

Bahaddin Bukcu, Murat Kemal Karacan

ON THE INVOLUTE AND EVOLUTE CURVES OF THE TIMELIKE CURVE IN MINKOWSKI 3-SPACE

Abstract. In this study, we have generalized the involute and evolute curves of the timelike curve in Minkowski 3-Space. Firstly, we have shown that, the length between the timelike curve α and the spacelike curve β is constant. Furthermore, the Frenet-Serret frame of the involute curve β has been found as dependent on curvatures of the curve α . We have determined the involute curve β is planar in which conditions. Secondly, we have found transformation matrix between the evolute curve β and the curve α . Finally, we have computed the curvatures of the evolute curve β .

1. Preliminaries

Let $IR^3 = \{(x_1, x_2, x_3) | x_1, x_2, x_3 \in IR\}$ be a 3-dimensional vector space, and let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ be two vectors in IR^3 . The Lorentz scalar product of x and y is defined by

$$\langle x, y \rangle_L = -x_1y_1 + x_2y_2 + x_3y_3,$$

$IE_1^3 = (R^3, \langle x, y \rangle_L)$ is called 3-dimensional Lorentzian space, Minkowski 3-Space or 3-dimensional semi-euclidean space. The vector x in IE_1^3 is called a spacelike vector, null vector or a timelike vector if $\langle x, x \rangle_L > 0$ or $x = 0$, $\langle x, x \rangle_L = 0$ or $\langle x, x \rangle_L < 0$, respectively. For $x \in IE_1^3$, the norm of the vector x defined by $\|x\|_L = \sqrt{|\langle x, x \rangle_L|}$, and x is called a unit vector if $\|x\|_L = 1$. For any $x, y \in IE_1^3$, Lorentzian vectoral product of x and y is defined by

$$x \wedge_L y = (x_3y_2 - x_2y_3, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

We denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve $\alpha(s)$. Then $T(s)$, $N(s)$ and $B(s)$ are tangent, the principal normal and the binormal vector of the curve $\alpha(s)$, respectively. Depending on the causal character of the curve α , we have the following Frenet-Serret formulas:

2000 *Mathematics Subject Classification*: 53A04, 53B30, 53A35.

Key words and phrases: timelike curve, involutes, evolutes, Minkowski 3-Space.

If α is a spacelike curve with a spacelike principal normal N ;

$$(1.1) \quad T' = \kappa N, \quad N = -\kappa T + \tau B, \quad B' = \tau N,$$

$$\langle T, T \rangle_L = \langle N, N \rangle_L = 1, \langle B, B \rangle_L = -1, \langle T, N \rangle_L = \langle N, B \rangle_L = \langle T, B \rangle_L = 0.$$

If α is a spacelike curve with a timelike principal normal N ;

$$(1.2) \quad T' = \kappa N, \quad N = \kappa T + \tau B, \quad B' = \tau N,$$

$$\langle T, T \rangle_L = \langle B, B \rangle_L = 1, \langle N, N \rangle_L = -1, \langle T, N \rangle_L = \langle N, B \rangle_L = \langle T, B \rangle_L = 0.$$

If α is a timelike curve and finally;

$$(1.3) \quad T' = \kappa N, \quad N = \kappa T + \tau B, \quad B' = -\tau N$$

$$\langle T, T \rangle_L = -1, \langle B, B \rangle_L = \langle N, N \rangle_L = 1, \langle T, N \rangle_L = \langle N, B \rangle_L = \langle T, B \rangle_L = 0,$$

[see 2]. If the timelike curve α is non-unit speed, then

$$(1.4) \quad \kappa(t) = \frac{\left\| \alpha'(t) \wedge_L \alpha''(t) \right\|_L}{\left\| \alpha'(t) \right\|_L^3}, \quad \tau(t) = \frac{\det(\alpha'(t), \alpha''(t), \alpha'''(t))}{\left\| \alpha'(t) \wedge_L \alpha''(t) \right\|_L^2}.$$

If timelike curve α is unit speed, then

$$(1.5) \quad \kappa(s) = \left\| \alpha''(s) \right\|_L, \quad \tau(s) = \left\| B'(s) \right\|_L.$$

2. The involute of the timelike curve

DEFINITION 2.1. Let timelike unit speed timelike curve $\alpha : I \longrightarrow E_1^3$ and the curve $\beta : I \longrightarrow E_1^3$ be given. For $\forall s \in I$, then the curve β is called the involute of the curve α , if the tangent at the point $\alpha(s)$ to the curve α passes through the tangent at the point $\beta(s)$ to the curve β and

$$(2.1) \quad \langle T^*(s), T(s) \rangle_L = 0.$$

Let the Frenet-Serret frames of the curves α and β be $\{T, N, B\}$ and $\{T^*, N^*, B^*\}$, respectively. In this case, the causal characteristics of the Frenet-Serret frames of the curves α and β must be of the form.

$$\{T \text{ timelike, } N \text{ spacelike, } B \text{ spacelike}\}$$

and

$$\{T^* \text{ spacelike, } N^* \text{ timelike, } B^* \text{ spacelike}\}.$$

THEOREM 2.1. Let the curve β be involute of the curve α and let k be a constant real number. Then

$$(2.2) \quad \beta(s) = \alpha(s) + (k - s)T(s).$$

Proof. The curve $\beta(s)$ may be given as

$$(2.3) \quad \beta(s) = \alpha(s) + u(s)T(s).$$

If we take the derivative Eq. (2.3), then we have

$$\beta'(s) = \left(1 + u'(s)\right)T(s) + u(s)\kappa(s)N(s).$$

Since the curve β is involute of the curve α , $\langle T^*(s), T(s) \rangle_L = 0$. Then, we get

$$(2.4) \quad 1 + u'(s) = 0 \text{ or } u(s) = k - s. \quad \blacksquare$$

Thus we get

$$(2.5) \quad \beta(s) - \alpha(s) = (k - s)T(s). \quad \blacksquare$$

COROLLARY 2.2. *The distance between the curves β and α is $|k - s|$.*

Proof. If we take the norm in Eq. (2.5), then we get

$$(2.6) \quad \|\beta(s) - \alpha(s)\|_L = |k - s|. \quad \blacksquare$$

THEOREM 2.3. *Let the curve β be involute of the the curve α , then*

$$\begin{bmatrix} T^* \\ N^* \\ B^* \end{bmatrix} = (|\kappa^2 - \tau^2|)^{-1} \begin{bmatrix} 0 & 1 & 0 \\ -\kappa & 0 & -\tau \\ -\tau & 0 & -\kappa \end{bmatrix} \cdot \begin{bmatrix} T \\ N \\ B \end{bmatrix}.$$

Proof. If we take the derivative Eq.(2.5), we can write

$$\beta'(s) = (k - s)\kappa(s)N(s)$$

and

$$\|\beta'(s)\|_L = |(k - s)\kappa(s)|.$$

Furthermore, we get

$$T^*(s) = \frac{\beta'(s)}{\|\beta'(s)\|_L} = \frac{(k - s)\kappa(s)}{|(k - s)\kappa(s)|} N(s).$$

From the last equation, we must have

$$T^*(s) = N(s) \text{ or } T^*(s) = -N(s).$$

We assume that $T^*(s) = N(s)$. Let's denote the coordinate function on IR by x . Then, for $\forall s \in IR$, $x(s) = s$, we get

$$\begin{aligned} \beta'(s) &= (k - s)\kappa(s)N(s), \\ \beta' &= (k - x)\kappa N. \end{aligned}$$

Thus, we have

$$\begin{aligned}\beta'' &= -\kappa N + (k-x)\kappa' N + (k-x)\kappa(\kappa T + \tau B) \\ \beta'' &= (k-x)\kappa^2 T + \left((k-x)\kappa' - \kappa\right) N + (k-x)\kappa\tau B.\end{aligned}$$

Hence, we have

$$\beta' \wedge_L \beta'' = (k-x)^2 \kappa^2 (-\tau T - \kappa B)$$

and

$$\left\| \beta' \wedge_L \beta'' \right\|_L = |k-x|^2 \kappa^2 \sqrt{|\kappa^2 - \tau^2|}.$$

Furthermore, we get

$$B^* = \frac{\beta' \wedge_L \beta''}{\left\| \beta' \wedge_L \beta'' \right\|} = \frac{(k-x)^2 \cdot \kappa^2 \cdot (-\tau T - \kappa B)}{(k-x)^2 \cdot \kappa^2 \cdot \sqrt{|\kappa^2 - \tau^2|}} = \frac{-\tau T - \kappa B}{\sqrt{|\kappa^2 - \tau^2|}}.$$

Since $N^* = B^* \wedge_L T^*$, then we obtain

$$N^* = \frac{-\kappa T - \tau B}{\sqrt{|\kappa^2 - \tau^2|}}. \quad \blacksquare$$

THEOREM 2.4. *Let the curve β be involute of the curve α . Let the curvature and torsion of the curve β be κ^* and τ^* , respectively. Then*

$$\kappa^*(s) = \frac{\sqrt{|\kappa^2 - \tau^2(s)|}}{|k-s| \cdot \kappa(s)}, \quad \tau^*(s) = \frac{\kappa(s)\tau'(s) - \kappa'(s)\tau(s)}{|k-s| \cdot \kappa(s) \cdot (\tau^2 - \kappa^2)}.$$

Proof. From Eq. (1.3) and Eq. (1.4), we have

$$\kappa^*(s) = \frac{|k-s|^2 \kappa^2(s)}{|k-s|^3 \cdot \kappa^3(s)} = \frac{\sqrt{|\kappa^2(s) - \tau^2(s)|}}{\kappa(s) \cdot |k-s|}$$

and

$$\begin{aligned}\beta''' &= \left[-\kappa^2 T + (k-x)2\kappa\kappa' T + (k-x)\kappa^2(\kappa N) \right] \\ &\quad + \left[-\kappa' - \kappa' + (k-x)\kappa'' \right] N \\ &\quad + \left[-\kappa + (k-x)\kappa' \right] (\kappa T + \tau B) \\ &\quad + \left[-\kappa\tau + (k-x)\kappa'\tau + (k-x)\kappa\tau' \right] B \\ &\quad + [(k-x)\kappa\tau] (-\tau N) \\ &= \left(-2\kappa^2 + 3(k-x)\kappa\kappa' \right) T \\ &\quad + \left((k-x)\kappa^3 - 2\kappa' + (k-x)\kappa'' - (k-x)\kappa\tau^2 \right) N \\ &\quad + \left(-2\kappa\tau + 2(k-x)\kappa'\tau + (k-x)\kappa\tau' \right) B.\end{aligned}$$

Furthermore, since

$$\tau^*(s) = \frac{\det(\beta'(s), \beta''(s), \beta'''(s))}{\|\beta'(s) \wedge_L \beta''(s)\|_L^2},$$

we have

$$\begin{aligned} \Delta &= -(k-x)^2 \kappa^2 \begin{bmatrix} \kappa & \tau \\ -2\kappa^2 + 3(k-x)\kappa\kappa' & -2\kappa\tau + 2(k-x)\kappa'\tau + (k-x)\kappa\tau' \end{bmatrix} \\ &= -(k-x)^2 \kappa^2 \left[-2\kappa^2\tau + 2(k-x)\kappa'\kappa\tau + (k-x)\kappa^2\tau' + 2\kappa^2\tau - 3(k-x)\kappa\kappa'\tau \right] \\ &= -(k-x)^2 \kappa^3 \left[(k-x)\kappa\tau' - (k-x)\kappa'\tau \right] \\ &= (k-x)^3 \kappa^3 \left(\kappa'\tau - \kappa\tau' \right), \\ \Delta &= \det(\beta', \beta'', \beta'''). \end{aligned}$$

Hence, we get

$$\begin{aligned} \tau^*(s) &= \frac{\kappa^3 \cdot (k-s)^3 \left(\kappa(s)\tau'(s) - \kappa'(s)\tau(s) \right)}{\kappa^4 |k-s|^4 (\tau^2(s) - \kappa^2(s))}, \\ \tau^*(s) &= \frac{\kappa(s)\tau'(s) - \kappa'(s)\tau(s)}{\kappa(s)|k-s|(\tau^2(s) - \kappa^2(s))}. \end{aligned}$$

From the last equation, we have the following corollaries:

COROLLARY 2.5. *If the curve α is planar, then its involute curve β is also planar.*

COROLLARY 2.6. *If the curvature $\kappa \neq 0$ and the torsion $\tau \neq 0$ of the curve α are constant, then the involute curve β is planar, i.e., if the curve α is an ordinary helix, then its involute curve β is planar.*

COROLLARY 2.7. *If the curvature $\kappa \neq 0$ and the torsion $\tau \neq 0$ of the curve α are not constant but $\frac{\tau}{\kappa}$ is constant, then the involute curve β is planar, i.e. if the curve α is a general helix, then its the involute curve β is planar.*

THEOREM 2.8. *Suppose that the curve $\alpha : I \rightarrow E_1^3$ with arc-length parameter are given. Then, the locus of the centre of the curvature of the curve α is the unique involute of the curve α which lies on the plane of the curve α .*

Proof. The locus of the centre of the curvature of the curve α is

$$C(s) = \alpha(s) - \frac{1}{\kappa(s)} N(s).$$

If we take the derivative in the above equation, then we have

$$\begin{aligned}
 \frac{dC}{ds} &= T - \left(\frac{1}{\kappa} \right)' N - \frac{1}{\kappa} (\kappa T), \kappa \neq 0 \\
 &= T - \left(\frac{1}{\kappa} \right)' N - \frac{1}{\kappa} \kappa T \\
 C'(s) &= - \left(\frac{1}{\kappa} \right)' N \\
 \langle C', T \rangle_L &= \left\langle - \left(\frac{1}{\kappa} \right)' N, T \right\rangle_L \\
 \langle C', T \rangle_L &= 0 \\
 \langle C'(s), T(s) \rangle_L &= 0.
 \end{aligned}$$

Therefore, the involute C of the timelike curve α is the locus of the centre of the curvature. Is the curve C planar? If the torsion of the curve C is denoted by τ^* , then

$$\tau^*(s) = \frac{(\kappa' \tau - \kappa \tau')(s)}{\kappa(s) |k - s| (\tau^2(s) - \kappa^2(s))}.$$

If we take $\tau = 0$, then we have

$$\tau^*(s) = 0$$

Thus, the curve C is planar. ■

3. The evolute of the timelike curve

DEFINITION 3.1. Let the unit speed curve α and the curve β with the same interval be given. For $\forall s \in I$, the tangent at the point $\beta(s)$ to the curve β passes through the point $\alpha(s)$ and

$$\langle T^*(s), T(s) \rangle_L = 0.$$

Then, β is called the evolute of the curve α . Let the Frenet-Serret frames of the curves α and β be

THEOREM 3.1. *Let the curve β be the evolute of the unit speed timelike curve α , then*

$$(3.1) \quad \beta(s) = \alpha(s) - \frac{1}{\kappa(s)} N(s) + \frac{1}{\kappa(s)} [\tan(\varphi(s) + c)] B(s),$$

where $c \in IR$ and $\varphi(s) + c = \int \tau(s) ds$. Furthermore, in the normal plane of

the point $\alpha(s)$ the measure of directed angle between $\beta(s) - \alpha(s)$ and $N(s)$ is $\varphi(s) + c$.

Proof. The tangent of the curve β at the point $\beta(s)$ is the line constructed by the vector $T^*(s)$. Since this line passes through the point $\alpha(s)$, the vector $\beta(s) - \alpha(s)$ is perpendicular to the vector $T(s)$. Then

$$(3.2) \quad \beta(s) - \alpha(s) = \lambda N(s) + \mu B(s).$$

If we take the derivative of Eq. (3.2), then we have

$$\beta'(s) = \alpha'(s) + \lambda' N + \lambda(\kappa T + \tau B) + \mu' B(s) + \mu(-\tau N),$$

$$(3.3) \quad \beta'(s) = (1 + \lambda\kappa) T + (\lambda' - \mu\tau) N + (\lambda\tau + \mu') B.$$

According to the definition of the evolute, since $\langle T^*(s), T(s) \rangle = 0$, from Eq. (3.3), we get

$$(3.4) \quad \lambda = -\frac{1}{\kappa},$$

and

$$(3.5) \quad \beta' = (\lambda' - \mu\tau) N + (\lambda\tau + \mu') B.$$

From the Eq. (3.2) and Eq. (3.5), the vector field β' is parallel to the vector field $\beta - \alpha$. Then we have

$$\frac{\lambda' - \mu\tau}{\lambda} = \frac{\lambda\tau + \mu'}{\mu}.$$

After that, we have

$$\begin{aligned} \tau &= \frac{\lambda' \mu - \lambda \mu'}{\lambda^2 + \mu^2}, \\ \tau &= -\frac{(\frac{\mu}{\lambda})'}{1 + (\frac{\mu}{\lambda})^2}. \end{aligned}$$

If we take the integral the last equation, we get

$$\varphi(s) + c = -\arctan\left(\frac{\mu(s)}{\lambda(s)}\right).$$

Hence, we find

$$(3.6) \quad \mu(s) = -\lambda(s) \tan(\varphi(s) + c).$$

If we substitute Eq. (3.4) and Eq. (3.6) into Eq. (3.2), we have

$$\begin{aligned}\beta(s) &= \alpha(s) - \frac{1}{\kappa(s)} N(s) + \frac{1}{\kappa(s)} [\tan(\varphi(s) + c)] B(s), \\ \beta(s) &= M(s) + \frac{1}{\kappa(s)} \tan[\varphi(s) + c] B(s).\end{aligned}$$

Then, we obtain an evolute curve for each $c \in IR$. Since

$$\left\langle \overrightarrow{M(s)\beta(s)}, \overrightarrow{M(s)\alpha(s)} \right\rangle_L = 0,$$

in the Lorentzian triangle which have corners $\beta(s)$, $M(s)$ and $\alpha(s)$ the angle M is right angle in the Lorentzian mean. In the same triangle, the tangent of the angle $\alpha(s)$ is

$$(3.7) \quad \frac{\frac{1}{\kappa(s)} \tan[\varphi(s) + c]}{\frac{1}{\kappa(s)}} = \tan[\varphi(s) + c].$$

Then, the measure of the angle between the vectors $\beta(s) - \alpha(s)$ and $V_2(s)$ is $\varphi(s) + c$. ■

THEOREM 3.2. *Let the spacelike curve $\beta : I \rightarrow E_1^3$ be evolute of the unit speed time curve $\alpha : I \rightarrow E_1^3$. If the Frenet-Serret vector fields of the curve β are T^* (spacelike), N^* (timelike), B^* (spacelike), then*

$$(3.8) \quad \begin{bmatrix} T^* \\ N^* \\ B^* \end{bmatrix} = \begin{bmatrix} 0 & \cos(\varphi + c) & -\sin(\varphi + c) \\ -1 & 0 & 0 \\ 0 & \sin(\varphi + c) & \cos(\varphi + c) \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}.$$

Proof. Since the Frenet-Serret vector fields of the curve β are T^* , N^* , B^* and

$$\beta = \alpha - \rho N + \rho \tan(\varphi + c) B,$$

we have

$$\begin{aligned}\beta'(s) &= \alpha' - \rho' N - \rho(\kappa T + \tau B) \\ &\quad + \left[\rho' \tan(\varphi + c) B + \rho \varphi' \sec^2(\varphi + c) B + \rho \tan(\varphi + c) (-\tau N) \right] \\ &= (1 - \rho \kappa) T + \left(-\rho' - \rho \tau \tan(\varphi + c) \right) N \\ &\quad + \left[\left(-\rho \tau + \rho \varphi' \right) + \rho' \tan(\varphi + c) + \rho \varphi' \tan^2(\varphi + c) \right] B \\ &= \left(-\rho' - \rho \tau \tan(\varphi + c) \right) N + \left(\rho' \tan(\varphi + c) + \rho \tau \tan^2(\varphi + c) \right) B \\ &= \left[-\rho' - \rho \tau \tan(\varphi + c) \right] [N - \tan(\varphi + c) B]\end{aligned}$$

$$(3.9) \quad \beta'(s) = \left[\frac{-\rho' - \rho\tau \tan(\varphi + c)}{\cos(\varphi + c)} \right] [\cos(\varphi + c)N - \sin(\varphi + c)B].$$

If we take the norm in the Eq. (3.9), then we obtain

$$\|\beta'(s)\|_L = \frac{|\rho' + \rho\tau \tan(\varphi + c)|}{|\cos(\varphi + c)|}.$$

Since $T^* = \frac{\beta'}{\|\beta'\|_L}$, then we get

$$(3.10) \quad T^* = \cos(\varphi + c)N - \sin(\varphi + c)B.$$

Therefore, we have obtained Eq. (3.9). The curve β is not a unit speed curve. If we take the derivative of Eq. (3.10) with respect to s , we find

$$\begin{aligned} (T^*)' &= (\tau - \varphi') [B \cos(\varphi + c) + N \sin(\varphi + c)] + \kappa T \cos(\varphi + c) \\ &= \kappa T \cos(\varphi + c). \end{aligned}$$

Since $T' = \|\alpha'\|_L \kappa N$ we have

$$(T^*)' = \|\beta'\|_L \kappa^* N^*.$$

Thus

$$\|\beta'\|_L \kappa^* N^* = \kappa \cos(\varphi + c) T.$$

Since the vectors N^* and T have the unit length, we get $N^* = -T$ or $N^* = T$.

Since $B^* = N^* \wedge_L (-T^*)$, we have

$$(3.11) \quad B^* = \sin(\varphi + c)N + \cos(\varphi + c)B.$$

Thus, the proof is completed. ■

THEOREM 3.3. *Let $\beta : I \longrightarrow E_1^3$ be the evolute of the unit speed curve $\alpha : I \longrightarrow E_1^3$. Let the Frenet vector fields, curvature and torsion of the curve β be T^* , N^* , B^* , κ^* and τ^* , respectively. Then*

$$\begin{aligned} |\kappa^*| &= \frac{\kappa^3 |\cos^3(\varphi + c)|}{|\kappa\tau \sin(\varphi + c) - \kappa' \cos(\varphi + c)|}, \\ |\tau^*| &= \frac{\kappa^3 |\sin(\varphi + c)| \cos^2(\varphi + c)}{|\kappa\tau \sin(\varphi + c) - \kappa' \cos(\varphi + c)|}. \end{aligned}$$

Proof. Since N^* and T have unit length, then taking norm equality $\|\beta'\|_L \kappa^* N^* = \kappa \cos(\varphi + c) T$, we can write

$$\|\beta'\|_L |\kappa^*| = \kappa |\cos(\varphi + c)|.$$

Therefore, we have

$$(3.12) \quad \begin{aligned} |\kappa^*| &= \frac{\kappa |\cos(\varphi + c)|}{\|\beta'\|_L}, \\ |\kappa^*| &= \kappa |\cos(\varphi + c)| : \frac{|\rho' + \rho\tau \tan(\varphi + c)|}{|\cos(\varphi + c)|}, \\ |\kappa^*| &= \frac{\kappa^3 |\cos^3(\varphi + c)|}{|\kappa\tau \sin(\varphi + c) - \kappa' \cos(\varphi + c)|}. \end{aligned}$$

If we take the derivative Eq. (3.11) with respect to s , then we have

$$\begin{aligned} (B^*)' &= (\varphi' - \tau) [N \cos(\varphi + c) - B \sin(\varphi + c)] + \kappa T \sin(\varphi + c) \\ &= \kappa T \sin(\varphi + c). \end{aligned}$$

Since $(B^*)' = \|\beta'\|_L \tau^* N^*$, we get

$$\|\beta'\|_L \tau^* N^* = \kappa T \sin(\varphi + c).$$

Since $N^* = -T$, we find that

$$(3.13) \quad \begin{aligned} |\tau^*| &= \frac{\kappa |\sin(\varphi + c)|}{\|\beta'\|_L}, \\ |\tau^*| &= \kappa |\sin(\varphi + c)| : \frac{|\rho' + \rho\tau \tan(\varphi + c)|}{|\cos(\varphi + c)|}, \\ |\tau^*| &= \frac{\kappa^3 |\sin(\varphi + c)| \cos^2(\varphi + c)}{|\kappa\tau \sin(\varphi + c) - \kappa' \cos(\varphi + c)|}. \end{aligned}$$

THEOREM 3.4. *Let $\beta : I \longrightarrow E_1^3$ be the evolute of the unit speed curve $\alpha : I \longrightarrow E_1^3$. Let the curvature and torsion of the curve β be κ^* and τ^* , respectively. Then*

$$(3.14) \quad \left| \frac{\tau^*}{\kappa^*} \right| = |\tan(\varphi + c)|.$$

Furthermore, we denote by $\beta^{(1)}$ and $\beta^{(2)}$, the evolute curves obtained by using c_1 and c_2 instead of c , respectively. The tangents of the curves $\beta^{(1)}$ and $\beta^{(2)}$ at the points $\beta^{(1)}(s)$ and $\beta^{(2)}(s)$ intersect at the point $\alpha(s)$. The measure of the angle between the tangents is $c_1 - c_2$.

Proof. The Eq. (3.14) is obtained easily by using Eq. (3.12) and Eq. (3.13), i.e.,

$$\left| \frac{\tau^*}{\kappa^*} \right| = \frac{\kappa |\sin(\varphi + c)|}{\|\beta'\|_L} : \frac{\kappa |\cos(\varphi + c)|}{\|\beta'\|_L} = |\tan(\varphi + c)|.$$

The measure of the angle between the vectors $\overrightarrow{\alpha(s)\beta^{(1)}(s)}$ and $\overrightarrow{V_2(s)}$, and between the vectors $\overrightarrow{\alpha(s)\beta^{(2)}(s)}$ and $\overrightarrow{N(s)}$ are $\varphi(s) + c_1$ and $\varphi(s) + c_2$, respectively. The vector $\overrightarrow{\alpha(s)\beta^{(1)}(s)}$ is parallel to the tangent of the curve $\beta^{(1)}$ at the point $\beta^{(1)}(s)$. The vector $\overrightarrow{\alpha(s)\beta^{(2)}(s)}$ is parallel to the tangent of the curve $\beta^{(2)}$ at the point $\beta^{(2)}(s)$. Furthermore, since $\overrightarrow{\alpha(s)\beta^{(1)}(s)}$, $\overrightarrow{\alpha(s)\beta^{(2)}(s)}$ and \overrightarrow{N} are perpendicular to the vector $\overrightarrow{T(s)}$, these three vectors are planar. Then, the measure of the angle between the tangents of the curves $\beta^{(1)}$ and $\beta^{(2)}$ at the points $\beta^{(1)}(s)$ and $\beta^{(2)}(s)$ is

$$\varphi(s) + c_1 - (\varphi(s) + c_2) = c_1 - c_2.$$

So, the proof is completed. ■

THEOREM 3.5. *Suppose that, two different evolutes of the timelike curve α are given. Let the points on the evolutes of the curve α corresponding to the point P be P_1 and P_2 . Then the angle $\widehat{P_1 P P_2}$ is constant.*

Proof. Let the evolutes of the curve α be β and γ . Let the arc-length parameters of the α, β and γ be s, s^* and \widehat{s} , respectively. Let the curvatures of the curves α, β and γ be k, k^* and \widehat{k} , respectively. And let the Frenet vectors of the curves α, β and γ be $\{T, N, B\}, \{T^*, N^*, B^*\}$ and $\{\widehat{T}, \widehat{N}, \widehat{B}\}$. Then

$$(3.15) \quad T = N^*, T = \widehat{N}.$$

Since the curves β and γ are evolute, then

$$(3.16) \quad \langle T, T^* \rangle_L = \langle T, \widehat{T} \rangle_L = 0.$$

Therefore, if $f(s) = \langle T^*, \widehat{T} \rangle_L$, then we have

$$\begin{aligned} (f)'(s) &= \langle (T^*)', \widehat{T} \rangle_L + \langle T^*, (\widehat{T})' \rangle_L \\ &= \left\langle \kappa^* N^* \frac{ds^*}{ds}, \widehat{T} \right\rangle_L + \left\langle T^*, \widehat{\kappa} \widehat{N} \frac{d\widehat{s}}{ds} \right\rangle_L \\ &= \kappa^* \frac{ds^*}{ds} \langle N^*, \widehat{T} \rangle_L + \widehat{\kappa} \frac{d\widehat{s}}{ds} \langle T^*, \widehat{N} \rangle_L \\ &= \kappa^* \frac{ds^*}{ds} \langle T, \widehat{T} \rangle_L + \widehat{\kappa} \frac{d\widehat{s}}{ds} \langle T^*, N^* \rangle_L \\ &= \kappa^* \frac{ds^*}{ds} \cdot 0 + \widehat{\kappa} \frac{d\widehat{s}}{ds} \cdot 0 \\ (f)'(s) &= 0. \end{aligned}$$

Therefore, we have $f(s) = \theta = \text{constant}$. Hence, $m\left(\widehat{P_1PP_2}\right) = m\left(T^*, \widehat{T}\right) = \theta = \text{constant}$. ■

References

- [1] H. H. Hacisalihoglu, *Solutions of the differential geometry problems*, Ankara University, Faculty of Science, 1995.
- [2] M. Petrovic and E. Sucurovic, *Some characterizations of the spacelike, the timelike and the null curves on the pseudohyperbolic space H_0^2 in E_1^3* , Kragujevac J. Math. 22 (2000), 71–82.
- [3] A. Sabuncuoğlu, *Differential Geometry*, Nobel Yayın Dağıtım, Ankara, 2004.

Bahaddin Bukcu
 GAZI OSMAN PASA UNIVERSITY
 FACULTY OF SCIENCES AND LETTERS
 DEPARTMENT OF MATHEMATICS
 TOKAT-TURKEY
 E-mail: bbukcu@yahoo.com

Murat Kemal Karacan
 Current address
 K.MARAS SUTCU
 IMAM UNIVERSITY
 FACULTY OF SCIENCES AND LETTERS
 DEPARTMENT OF MATHEMATICS
 AVSAR CAMPUS
 46100, K.MARAS-TURKEY
 E-mail: mkkaracan@ksu.edu.tr

Received June 7, 2006.