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ON THE INVOLUTE AND EVOLUTE CURVES
OF THE TIMELIKE CURVE IN MINKOWSKI 3-SPACE

Abstract. In this study, we have generalized the involute and evolute curves of the
timelike curve in Minkowski 3-Space. Firstly, we have shown that, the length between the
timelike curve a and the spacelike curve 3 is constant. Furthermore, the Frenet-Serret
frame of the involute curve 3 has been found as dependent on curvatures of the curve c.
We have determined the involute curve 3 is planar in which conditions. Secondly, we have
found transformation matrix between the evolute curve 8 and the curve . Finally, we
have computed the curvatures of the evolute curve .

1. Preliminaries

Let IR3 = {(z1,Z2, x3)|%1, T2, 23 € IR} be a 3-dimensional vector space,
and let £ = (z1,72,23) and y = (y1,¥2,¥3) be two vectors in TR3. The
Lorentz scalar product of z and y is defined by

(x,y); = —T1y1 + T2y + T3y3,

IE3 = (R3, (z,y) ) is called 3-dimensional Lorentzian space, Minkowski
3-Space or 3-dimensional semi-euclidean space. The vector  in I E? is called
a spacelike vector, null vector or a timelike vector if (z,z); > 0 or z = 0,
(z,z); = 0 or (z,z); < 0, respectively. For x € IE3, the norm of the vector
z defined by ||z||;, = v/|{z,z),|, and z is called a unit vector if ||z||, = 1.
For any z, y € IE3, Lorentzian vectoral product of z and y is defined by

z ALY = (T3Y2 — T2Ys3, T3Y1 — T1Y3, T1Y2 — T2Y1) -

We denote by {T'(s), N(s), B(s)} the moving Frenet frame along the curve
a(s). Then T(s), N(s) and B(s) are tangent, the principal normal and the
binormal vector of the curve a(s), respectively. Depending on the causal
character of the curve a, we have the following Frenet-Serret formulas:
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If « is a spacelike curve with a spacelike principal normal N;
(1.1) T'=kN, N=-kT +7B, B '=1N,
(I,T);, =(N,N);, =1,(B,B); =—-1,{(T,N); = (N,B);, =(T,B), =0.
If « is a spacelike curve with a timelike principal normal N;
(1.2) T'=kN, N=«kT+ 7B, B'=1N,
If  is a timelike curve and finally;
(1.3) T'=kN, N=kT+7B, B =—-1N

[see 2]. If the timelike curve a is non-unit speed, then

_ det (a’ (t),a" (¢), a’”(t))
"o,

”a’(t) ALG (t)”L
' ’ T( ) ’
Fol, " o

If timelike curve « is unit speed, then

» T(8) = | B'(s).-
L

(1.4) K(t) =

(1.5) k(s) = a" (s)

2. The involute of the timelike curve

DEFINITION 2.1. Let timelike unit speed timelike curve o : I — E3 and
the curve 3 : I — E3 be given. For Vs € I, then the curve 3 is called
the involute of the curve q, if the tangent at the point a(s) to the curve a
passes through the tangent at the point G(s) to the curve 8 and

(2.1) (T"(s),T(s)), = 0.

Let the Frenet-Serret frames of the curves @ and 8 be {T ,N,B } and
{T*, N*, B* }, respectively. In this case, the causal characteristics of the
Frenet-Serret frames of the curves « and 8 must be of the form.

{T timelike, N spacelike, B spacelike}

and
{T* spacelike, N* timelike, B* spacelike} .

THEOREM 2.1. Let the curve 3 be involute of the curve a and let k be a
constant real number. Then

(2.2) B(s) = a(s) + (k— s)T(s).
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Proof. The curve 8(s) may be given as
(2.3) B(s) = a(s) + u(s)T(s).
If we take the derivative Eq. (2.3), then we have
B(s) = (1+(5) T(s) + u()x(s)N ().

Since the curve J is involute of the curve a, (T*(s),T(s)); = 0. Then, we
get

(2.4) 1+u (s)=0oru(s)=k—s. .
Thus we get
(2.5) B(s) — a(s) = (k — s) T(s). .

COROLLARY 2.2. The distance between the curves 3 and o is |k — s|.

Proof. If we take the norm in Eq. (2.5), then we get

(2.6) 18(s) — a(s)ll, = 1k — sl .
THEOREM 2.3. Let the curve 8 be involute of the the curve a, then

™ 0o 1 o T

N | =(-2)" |-k 0 —7|.|N

B* -7 0 —kK B

Proof. If we take the derivative Eq.(2.5), we can write

B (s) = (k - s)x(s)N (s)

and

/

B (s)

= [(k = s)r(s)|.

.
Furthermore, we get

|
. (s k—s)k(s
T = [, = T
From the last equation, we must have
T*(s) = N(s) or T*(s) = —N(s).
We assume that T*(s) = N(s). Let’s denote the coordinate function on IR
by z. Then, for Vs € IR, z(s) = s, we get
B'(s) = (k- s)x(s)N(s),
g = (k—z)kN.
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Thus, we have

"

B =—kN + (k—z)k N + (k — z)s(kT + 7B)
g = (k- 2)&*T + ((k —z)k — n) N + (k — z)s7B.
Hence, we have

,6, AL ,8" = (k —xz)%?k% (—1T — kB)

= |k — z|* k2/]x2 — 72].

and

’ﬁ AL B

Furthermore, we get
BALB (k- z)>.k%. (-7T —kB) —1T — kB
Y R Y e B ]

Since N* = B* Ap, T*, then we obtain
Nx—_fL-1B .
w2 —77]
THEOREM 2.4. Let the curve 8 be involute of the the curve «. Let the
curvature and torsion of the curve 8 be k* and T*, respectively. Then

F=G .y 97 (0 =K (5)7(6)
|k —s|.k(s) Ik — s|.k(s). (2 — K2)’
Proof. From Eq. (1.3) and Eq. (1.4), we have

K*(s) = |k — s w%(s) _ IK2(s) — 72(s)]

Ck—sP3(s)  K(s). [k —s]

’L

B* =

K*(s) =

and

"

g8 = [_ﬁzT + (k- 2)266 T + (k — "3)’“2(""N)]
+ [—nl - K + (k — (L‘)I{,”] N
+ [_,g + (k- x)/ﬁl)] (kT +7B)

+ [—HT + (k- SL‘)N’T + (k- x)f‘ch] B
+[(k — z)k7] (—TN)
= (—252 +3(k—1z) K,K,I) T

+<(k—w)/@3—2fg/+(k—x),g”_(k_l.),mj)N

+ (—2&7‘ +2(k—2z)k 7+ (k—x) m’l) B.
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Furthermore, since
_ det (61(5),8"(),6"(5))
l6@as @

*

()

we have

A = —(k—z)2K? i , ", ,
_—2m2+3 (k—z)kk —2k74+2(k—2x)k7+(k—2) KT

= —(k—z)2x? r—2fc27'+2(k—:v) K kT+(k—1) K27 +2°7 -3 (k—z) KI‘LIT]

= —(k—x)%k3 (k—-:r) kT —(k—1x) K’T]
= (k—z)3x3 (I‘EIT—I‘ET,) ,

A = det (ﬂl’ﬁ”,ﬁl”> '

Hence, we get

‘(o) = K3.(k — 5)3 (K,(S)TI(S) — n’(s)r(s))
B K4 |k — s|* (72(s) — k2(s)) ’
T*(S) — K(S)T,(S) - K‘I(S)T(S) .
K(s) |k — s| (72(s) — K%(s))

From the last equation, we have the following corollaries:

COROLLARY 2.5. If the curve « is planar, then its involute curve 3 is also
planar.

COROLLARY 2.6. If the curvature k # 0 and the torsion T # 0 of the curve
« are constant, then the involute curve B is planar, i.e., if the curve a is an
ordinary heliz, then its involute curve B is planar.

COROLLARY 2.7. If the curvature k # 0 and the torsion T # 0 of the curve
a are not constant but * is constant, then the involute curve (3 is planar,
i.e. if the curve a is a general heliz, then its the involute curve 3 is planar.

THEOREM 2.8. Suppose that the curve o : I — E3} with arc-length param-
eter are given. Then, the locus of the centre of the curvature of the curve o
is the unique involute of the curve a which lies on the plane of the curve o.

Proof. The locus of the centre of the curvature of the curve « is
1

C(s) = — ——N{(s).

(5) = a(s) - =N (o)
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If we take the derivative in the above equation, then we have

E= T—<l> N——,lg(nT),n#O

ds K

S
Q
~
~_——
™
I
S~
|

Therefore, the involute C of the timelike curve « is the locus of the centre
of the curvature. Is the curve C planar ? If the torsion of the curve C is
denoted by 7*, then

o (nlr — KTI> (s)
S s Ty e s 5

If we take 7 = 0, then we have

T™(s) =0

Thus, the curve C is planar. m

3. The evolute of the timelike curve

DEFINITION 3.1. Let the unit speed curve « and the curve 3 with the same
interval be given. For Vs € I, the tangent at the point 3(s) to the curve
passes through the point a(s) and

(T*(s), T(s)), = 0.

Then, 3 is called the evolute of the curve . Let the Frenet-Serret frames of
the curves o and 3 be

THEOREM 3.1. Let the curve 3 be the evolute of the unit speed timelike
curve a, then

(31)  B(s) = a(s) ~ ——N(s) + —— [tan ((s) + )] B(s),

k(s) K(s)

where ¢ € IR and p(s)+c = [ 7(s)ds. Furthermore, in the normal plane of
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the point a(s) the measure of directed angle between [(s) — a(s) and N(s)
is p(s) +c.

Proof. The tangent of the curve 3 at the point 3(s) is the line constructed
by the vector T*(s). Since this line passes through the point a(s), the vector
B(s) — a(s) is perpendicular to the vector T'(s). Then

(3:2) B(s) — as) = AN(s) + pB(s).
If we take the derivative of Eq. (3.2), then we have
B(s) = (s) + NN + AT 4+ 7B) + ' B(s) + u(—7N),

(3.3) B(s) =1+ T+ (N - m) N+ (3 +4)B.

According to the definition of the evolute, since (T™(s),T'(s)) = 0, from Eq.
(3.3), we get

(3.4) A= —% ,
and
(3.5) g = (X - m) N+ ()\T + u’) B.

From the Eq. (3.2) and Eq. (3.5), the vector field §'is parallel to the vector
field 8 — @. Then we have

N —pr AT+ n
A o
After that, we have
B Alu _ AM/
- 22 + /1’2 ?

(%)

A
1+ (§)°

If we take the integral the last equation, we get

©(s) + ¢ = —arctan (";—Eg—) .

Hence, we find

(3.6) p(s) = —A(s) tan (p(s) +c).
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If we substitute Eq. (3.4) and Eq. (3.6) into Eq. (3.2), we have

B(s) = a(s) - %N@) + % ftan ((s) + o)) B(s),
B(s) = M(s) + ﬁ tan [p(s) + ] B(s).

Then, we obtain an evolute curve for each ¢ € IR. Since
(M()B(s), M(s) als)) =0,

in the Lorentzian triangle which have corners 8(s), M(s) and «a(s) the angle
M is right angle in the Lorentzian mean. In the same triangle, the tangent
of the angle a(s) is

o tani(s) +

(3.7) = tan [p(s) + ¢].

i
K(s)
Then, the measure of the angle between the vectors 3(s) — a(s) and Va(s)
isp(s)+c.m

THEOREM 3.2. Let the spacelike curve 3 : I — E3 be evolute of the unit
speed time curve a: I — E3. If the Frenet-Serret vector fields of the curve
B are T™ (spacelike), N* (timelike), B* (spacelike), then

T* 0 cos(p+c)quad—sin(p+c)| | T
(3.8) N*| =[-1 0 quad 0 N
B* 0 sin(yp + ¢)quad cos(y + ¢) B

Proof. Since the Frenet-Serret vector fields of the curve 3 are T*, N*, B*
and

B =a—pN +ptan(p +c) B,
we have
,BI(S) =a - p’N —p (kT +1B)
+ [pl tan (¢ + ¢) B+ pp sec? (¢ + ¢) B + ptan (¢ + ¢) (—TN)]
=(1-pr)T + (—pl - prtan(<p+c)) N
+ [(—pr + pcp') +p tan (¢ + ¢) + pp tan? (<p+c)] B
= (—p’ — prtanfp + c]) N+ (pl tan (¢ + ¢) + prtan? (p + c)) B

= [—p' — prtan(p + c)] [N —tan (¢ + ¢) B]
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(3.9) H@%=[#%;Z;T%+f1hwﬂ¢+cﬂV—wﬂw+dBL

If we take the norm in the Eq. (3.9), then we obtain

“ﬁ’(s)H _ lpl + prtan(y + )
L

Since T* = W%E’ then we get
(3.10) T* =cos(p+c)N —sin(p+c¢)B.

Therefore, we have obtained Eq. (3.9). The curve (3 is not a unit speed
curve. If we take the derivative of Eq. (3.10) with respect to s, we find

|cos (¢ + ¢)|

(T*)I = (7‘ - ¢I> [Beos(p+c¢)+ Nsin(p+¢)] + &T cos (¢ + ¢)
=kT cos(p+c).

. '
Since T' = “a “L kN we have

@y =&

| K*N*.
L
Thus

Since the vectors N* and T have the unit length, we get N*= —T or N*=T.
Since B* = N* A (—T™), we have

(3.11) B* =sin(¢p + ¢)N + cos(p + ¢)B.
Thus, the proof is completed. m

ﬂI”L K*N*=kcos(p+c)T.

THEOREM 3.3. Let 8 : I — E3 be the evolute of the unit speed curve
a : I — E3}. Let the Frenet vector fields, curvature and torsion of the
curve 3 be T*, N*, B*, k* and T*, respectively. Then

K3 [cos3(y + ¢)|
|k7 sin(p + ¢) — &' cos(p + ¢)|’
) = &3 [sin(p + ¢)| cos?(p + ¢)

|kTsin(p + ¢) — &' cos(p + ¢)|

|k =

Proof. Since N* and T have unit length, then taking norm equility
|

K*N* = Kk cos (¢ + ¢) T, we can write

A

I

| Ik = &eos (¢ + )]
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Therefore, we have
(3.12) ¥ = nlcos(,cp+c)|,
18]l
’p, + prtan(p + c)‘
|cos(y + ¢)|
K3 |cos3(p + c)|
|7 sin{p + ¢) — &' cos(p + ¢)|

|&*| = &lcos (¢ + )] :

K

&7 =
If we take the derivative Eq. (3.11) with respect to s, then we have
(B*)/ = (cpl - ’T) [N cos(y + ¢) — Bsin(p + ¢)] + kT'sin(¢ + ¢)
= kT sin(p + ¢).
Since (B*), = “ﬂll

L T*N*, we get

¢
Since N* = —T, we find that

o] — Klsin(o + o)
T

. T*N* = kT sin(p + ¢).

(3.13)

p + prtan(p + c)

7] = & lsin(p + )| : ’

b

|cos (¢ + ¢)|
k3 [sin(p + ¢)| cos?(p + ¢)
|eTsin(p + ¢) — k' cos(p + ¢)|

|7*| = .
THEOREM 3.4. Let 3 : I — E} be the evolute of the unit speed curve
a:] — E? Let the curvature and torsion of the curve 3 be k* and T*,
respectively. Then

*

(3.14) = |tan(y¢ + ¢)|.

K*

Furthermore, we denote by VY and B @, the evolute curves obtained by
using ¢ and cg instead of c, respectively. The tangents of the curves o8
and 3 @ at the points BV (s) and B (s) intersect at the point a(s). The
measure of the angle between the tangents is ¢; — ca.

Proof. The Eq. (3.14) is obtained easily by using Eq. (3.12) and Eq.
(3.13), i.e.,

7.*

k¥l

_ rlsin(p+ o) kleos(p+c)]
PP

= [tan(p +¢)|.
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_—

The measure of the angle between the vectors a(s)8)(s) and Vi(s), and
—_—
between the vectors a(s)3(?)(s) and N(s) are ¢(s)+c; and ¢(s)+cg, respec-
—_
tively. The vector a(s)3)(s) is parallel to the tangent of the curve 3(1) at
—_
the point B(1(s). The vector a(s)3?(s) is parallel to the tangent of the
curve 82) at the point 3 (s). Furthermore, since a(s)8V(s) , a(s)BM)(s)
—_
and N are perpendicular to the vector T'(s), these three vectors are planar.
Then, the measure of the angle between the tangents of the curves () and
B2 at the points B1)(s) and BP)(s) is
¢(s) + 1 — (¢(s) + c2) =1 — ca.

So, the proof is completed. =

THEOREM 3.5. Suppose that, two different evolutes of the timelike curve «
are given. Let the points on the evolutes of the curve a corresponding to the

point P be P; and Py. Then the angle @2 is constant.

Proof. Let the evolutes of the curve a be 3 and . Let the arc-length
parameters of the o, 3 and v be s, s*and 8, respectively. Let the curvatures
of the curves a, 8 and v be k, k* and k, respectively. And let the Frenet

vectors of the curves «, # and «y be {T, N, B} ,{T*, N*, B*} and {f, N, E}
Then

(3.15) T =N*,T=N.
Since the curves 3 and ~y are evolute, then
(3.16) (T, T*), = <T, T>L =0.

Therefore, if f(s) = <T*, T>L, then we have
(1) 9= (@) . T), + (7. (F) ).

<I§*N*ds ,T> + <T*,Eﬁd—/s\>
ds L ds/

B H*% <N*’f>L + Ed_f <T*’ ﬁ>L
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Therefore, we have f(s) = § =constant. Hence, m (@2) =m <T*, f) =

6@ =constant. =
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