and gB-normal spaces. The concept of g@-regularity and gf-normality
are separation properties obtained by utilizing g3-closed sets. Recall that a subset A of a
space (X, 7) is called gB-closed if 3Cl(A) C U where A C U and U is open in X.

1. Introduction and preliminaries

Throughout this paper we consider spaces on which no separation axiom
are assumed unless explicitly stated. The topology of a space (by space we
always mean a topological space) is denoted by T and (X, 7) will be replaced
by X if there is no chance of confusion. For A C X, the closure and interior
of Ain X are denoted by Cl(A) and Int(A) respectively.

A subset A of a topological space X is called is called semi-open [11] if
A C Cl(Int(A)). Further it is said to be B-open [1] or semi-preopen [3] if
A C Cl(Int(C1(A))). The complement of a semi-open (resp. S-open) set is
called a semi-closed (resp. [(-closed). The semi-closure [5] (resp. (3-closure
[2]) of A, denoted by S CI(A) (resp. S Cl(A)) is the intersection of all semi-
closed (resp. [-closed) sets containing A. It is said to be semi-generalized
closed, briefly sg-closed [4], if SCI(A) C U, whenever A C U and U is
semi-open in X. It is said to be generalized (-closed [15] or generalized
semi-preclosed [6], briefly gf3-closed, if 3Cl(A) C U, whenever A C U and
U is open in X. Further, the complement of gf-closed set is said to be
gB-open [15].

In 1970, Levine [12] introduced generalized closed set. A subset A of
a topological space (X, 7) is called generalized closed, briefly g-closed if
Cl(A) C U, whenever A C U and U is open in (X, 7).

This notion has been studied extended in recent years by many topol-
ogists. Ganguly et al. [7] generalized the usual notations of regularity
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and normality by replacing “closed-set” by “g-closed” set in the defini-
tions, thus obtaining the notions of g-regularity and g-normality. Further
Ganster et. al (8] introduced the concept of semi-g-regular and semi-g-
normal spaces. where disjoint “sg-closed” sets can be separated by disjoint
semi-open sets. The aim of our paper is to introduce and investigate the no-
tions of generalized (-regular, briefly g3-regular and generalized 8-normal,
briefly g3-normal spaces which generalizes the concept of semi-g-regular and
semi-g-normal spaces by utilizing the concept of gf3-closed set and replacing
“sg-closed” set by “gfB-closed” set.

REMARK 1. Every g-closed and sg-closed sets are gB-closed but not con-
versely as can be seen in Examples 3.3 and diagram on page 38 of [6].

2. gB-Regular spaces

DEFINITION 1. A topological space (X, 7) is said to be (*) semi-pre regular
[14] if for each (-closed set A C X and each point z € X such that z ¢ A,
there exist disjoint G-open sets U and V of X suchthat t€ U and AC V.

DEFINITION 2. A topological space (X, 7) is said to be gf-regular if for each
gB-closed set A and each point z € X such that z & A, there exist disjoint
B-open sets U,V C X suchthat ACV andx € U.

DEFINITION 3. A topological space (X, 7) is said to be semi-pre T}/, [6] if
every g(-closed set is (-closed.

REMARK 2. It is shown in [6] that a space (X,7) is semi-pre T}, if and
only if every singleton of X is closed or S-open. Also a space (X, 7) is said
to be -Tp [13] if distinct points of X can be separated by disjoint S-open
sets.

LEMMA 1. A space (X,T) is gB-regular if and only if (X, 1) is semi-pre
regular and semi-pre T /5.

Proof. Suppose that (X, 7) is gB-regular. Then clearly (X, 7) is semi-pre
regular. Now, let A C X be gf-closed. For each z ¢ A, there exists a
B-open set V, containing x such that V, NA =0. If V = U{V, : = ¢ A},
then V is a (-open set and V = X \ A. Hence A is ($-closed. Converse is
obvious.

REMARK 3. There exist a topological space which is semi-pre regular but
not gl-regular. Following is the example:

EXAMPLE 1. Let X = {a,b,c,d} and let T = {0, X, {a,b}} be the topology
on X. Now (X,T) is semi-pre regular but not gS-regular since {a,b,c}
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is gB-closed but for d ¢ {a,b,c}, there does not exist any pair of disjoint
B-open sets containing d and {a, b, c}.

Our next result characterizes semi-pre regular spaces. We shall call the
subset A C X as (-clopen in (X, 7) if A is both S-open and S-closed. Also
BCl(V) is always [-clopen for any S-open set V' [9].

THEOREM 1. For a topological space (X, ), the following are equivalent:

(i) (X, 1) is gB-regular.
(ii) Pvery gf3-open set U is a union of B-clopen sets.
(iii) Every gf-closed set A is intersection of B-clopen sets.

Proof. (i)=(ii). Let U be gB-open and z € U. If A = X \ U, then A is
gfB-closed. By assumption, there exist disjoint S-open subsets W7 and Wap
of X such that z € Wy and A C Wy, If V = gCI(W1), then V is B-clopen
and VNACVNWy=0. It follows that x € V C U. Thus U is a union of
B-clopen sets.

(if)<(iii). Obvious.

(iii)=(i). Let A be gf3-closed and let z ¢ A. By assumption, there exists
a f-clopen set V such that ACVandz ¢ V. fU =X \V,thenU is a
B-open set containing z and U NV = 0. Thus (X, T) is gB-regular.

G-open sets give rise to various separation properties which are as fol-
lows:

DEFINITION 4. A topological space (X, ) is said to be

(i) gB-Tp space if for each pair of distinct points of X, there exists a
g[-open set containing one point but not the other.
(ii) (8,808)-Ro space if BCl({x}) C U whenever U is g-open and z € U.

REMARK 4. Let X = {a,b,c} and let T = {0, X, {a}} be the topology in X.
Then the space is not g@-regular. Also it is neither 3-T» nor (3, g0)-Ry.
Also note that every (-1 space is semi-pre Tj /9, and every semi-pre 77 /9
space is g@-Tp.

THEOREM 2. Fvery gf3-regular space is both 8-T5 and (3, g08)-Rp.

Proof. Let (X,7) be gB-regular and let z,y € X such that = # y. By
Lemma 1, {z} is either $-open or closed. If {z} is 3-open, hence gB3-open,
then {z} is f-clopen by Theorem 1. Thus {z} and X \ {z} are separating
B-open sets. If {z} is closed, hence S-closed, then X \ {z} is B-open and
s0, by Theorem 1, the union of #-clopen sets. Hence there is a §-clopen set
V C X \ {z} containing y. This proves that (X, 7) is 3-T». By Theorem 1,
it follows immediately that (X, 7) also has to be (3, g3)-Ro.
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3. gB#-Normal spaces
DEFINITION 5. A topological space (X, 7) is said to be

(i) gB-normal if for every pair of disjoint gB-closed sets A and B of X,
there exist disjoint 8-open sets U and V of X such that A C U and
BCV.

(ii) Strongly B-normal [9] if for each pair A,B C X of disjoint S-closed
sets, there exist disjoint S-open sets U and V of X such that A C U
and BCV.

REMARK 5. It is obvious that g3-normal space is strongly $-normal. There
exist a topological space which is strongly $-normal but not g-normal as
can be seen in Example 1.

THEOREM 3. For a topological space (X, T), the following are equivalent:

(i) (X,7) is gB-normal.
(ii) For every gf-closed set A and every g3-open set U containing A, there
is a (B-clopen set V such that ACV CU.

Proof. (i)=(ii). Let A be gO-closed and U be gB-open with A C U. Now,
we have AN (X \ U) = 0, hence there exist disjoint S-open sets W7 and Ws
such that A C Wj and X \U C Wy. If V = gCI(W}), then V is a SB-clopen
set satisfying ACV CU.

(ii)=(i). Obvious.

DEFINITION 6. (i) A function f : (X,7) — (Y,0) is said to be contra
B-continuous [10] if the inverse image of every closed set in (Y, o) is
B-open in (X, 7).

(ii) A space (X, 7) is called weakly gf-normal if disjoint gf-closed set can
be separated by disjoint closed sets.

(iit) A function f : (X,7) — (Y, 0) is said to be always gf-closed if the
image of each gf-closed set in (X, 7) is gf-closed in (Y, o).

THEOREM 6. If f : (X,7) — (Y,0) is an injective contra [3-continuous
always gB-closed function and (Y,o0) is weakly gB-normal, then (X, 1) is
gB3-normal.

Proof. Suppose that A1, A2 C X are gf-closed and disjoint. Since f is
always g-closed and injective, f(A31), f(A2) C Y are gf3-closed and disjoint.
Since (Y, o) is weakly gB-normal, f(A;) and f(A2) can be separated by
disjoint closed sets By, Bs C Y. Morever as f is contra §-continuous, A4;
and A, can be separated by disjoint 3-open sets f~1(B;) and f~!(Bs). Thus
(X, ) is gB-normal.
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