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B a h a d d i n B u k c u , M u r a t K e m a l K a r a c a n 

O N T H E I N V O L U T E A N D E V O L U T E C U R V E S 
O F T H E T I M E L I K E C U R V E I N M I N K O W S K I 3 - S P A C E 

A b s t r a c t . In this study, we have generalized the involute and evolute curves of the 
timelike curve in Minkowski 3-Space. Firstly, we have shown that, the length between the 
timelike curve a and the spacelike curve /3 is constant. Furthermore, the Frenet-Serret 
frame of the involute curve (3 has been found as dependent on curvatures of the curve a . 
We have determined the involute curve /3 is planar in which conditions. Secondly, we have 
found transformation matrix between the evolute curve (5 and the curve a . Finally, we 
have computed the curvatures of the evolute curve ¡3. 

1. Pre l iminar i e s 
Let IR3 = {{xi,x2,x'i)\xi, X2, x3 £ IR} be a 3-dimensional vector space, 

a n d le t x = ( x i , x 2 , £ 3 ) a n d y = (2/1,2/2,2/3) b e t w o v e c t o r s in I R 3 . T h e 
Lorentz scalar product of x and y is defined by 

(x, v)l = ~ x m + X2V2 + x3y3, 

IE\ — (R3, (x, y)L) is called 3-dimensional Lorentzian space, Minkowski 
3-Space or 3-dimensional semi-euclidean space. The vector x in IE\ is called 
a spacelike vector, null vector or a timelike vector if {x,x)L > 0 or x = 0, 
(x, x)L = 0 or (x, x)L < 0, respectively. For x G IE3, the norm of the vector 
x defined by H^H^ = y/\{x,x)L\, and x is called a unit vector if ||x||L = 1. 
For any x, y G IE\ , Lorentzian vectoral product of x and y is defined by 

x ALy = (x3y2 - x2y3, x3yi - x i y 3 , x\y2 - x 2 y i ) . 

We denote by {T(s),N(s),B(s)} the moving Frenet frame along the curve 
a ( s ) . Then T(s),N(s) and B(s) are tangent, the principal normal and the 
binormal vector of the curve a ( s ) , respectively. Depending on the causal 
character of the curve a , we have the following Frenet-Serret formulas: 
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If a is a spacelike curve with a spacelike principal normal N; 

(1.1) T' = KN, N = -KT + TB, B' = TN, 

(T, T)L = (N, N)L = 1, (B, = - 1 , (T, N)L = (N, B)L = (T, B)L = 0. 

If a is a spacelike curve with a timelike principal normal iV; 

(1.2) T' = KN, N = KT + TB, B' = TN, 

(T, T)L = (B, B)L = 1, (N, N)L = - 1 , (T, iV)L = (iV, 5 ) l = (T, B)L = 0. 

If a is a timelike curve and finally; 

(1.3) T' = kN, N = KT + TB, B' = -TN 

{T, T)L = - 1 , (B, B)L = (N, N)L = 1, {T, N)L = {N, B)L = (T, B)L = 0, 

[see 2]. If the timelike curve a is non-unit speed, then 

(1.4) K(t) = 
a'(t)ALa (t) 

a (t) 
S r(t) = 

det (a ' ( t ) , a" ( i ) , a" ' ( i ) ) 

a ( i ) A L a (t 

If timelike curve a is unit speed, then 

(1.5) K(S) = a (s) , r(s) = I I B'(s) IL • 

2. The involute of the timelike curve 

DEFINITION 2.1. Let timelike unit speed timelike curve a : I — • Ef and 
the curve (3 : I —> E\ be given. For Vs € I, then the curve (3 is called 
the involute of the curve a , if the tangent at the point a(s) to the curve a 
passes through the tangent at the point /3(s) to the curve (3 and 

(2.1) (T*(S),T(S))L = 0. 

Let the Frenet-Serret frames of the curves A and ¡3 be {T , N, B } and 
{T*, N*, B* }, respectively. In this case, the causal characteristics of the 
Frenet-Serret frames of the curves A and (3 must be of the form. 

{T timelike, N spacelike, B spacelike} 

and 
{T* spacelike, N* timelike, B* spacelike} . 

THEOREM 2.1. Let the curve (3 be involute of the curve a and let k be a 
constant real number. Then 

(2 .2) p(s) = a(s) + (k — s)T(s). 



On the involute and evolute curves 723 

P r o o f . The curve /?(s) may be given as 

( 2 . 3 ) /3{s) = a(s) + u(s)T(s). 

If we take the derivative Eq. (2.3), then we have 

f3\s) = ( l + « ' (5)) T(s) + u(s)k(s)N(s). 

Since the curve [3 is involute of the curve a, (T*(s),T(s))L = 0. Then, we 
get 

(2.4) 1 + u (s) =0 or u(s) = k - s . m 

Thus we get 

(2.5) f3(s) - a(s) - (k - s) T(s). m 

COROLLARY 2 .2 . The distance between the curves 0 and a is \k — S|. 

P r o o f . If we take the norm in Eq. (2.5), then we get 

(2.6) ||/J(a)-a(*)||L = |A:-a|. 

THEOREM 2 .3 . Let the curve (3 be involute of the the curve a, then 

rp* • 0 1 0 • " T " 

N* = ( | K 2 - T * I R 1 — K 0 —T N 

B* -T 0 —K B 

P r o o f . If we take the derivative Eq.(2.5), we can write 

p'(s) = (k — s)k(s)N(s) 

and 

(3(s) r=\(k-s)K(s)\. 
Li 

Furthermore, we get 

T*(s) = 0(B) (k — S)K(S) 
N(s). 

\\P(S)\\L \(k-s)K(s)\ 

Prom the last equation, we must have 

T*(s) = N(S) or T*(s) = -N(s). 

We assume that T*(s) = N(s). Let's denote the coordinate function on I R 
by x. Then, for Vs G IR, x(s) = s, we get 

(3'(s) = (k-s)K(s)N(s), 

0' = (k - x)kN. 
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Thus, we have 
p" = -kN + (k- x)kN + (k - x)k(kT + tB) 

p" = (k- x)k2T + ((k - x)k — ttj N + (k — x)ktB. 

Hence, we have 
/ // 

pA Lp =(k-x)2K2(-TT-KB) 
and 

f3 ALp = \k-x\2K2^\K2-T2\. 

Furthermore, we get 

f3 ALp B* = 
(3 Al(3 

(k - x)2.k2. (-tT - kB) _ -tT - kB 
(k - x)2.K2.y/\K2 - r2| ~ y/\K2~T2\ 

Since N* = B* AlT*, then we obtain 
-kT - TB 

N* = 

THEOREM 2.4. Let the curve P be involute of the the curve a. Let 
curvature and torsion of the curve P be k* and t* , respectively. Then 

*( x y/|(K2-r2)(5)| k(s)t'(s) - k (s)t(s) 
W |k - s\ .k(s) ' ( J Ik - s\ .k(s). (r2 - k2) " 

Proof . From Eq. (1.3) and Eq. (1.4), we have 
| fc - s|V(s ) _ v V ( s ) - r 2 ( s ) | 

K*(S) = 
\k-s\3.^(s) K(s).\k-s\ 

and 

P = 

+ 
+ 
+ 

—k2T + (k — x)2kkT +{k- x)k2(kN) 

— K — K + (k — x)k J N 

—K + (k — X)K')1 (kT + tB) 

B — KT + (k — x)k t + (k — x)kt 

+ [(fc - x)kt] (~tN) 

( - 2 K 2 + 3 (k-x) kk'^T 

+ ((fc - x) k3 - 2k + (k — x) k - (k-x) kt2^ N 

+ {-2kt + 2 (k-x) K'T + (k-x) kt'J B. 
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Furthermore, since 

T*(s) = 
det 

\P (s) AL P (s) 

we have 

A = -{k-x)2K2 

—2K2+3 (k—X) KK —2KT+2 (k—X) KR+(k —X) KT 

= -(k-x)2K2 -2K2T+2(k-x) K KT+(k-x) K2T +2n2T-3(k-x) K/i'rj 

= —(k — x)2K3 ^(fc — x) KT —(k — x) K T 

- (K-x)3K3 (K'T-KT^ , 

A = det (/?',/?",/?"'). 

Hence, we get 

K?.(k — s)3 ^/e(s)r'(s) - K(s)r(s)j 
r*(s) = 

r*(s) = 

k4 |K - s|4 (r2(s) - K2{S)) 

K(S)T'(S) — K(S)T(S) 

K(S) — s| ( T 2 ( S ) — K 2 ( S ) ) 

Prom the last equation, we have the following corollaries: 

COROLLARY 2 . 5 . If the curve a is planar, then its involute curve ¡3 is also 
planar. 

COROLLARY 2 . 6 . If the curvature / T / 0 and the torsion R ^ 0 of the curve 
a are constant, then the involute curve f3 is planar, i.e., if the curve a is an 
ordinary helix, then its involute curve ¡5 is planar. 

COROLLARY 2 . 7 . If the curvature / T / 0 and the torsion R / 0 O / the curve 
a are not constant but ^ is constant, then the involute curve ¡3 is planar, 
i. e. if the curve a is a general helix, then its the involute curve (3 is planar. 

T H E O R E M 2 . 8 . Suppose that the curve A : I —> Ef with arc-length param-
eter are given. Then, the locus of the centre of the curvature of the curve a 
is the unique involute of the curve a which lies on the plane of the curve a. 

P r o o f . The locus of the centre of the curvature of the curve a is 

C(s) = a(s) - -r^Nis). 
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If we take the derivative in the above equation, then we have 

d£_ T 

ds 

1\ 
N — 

1 
- N — 
KJ K 

a ' 
N-

1 
- N-
K) 
/ 

K 

N 

= T - ( - ) N- -kT 

1 
K 

0 

C\S),T(S))L = 0. 

Therefore, the involute C of the timelike curve a is the locus of the centre 
of the curvature. Is the curve C planar ? If the torsion of the curve C is 
denoted by r*, then 

(K 'T — KT ) (s) 
T*(S) = V ) 

K(s)\K-s\{T2(s)-K2(s))' 

If we take r = 0, then we have 

T*(s) = 0 

Thus, the curve C is planar. • 

3. The evolute of the timelike curve 

Definition 3.1. Let the unit speed curve a and the curve f3 with the same 
interval be given. For Vs G /, the tangent at the point (3{s) to the curve (3 
passes through the point a(s) and 

{T*(S),T(S))L = 0. 

Then, (3 is called the evolute of the curve a. Let the Frenet-Serret frames of 
the curves a and (3 be 

THEOREM 3.1. Let the curve (3 be the evolute of the unit speed timelike 
curve a, then 

(3.1) f3(s) = a(s) - -^N(s) + —J-r- [tan + c)] B(s), 
K,[S I K>[ S ) 

where c 6 IR and ip(s)+c = f r(s)ds. Furthermore, in the normal plane of 
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the point a(s) the measure of directed angle between ¡3{s) — a ( s ) and N(s) 
is ip(s) + c. 

P r o o f . The tangent of the curve (3 at the point @(s) is the line constructed 
by the vector T*(s). Since this line passes through the point a(s), the vector 
P(s) — a(s) is perpendicular to the vector T(s). Then 

(3 .2) (3(s) - a(s) = XN(s) + FIB(s). 

If we take the derivative of Eq. (3.2), then we have 

p'(s) = A'(s) + X'N + X(KT + TB) + N' B(s) + H(-TN), 

(3 .3) p'(s) = (1 + A K ) T + (V - /xt) JV + ( A r + /i') B. 

According to the definition of the evolute, since (T*(s), T(s)) = 0, from Eq. 
(3.3), we get 

(3.4) A = —- , 
Ki 

and 

(3 .5) p' = (A' -HT>)N+ ( A t + /* ' ) B. 

From the Eq. (3.2) and Eq. (3.5), the vector field /3'is parallel to the vector 
field P — a. Then we have 

A — fir At + n 

After that, we have 

A \i — A/x 
T = 

T = 

A2 + ¡j? ' 

1 + a ) 2 ' 

If we take the integral the last equation, we get 

, . (Ll(s) ip{s) + c — — arctan —-r • . 
VA(S) / 

Hence, we find 

(3.6) ß(s) = — A(s) tan (<p(s) + c). 
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If we substitute Eq. (3.4) and Eq. (3.6) into Eq. (3.2), we have 

0(s) = a(a) 

/3(s) = M(s) + — T tan [^(s) + c] B(s). 
k(s) 

Then, we obtain an evolute curve for each c € IR . Since 

(M(s)0(s),M(s) a(s))L = 0, 

in the Lorentzian triangle which have corners 0(s), M(s) and oc(s) the angle 
M is right angle in the Lorentzian mean. In the same triangle, the tangent 
of the angle ot(s) is 

(3.7) 
^ tan + c] 

l 
/c(s) 

= tan [y(s) + c]. 

N 
B 

Then, the measure of the angle between the vectors 0(s) — a(s) and V^s) 
is ip(s) + c. m 

THEOREM 3.2. Let the spacelike curve 0 : I —> Ef be evolute of the unit 
speed time curve a : I —> Ef. If the Frenet-Serret vector fields of the curve 
0 are T* (spacelike), N* (timelike), B* (spacelike), then 

T* 0 cos(<£ + c)quad— sin(<£ + c) 
(3.8) N* = —1 0 quad 0 

B* 0 sin(y> + c)quad cos((p + c) 

Proof . Since the Frenet-Serret vector fields of the curve 0 are T*, N*, B* 
and 

(3 = a — pN + p tan (ip + c) B, 

we have 

(3'(s) = a - pN - p(nT + tB) 

+ p tan ((p + c) B + pip sec2 (ip + c) B + ptan (<p + c) (—tN) 

= (1 - pk)T + (-p - prtan(<p + c)) N 

+ + + P tan (</> + c) + PV tan2 (f + c) B 

= p — pr tan [<p + c] j N + ^p tan (tp + c) + pr tan2 (<p + c)^ B 

= j—p — pr tan(</? + c) [N — tan (<p + c) B] 
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(3.9) f3 (s) = 
-p — pr tan(</3 + c) 

COS (ip + c) 

If we take the norm in the Eq. (3.9), then we obtain 

p + pr tan(</? + c) 

L |cos(y? + c)| 

cos (ip + c) N — sin (tp + c) B]. 

Since T* = ^^ , then we get 

(3.10) T* =coa((p + c)N-wa((p + c)B. 

Therefore, we have obtained Eq. (3.9). The curve f3 is not a unit speed 
curve. If we take the derivative of Eq. (3.10) with respect to s, we find 

(T*)' = ( r - <//) [B cos (¿p + c) + N sin (ip + c)] + kT COS (<p + c) 

= kT cos (<p + c). 

Since T = Q: kN we have 

(T*) = 0 k*N*. 
Thus 

0 K*N* = K c o s (<p + c)T. 

Since the vectors N* and T have the unit length, we get N*= —T or N*= T. 
Since B* =N* (-T*), we have 

(3.11) B* = sin(y? + c)N + cos(ip + c)B. 

Thus, the proof is completed. • 

THEOREM 3 . 3 . Let ¡5 : I —> Ef be the evolute of the unit speed curve 
a : I —> E f . Let the Frenet vector fields, curvature and torsion of the 
curve ¡3 beT*,N*,B*, k* and t*, respectively. Then 

k cos' 
\K = 

KT sin(<^ + c) — K COS (ip + c) I ' 
k3 |sin(y + c)| cos2(ip + c) 

|/trsin(v? + c) — k cos (ip + c)| 
p r o o f . Since N* and T have unit length, then taking norm equility 

0" k*N* = k cos (tp + c) T, we can write 

0 | AC* | = K |cOS (if + c) | . 
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Therefore , we have 

(3 . 12 ) K = 
K |C0S (<p + c)| 

\m\L ' 

|«* | — K |cos (ip + c)| : 
p + prtan(<£> + c) 

|cos(<£> + c) 

l/c* I = 
K COS' \<P + C)\ 

|Krsin(<^ + c) — K' COS(ifi + c)| 

If we take the der iva t ive Eq. ( 3 . 1 1 ) w i t h respect t o s , then we have 

(B*)' = ^P - R^j [Ncos(<p + c) -Bsm{IF + c)] + KTsin(y? + c) 

= KT sin(y> + c). 

Since (B*) = 0 T*N*, w e g e t 

0 T*N* = KT sin(y? + c). 

Since N* = - T , we f ind t h a t 

K |sin(<£ + c)| 
(3 . 13 ) IT* | = 

\\01 

|T*| = K |sin(y? + c)| : 
p + pr tan(y? + c) 

T- = 

|cos((£ + c)| 

K 3 |sin(</? + c)| cos2(<^ + c) 

|KT sin(<£ + c) — K cos(</? + c) | ' 

THEOREM 3.4. Let (3 : I —> Ef be the evolute of the unit speed curve 
a : I —• Ef. Let the curvature and torsion of the curve (3 be K* and T*, 
respectively. Then 

r T 

(3-14) 
K 

= |tan(y? + c)|. 

Furthermore, we denote by and (3 the evolute curves obtained by 
using c\ and ci instead of c, respectively. The tangents of the curves 
and ¡3 ^ at the points /^(s) and 02\s) intersect at the point a(s). The 
measure of the angle between the tangents is ci — C2-

P r o o f . The Eq. (3 . 14 ) is obta ined easi ly by using Eq. (3 . 12 ) and Eq. 

(3 . 13) , i.e., 

K |sin (tp + c)| K|COS(<^ + C) 

\\0\ II/?'I 
= |tan(<p + c)|. 
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The measure of the angle between the vectors and V^s), and • 
between the vectors a(s)P^(s) and N(s) are <^(s)+ci and <p(s)+C2, respec-• 
tively. The vector a(s)/3^1)(s) is parallel to the tangent of the curve at 

the point P^\s). The vector a(s)p(2\s) is parallel to the tangent of the 

curve 
0(2) at the point p(2\s). Furthermore, since a(s)P^\s) , a(s)P^\s) 

and N are perpendicular to the vector T(s), these three vectors are planar. 
Then, the measure of the angle between the tangents of the curves pM and 
pW at the points P^(s) and P{2\s) is 

tp(s) + c i - (tp(s) + c 2 ) = c i - c 2 . 

So, the proof is completed. • 
T H E O R E M 3 . 5 . Suppose that, two different evolutes of the timelike curve a 

are given. Let the points on the evolutes of the curve a corresponding to the 

point P be P\ and P2. Then the angle P\P P2 is constant. 

Proof . Let the evolutes of the curve a be P and 7. Let the arc-length 
parameters of the a , P and 7 be s, s*and s, respectively. Let the curvatures 
of the curves a, P and 7 be k, k* and k, respectively. And let the Frenet 
vectors of the curves a, p and 7 be {T, N, B} , {T*,N*, B*} and | f , N, .§}. 

Then 

( 3 . 1 5 ) T = N*,T = N. 

Since the curves P and 7 are evolute, then 
(3.16) (T,7-)L = ( T , f ) i = 0 . 

Therefore, if /(a) = ( t \ T ) . then we have 

*ds* „ ^ds n 
= K* — .0 + K—.0 

ds ds 

( / ) ' to - 0. 
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Therefore, we have f(s) = 9 =constant. Hence, m (^PiPP'^j = m (t*, T 

6 =constant. • 
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