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LIGHTLIKE SUBMANIFOLDS
OF INDEFINITE QUATERNION KAEHLER MANIFOLDS

Abstract. We define and study both screen QR-lightlike and screen CR-lightlike sub-
manifolds of an indefinite quaternion Kaehler manifold. We show that screen QR-lightlike
submanifolds include quaternion submanifolds and screen CR-lightlike submanifolds in-
clude quaternion as well as screen real lightlike submanifolds. We also give some examples
of screen QR-lightlike and screen CR-lightlike submanifolds.

1. Introduction

QR-submanifolds of a quaternion Kaehler manifold were introduced by
A. Bejancu in [1]. Since then many papers appeared on these submanifolds.

On the other hand, the geometry of lightlike submanifolds has shown an
increasing development since K.L.Duggal- A.Bejancu defined lightlike sub-
manifolds in [4] and {3]. In their book [5], they introduced CR-lightlike sub-
manifolds and showed that CR-lightlike submanifolds are always proper,i.e.,
they don’t contain invariant and totally real lightlike submanifolds. There-
fore, in [7], K.L.Duggal and the present author introduced screen CR-
lightlike submanifold which contains invariant and screen real lightlike sub-
manifolds. Lightlike real hypersurfaces of an indefinite quaternion Kaehler
manifold studied in [9]. In {10}, we defined QR-lightlike submanifold as a
generalization of lightlike real hypersurfaces and showed that QR-lightlike
submanifolds are also always proper.

In the present paper, we introduce screen QR-lightlike and screen CR-
lightlike submanifolds and investigate fundamental properties of such light-
like submanifolds of indefinite quaternion Kaehler manifolds. We study
the integrability conditions for the distributions which are involved in the
definition of these submanifolds. We also study totally umbilical screen
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QR-lightlike and screen CR-lightlike submanifolds. Finally we show that
there exist no proper totally umbilical screen CR-lightlike submanifolds in
positively or negatively curved indefinite quaternion Kaehler manifolds and
give several examples.

2. Preliminaries

Let M be a 4m—dimensional manifold (m > 1) and g be semi-Riemann
metric on M. Then M is called an indefinite quaternion Kaehler manifold
(or, semi-Riemann quaternion) if there exists a 3-dimensional vector bundle
of tensors of type (1,1) with local basis Hermitian structures Jy,Jo and J3
(that is, g(Jo X, oY) =g(X,Y),a=1,2,3and X,Y €T (TM)) satisfying

(2.1) JioJy = —JooJ; = Js
and
VxJ =7m(X)J2 — q¢(X)J3
(2:2) VxJ2 = —r(X)J1 +p(X)J3
VxJs = g(X)J1 —p(X)J2
for all vector fields X tangent to M, where p,q,r are local sections of

AYTM). and V is Levi-Civita connection (see [8]). For sake of shortness,
instead of (2.2) we use

3
(2.3) VxJa=)_ Qu(X)Jp,a=1,2,3
b=1
where Qg are certain 1—forms locally defined on M such that Qg5 +Qspe = O.
An indefinite quaternionic space form is a connected indefinite quater-
nion Kaehler manifold of constant quaternionic sectional curvature and its
denoted by M(c). The curvature tensor of M(c) is given by ([8])

(24) R(X,V)Z =2{9(2,Y)X - g(X,2)Y
3
+ ZQ(Z, jaY)jaX —-9(Z, J_aX)jaY +2g9(X, jaY)jaZ}
a=1

for any X,Y,Z €T’ (TM) .

From now on, we follow [5] for the notation and formulas used in
this paper. A submanifold M™ immersed in a semi-Riemannian manifold
(M™*+" §) is called a lightlike submanifold if it is a lightlike manifold w.r.t.
the metric g induced from § and the radical distribution Rad(TM) is of
rank 7, where 1 < r < m. Let S(T'M) be a screen distribution which is



Lightlike submanifolds 703

a semi-Riemannian complementary distribution of Rad(TM) in TM, i.e.,
TM = Rad (TM) L S(TM).

Consider a screen transversal vector bundle S(TM*), which is a semi-
Riemannian complementary vector bundle of Rad(TM) in TM*. Since,
for any local basis {¢;} of Rad(T M), there exists a local null frame {N;} of
sections with values in the orthogonal complement of S(TM~) in [S(T M)+
such that g(&;, N;) = d;;. It follows that there exists a lightlike transversal
vector bundle ltr(T' M) locally spanned by {N;} [5, page 144]. Let tr(T'M)
be complementary (but not orthogonal) vector bundle to TM in TM|y,.
Then,

tr(TM) = ltr(TM) 1. S(TM?1),
TM|y = S(TM) L [Rad(TM) & ltr(TM)] L S(TM*1).
Following are four sub cases of a lightlike submanifold (M,g, S(TM),
S(TMH).

Case 1:  r-lightlike if r < min{m, n}.

Case 2: Co-isotropic if r = n < m; S(TM+) = {0}.

Case 3: Isotropicif r = m < n; S(TM) = {0}.

Case 4: Totally lightlike if r = m = n; S(TM) = {0} = S(TM?1).

The Gauss and Weingarten equations are:
(25) VxY =VxY +h(X,)Y), VX,Y e(TM),
(26) VxV=—-AyX+VLV, VX eI(TM), V el(tr(TM)),

where {VxY,AyX} and {h(X,Y),ViV} belong to [(TM) and
L(ltr(TM)), respectively. V and V¢ are linear connections on M and on
the vector bundle ltr(T M), respectively. The second fundamental form h is
a symmetric F(M)-bilinear form on I'(TM) with values in I'(¢r(TM)) and
the shape operator Ay is a linear endomorphism of I'(T'M). Then we have

(2.7) VxY = VxY +h{(X,Y) + h*(X,Y),
(2.8) VxN = —AxX + V%(N) + D*(X, N),
(2.9) VxW = —Aw X + V(W) + DH(X, W),

VX,Y € I(TM), N € T(ltr(TM)) and W € T'(S(TM%)). Denote the
projection of TM on S(TM) by P. Then, by using (2.5), (2.7)-(2.9) and
taking account that V is a metric connection, we obtain

(2.10) g(h*(X,Y), W) + g(Y, D'(X,W)) = g(Aw X, Y),
(2.11) G(D*(X,N),W) = g(N, Aw X).
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We set

(2.12) VxPY = V% PY + h*(X, PY),

(2.13) Vxé = —AX + V*%¢,

for X,Y € I'(T'M) and ¢ € T'(RadT M). By using above equations we obtain
(2.14) g(h'(X, PY),£) = g(A; X, PY),

(2.15) g(h*(X,PY),N) = g(AnX, PY),

(2.16) G(H(X,6),6)=0, Ai=0.

In general, the induced connection V on M is not metric connection.
Since V is a metric connection, by using (2.7) we get

(2.17) (Vxg)(¥,2) = §g(h'(X,Y), Z) + g(h'(X, Z),Y).

However, it is important to note that V* is a metric connection on S(T'M).
We denote curvature tensors of M and M by R and R respectively. The
Gauss equation for M, VX,Y,Z € I'(TM), is given by

(218) R(X,Y)Z =R(X,Y)Z + Apx.z)Y — Apv,z)X + Apa(x,2)Y
— Apsiy. 2y X + (Vxh)(Y, Z2) - (Vyh) (X, Z)
+DYX,h3(Y, Z)) — DY(Y, h*(X, Z)) + (Vxh*)(Y, Z)
—(Vyh®)(X, Z) + D*(X,RhN(Y, Z)) — D*(Y, h(X, Z)).

3. Screen QR-lightlike submanifolds

In this section, we introduce a new class, called screen quaternion-real
(SQR) lightlike submanifolds of an indefinite quaternion Kaehler manifold
and investigate the geometry of such submanifolds.

DEFINITION 1. Let (M, g, S(TM))be a lightlike submanifold of an indefinite
quaternion Kaehler manifold (M,5). We say that M is a SQR-lightlike
submanifold of M if the following conditions are satisfied:

i): There exist real non-null vector subbundles L and Lt of S(TM~) such
that

(3.1) S(TMY) =L L Lt J,(L) c S(TM), J,(Lt) = L*.
ii): RadT M is invariant with respect to J,,i.e.,J,(Rad(TM)) = Rad(TM),
a=1,2,3.

It follows that lt7(TM) is also invariant with respect to J,, a = 1,2, 3,
that is

(3.2) Jo(ltr(TM)) = ltr(TM),
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Let M be a screen QR-lightlike submanifold of an indefinite quaternion
Kaehler manifold. Put D, = Jo(Lp) and dimL, = s,p € M. Then D/,
Dj, and Dj, are mutually orthogonal vector bundle of M. We consider
Dj;, = D}, ® D3, ® Dj,. Then we obtain 3s dimensional distribution globally

defined on M. Also we have

(3.3) ja(D;p) =L, j(D{,p) = D’cp

for each p € Ma = 1,2,3, where (a,b,c) is cyclic permutation of (1,2, 3).
We consider

(3.4) D = RadTM L Dy

which is orthogonal complementary to D’ in TM. It is easy to check that
Dy is an invariant non-degenerate distribution. Then, we obtain that D
is also invariant with respect to J,. We call D and D’ the quaternion and
anti-quaternion distribution, respectively. Thus, we have

(3.5) TM=DoD
and
(3.6) tr(TM) = ltr(TM) L L L L*.

We say that M is a proper screen QR-lightlike submanifold of M if
Dy # {0} and D' # {0}.
Note the following special features:
1. Condition ii) implies that dim(RadT M) = 4r > 4.
2. For proper M, dim(Dy) > 4m and dim(D’) > 3.
3. There exist no screen QR-lightlike hypersurface.

Let Rﬁ;", (m > 1,¢ > 1) be a semi-Euclidean space. Then, the canonical

complex structures Ji, Ja, Ja of Rﬁfln and the Hermitian metric g are given
by

jl(-’fl, Y1, 21, Wi, - - - » Trms Yms Zmy Win)
= (=y1, 1, =W1, 21, - - -, —Yrm> Tms — W, Zm)
j2(-731’ 1,21, W1y -« - s Tmy Yms Zmy wm)
= (=21, w1, %1, Y1, - - - , —Zm, Wm, Tmy —Ym)
J3(T1,Y1, 21, W1, - - - Trm, Yrms Zm, Wen)
= (—w1, =21,Y1, 21, - - -, —Wm, —Zm; Ym, Tm)
and
g((z1, Y1, 21, Wi, - « s Ty Ymy Zmy, W), (U1, V1,81, 81, - -« ; Um), Umy tmy Sm))

m

q
= - Z(m,ul + yiv; + 2zt + w;is;) + Z (Tala + YoV + Zata + WaSa)-
=1 a=q+1



706 B. Sahin

ExAMPLE 1. Consider in R}? the submanifold M given by the equations:

T = Z11, T9 = T12, T9 = —I3, T190 = —T4, Ty = constant.
Then the tangent bundle T'M is spanned by
0 0 0 0 0 0
= t— Zo=—t+—, Z3g=—— — —,
1 3.’1:1 +3:L'11 2 8m2 +6.’1712 3 31‘3 a:L'g
L0 0 L0, 0,5
4_8.’134 61‘13, 5_3.’1:5’ 6_6336’ 7_62:7.

Hence M is a 4-lightlike submanifold with RadTM = Span{Z1, Z3, Z3, Z4}
and Rad1l M is invariant with respect to canonical almost complex structures
of J, of R}2.We consider the vector field W = 6;25 of S(TM). Then we can
obtain that 1 W = —Z7, JoW = —Zg, JsW = —Z5. Hence D’ is spanned
by {Zs, Zs, Z7}. We also obtain that lightlike transversal bundle spanned

1 0 0 1 15) 15}
Ny = 5{“5?1 * 5o } No = 5{‘872 + am}’

1 0 0 1 0 0
Ny=-{__2 % Ny=-d__9 _
3 2{ Ox3 6:69}’ 4 2{ Oz4 311310}’
which is invariant with respect to J,a = 1,2,3. Thus M is a screen QR-

lightlike submanifold of Ri,, with D = RadTM = {Zy,Z2,Z3,Z4},D' =
span{Zs, Zg, Z7.}

PROPOSITION 3.1. A screen QR-lightlike submanifold of an indefinite quat-

ernion Kaehler manifold is o quaternion lightlike submanifold if and only if
D' = {0}.

Proof. Let M be a quaternion lightlike submanifold of an indefinite quater-
nion Kaehler manifold. Then we can easily check that RadT'M is invari-
ant with respect to J,. Therefore ltr(T M) is also invariant with respect
to J,. Hence J,(S(TM%1)) = S(TM*), thus L = {0}. Conversely, let M
be a screen QR-lightlike submanifold of an indefinite quaternion Kaehler
manifoldM. such that D’ = {0}. Then J,(TM) = TM. Hence M is a
quaternion lightlike submanifold.

For co-isotropic, isotropic and totally lightlike submanifolds we have the
following:

PROPOSITION 3.2. Any screen QR-coisotropic or isotropic or totally lightlike
submanifolds of M is a quaternion lightlike submanifold.

Proof. Let M be a screen QR-lightlike submanifold of an indefinite quater-
nion Kaehler manifold M. If M is coisotropic then S(TM") = {0} implies
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L = {0}.Thus we have TM = D. Hence M is a quaternion lightlike sub-
manifold. Similarly the assertions for isotropic, totally lightlike M can be
proved.

REMARK 1. In [7], Duggal and the present author introduced screen real
submanifold of an indefinite Kaehler manifold as follows: Let M be a light-
like submanifold of an indefinite Kaehler manifold, then M is called screen
real if J(S(TM)) ¢ S(TM*') and J(Rad(TM)) = RadTM, where J is
the almost complex structure of an indefinite Kaehler manifold. Accord-
ing to this definition and the definition of screen QR-lightlike submanifold,
one can conclude that a screen real lightlike submanifold of an indefinite
quaternion Kaehler manifold is not a screen QR-lightlike submanifold due
to Jo(D}) = D C TM.

EXAMPLE 2. Consider in R}? a submanifold given by the equations:

Tg =Zx1C08Q — I3sinq, Iig= T2C0SQ — I4 Sinc,

z1; = z1sina+ xzcosa, T2 = x9sina + z4cosa,a € (0, %)

Then T'M is spanned by

Z ——+cosai+sina
1= 855 EN Oz’
Zy = i +cosai + sinao
27 9z, 0110 0o’
Z. —i—sina—+cosa
37 b3 Oz oz’
Zy = —— —si
4 EXS smaa:E10 +cosa8m12,
0 0
Ly = —— Zg = —
5 61:5’ 6 8.'1:6’
o 0
Z - _ —_—
7 (9.'1,‘7’ 8 6:1:8

Hence M is a lightlike submanifold with RadTM = span{Z, Zs, Z3, Z4}.
Hence RadTM = TM' C TM,i.e., M is a coisotropic 8-dimensional sub-
manifold of Rj2. Then S(TM~) = {0} and lightlike transversal bundle is
spanned by

N _ 1 — 9 + cos 9 + sina
1791 0 Oxg dzn )’
1
Ny = 2d__ 2 .
2 2{ 525 +cosaa$10 + sinq 33:12}’
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N. 1 —i——sina 9 + cosa
379 9z 0 z9 dzn
N, —l —i—sina—a—+cosa 9
4_2 8%4 8x10 83312 ’

It is easy to see that RadT'M and Dy = span{Zs, Zs, Z7, Zg} are invariant.
Hence TM = RadTM 1 Dy is invariant. Thus M is a quaternion lightlike
submanifold.

Let M be a screen @) R-lightlike submanifold of an indefinite quaternion
Kaehler manifold. We denote the projection morphism of TM to the quater-
nion distribution D by S and choose a local field of orthonormal frames
{v1,...,vs} on the vector bundle L in S(TM+*). Then we have the local
orthonormal frames

(3.7) {Ew,...,E15,Ea1,...,Ea, E31, ..., E3s}

where Ej; = Ji(v1). Thus any vector field Y tangent to M can be written
locally as

3
(3.8) Y =SY+) wy(Y)Ey
b=1
where wy; (Y) = g(Y, Ey;). Thus applying J, to (3.8) we obtain

3
(3.9)  JuY =JuSY + ) wyi (V) Eei — wei (Y) By — wai (V) vi.

b=1
For any vector field V € I'(S(TM*)) we put
(3.10) JJV=BV+C,V,a=1,2,3

where B,V € T'(D’) and C,V € T'(L*).

Let M be a screen QR-lightlike submanifold of an indefinite quaternion
Kaehler manifold M. Taking account of the definition of screen QR-lightlike
submanifold and using (2.3), (2.7), (3.9) and (3.10) we have

(3.11) VxJoY = Qubo(X) Y + Que(X)JY + JoSVXY —wpVxY)Ey
+wi(VxY)Ey + B.h*(X,Y),

(3.12) (X, J.Y) = J.hH(X,Y),

(3.13) R (X, JoY) = wei (VxY)v; + Coh*(X,Y)

for any X,Y € I'(D).

THEOREM 3.1. Let M be a screen QR-lightlike submanifold of an indefinite
quaternion Kaehler manifold. Then the following conditions are equivalent
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with each other:

1. B(X, Y) = h*(J.X,Y),a € {1,2,3},X,Y € (D)

2. h3(X,J,Y) =0

3. D is integrable.

Proof. (1) = (2): Since J, = JyoJ., we have
R (X, J.Y) = h*(X, (JpoJo)Y) = h¥(X, Jp(J.Y))

= h*(JpX,J.Y)
= h*(J.op X, Y)
= —hS(J,X,Y),

hence we obtain h*(X, J,Y) = 0.

(2) = (8): Let us suppose h*(X,J,Y) = 0. Then from (3.13), we obtain
wai(VxY)v; =0, hence w4;([X,Y]) = 0,i.e,[X,Y] € I'(D).

(3)=-(1): If D is integrable, from (3.13) we have w 4;(|X,Y]) = h*(X, J,Y)
~ h$(J,X,Y) = 0, hence h*(X, J,Y) = h*(J, X, Y).

LEMMA 3.1. Let M be a screen QR-lightlike submanifold of an indefinite
quaternion Kaehler manifold. Then we have

(3.14) g(h*(X, Eq;),vj) = g(Ay, X, Eq;)
and
(3.15) 9(Av,; Ei, X) = g(Av, Euj, X)
_g(Dl(Eaja vi)v X) + g(Dl(Eai, vj)v X)
for X € (D) and E,; € T(D').
Proof. From (2.7), (2.1) and (2.3), we have
§(h* (Eai, X), v) = —g(Vxvi, Jav))-
By using (2.9) we derive
§(h*(Eqi, X), v5) = g(Av, X, Eoj).
On the other hand from (3.14) and (2.10) we obtain
g(AUania X) = g(Avin Eaj) + g(X, Dl(Eai’Uj))'
Using again (3.14) we have
9(Av, Bai, X) = g(h*(X, Eaz), v:) + 9(X, D'(Eai, v5)).
Since h® is symmetric, we derive
9(Ay, Eai, X) = §(h*(X, Eqj), vi) + 9(X, DY (Eas, v;)).
Thus taking account (2.10) in this equation, we get (3.15).
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THEOREM 3.2. Let M be a screen QR-lightlike submanifold of an indefinite
quaternion Kaehler manifold M. Then the distribution D' is integrable if
and only if
§(D*(Eai, JaN),v;) = §(D*(Eaj, JoN), v:)
B,i(X) =0
and
Dgi(N) =0
for X € T(Dy), where B,;(X) = g(Vg, Eaj,X) and Dgi(N) =
9(Aj, N Eai, Eaj)-
Proof. From (2.1), (2.3), (2.10) and (3.15) we have
(3'16) 9([Eai7 Eaj], X) = g(aniEaj’ X) - g(ananiy X)
= =3(V 05, JaX) + §(VE,;0i, JaX)
= g(Avania jaX) - g(AviEaj’ jaX)
=0
for X € I'(Dyp). In a similar way, we get
(317)  §([Eai, Eajl, N) = §(D*(Eai, JoN), v5) — §(D?(Eqj, JoN), vi).

On the other hand, since Ey; = J.Jovj, from (2.1), (2.7) and (2.12) we
obtain

(3.18) 9([Fai, Eyj), X) = g(VE, Eaj, JX) — 9(VE,,; B, J.X)
for X € I'(Dy). In a similar way,
(3.19) 9([Eas; Eys], N) = 9(Aj nEai, Eaj) — 9(Aj, N Ebj, Eii)-

Thus, from (3.16), (3.17), (3.18) and (3.19), we obtain the assertion of
theorem.

Now, we will investigate necessary and sufficient conditions on distribu-
tions D and D’ to be parallel.

THEOREM 3.3. Let M be a screen QR-lightlike submanifold of an indefinite
quaternion Kaehler manifold M. Then D defines a totally geodesic foliation
if and only if h°(X,Y) has no components in L for X,Y € I'(D).

Proof. From (2.7) and (2.3) we obtain
9(VxY, Eu) = §(VxY, Ey)
= —g(Jo.VxY,v;)
for X,Y € I'(D). Hence we have
9(VxY, Eg) = g(Vx Jo)Y — Vx oY, v;).
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Now, by using (2.3) and (2.7) we obtain
d(VxY,Ey) = g(h(X, J.Y), vi)

which proves our assertion.
For D', we have the following theorem.

THEOREM 3.4. Let Mbe a screen QR-lightlike submanifold of an indefinite
quaternion Kaehler manifold M. Then D' defines a totally geodesic foliation
if and only if AyX has no components on D, where X € I'(D') and V €
L(S(TMY)).

Proof. Using (2.3), (2.7), (2.10), (3.9), (3.10) and taking the tangential
part we obtain

(3.20) VE.Eaj = Qab(Eai) Eoj + Qac(Eai)Ecj
— JaSAy; Eai — wpi(Av; Eei)Eei
+w ¢i(Av; Eai) Evi + BoVE,,v;-

In similar way we have

(3.21) VE..Evj = —Qcb(Eai) Ecj + Qab(Eaa)Eaj
— JpSAv; Egi + w ci(Av; Eai) Epi
+ BbV%;M, Vj,

then proof of the theorem follows from (3.20) and (3.21).

Using Yano-Kon terminology [11] we say that screen QR-lightlike sub-
manifold M is a lightlike product if D and D’ are its totally geodesic foli-
ations. Thus from Theorem 3.3. and Theorem 3.4. we have the following
corollary.

COROLLARY 3.1. Let M be a screen QR-lightlike submanifold of an indef-
inite quaternion Kaehler manifold M.Then M is a lightlike product if and
only if the following conditions are satisfied:

1. Ay X has no components in D, VX € I'(D'),V € I'(L).
2. h*(X,Y) has no components in L, VX,Y € I'(D).

In the rest of this section we consider totally umbilical screen QR-
lightlike submanifolds. First we recall the definition of totally umbilical
lightlike submanifolds.

DEFINITION 2. [6] The lightlike submanifold M is called a totally umbilical
lightlike submanifold if Hy, € T'(itr(TM)), Hg € T(S(TM1)) which satisfy

(3.22) W(X,Y) = g(X,Y)Hy
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and

(3.23) R (X,Y)=9g(X,Y)Hg

for any X,Y € I'(TM).

THEOREM 3.5. Let M be a totally umbilical screen QR-lightlike submanifold

of an indefinite quaternion Kaehler manifold M. Then the induced connec-
tion on M is a metric connection.

Proof. It is well known that the induced connection V on an r-lightlike
submanifold is a metric connection if and only if A' vanishes identically on
M [5]. From (2.3), (2.7), (3.9) and taking the lightlike transversal part we
obtain

W(X, Y) = Joh'(X,Y),VX,Y € T(Dy),

since M is totally umbilical we get
g(XJ jaY)HL = g(Xa Y)jaHL

Thus, interchanging role of X and Y in this equation and subtracting we
have _
9(X, JoY)H =0,

hence, we derive Hy, = 0 due to Dy is a non-degenerate distribution. Thus
we obtain h! = 0.

REMARK 2. We note that above theorem is not true for any r-lightlike
submanifold. Therefore it is important property of totally umbilical screen
QR-lightlike submanifolds.

THEOREM 3.6. Let M be a totally umbilical screen QR-lightlike submanifold
of an indefinite quaternion Kaehler manifold M. If dim(L) > 1 then M is
totally geodesic.

Proof. From the previous theorem, we have Hy, = 0. So Hg = 0 is enough
to show that M is totally geodesic. Using (3.13), we have

(3.24) 9(X, JoY)Hgs = woi(VxY)v; + Coh*(X,Y)
for X,Y € I'(Dy). Hence we obtain

(3.25) 20(X, JY)Hs = w oi([X, Y])ui.

For E,i, Eqj € T'(D'), in a similar way, we derive

(3.26) 9(Eas, Eqj)Hs = w4i( Ay, )vi + Co Vi ,v;.

Now suppose dim(L) > 1since L is non-degenerate, it has orthonormal
basis. Thus we can choose vector fields E,;,Eq;,i # j such that they are
orthogonal, then (3.26) becomes

(3.27) w ak(Av, Eai)vk + CaVi ve = 0,k € {1,...,dim(L)}.
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Hence we have
w ok (Av; Eai) = 0.
Using (2.10) we obtain
§(h*(Eas, Eak), vj) =0,
hence we conclude
(3.28) Hs € T(LY).

For X,Y € I'(Dy), if [X,Y] € (D), then from (3.25) we derive Hg = 0. If
[X,Y] € T(D’) then from (3.25) we obtain

(3.29) Hg € I'(L).

Then considering (3.28) and (3.29) we derive Hg = 0, i.e, M is totally
geodesic.

In the end of this section we present an example for totally umbilical
screen QR-lightlike submanifolds.

EXAMPLE 3. Consider a submanifold M, in R}? with the equations:

Tg = X1 Sina — T2 coOS & T10 = T1Cosx + T2 sin o

r11 = x3sina + r4sino T19 = —T3COSQx + T48ina

x5=\/1—:rg—z%—x§.

The tangent bundle of M is spanned by

0 . 0 0 0 .
Elza—xl—!—smaam9+cosaamm §2=8—$2—cosaa—mg+smaazlo,
&3 = 8—:”3 +Sma8z11 —cosaafu, £y = 6_z4 —ksincx(,)x11 +sinaa$12,
1= -2 — + oI5 — 0 Z2=—:E7i-+:1:5—a—

0 61‘6 6.’175 61‘7,
Z3 = —x8 7— 6 +z5 — 9
aI 8338

We see that M is a 4-lightlike submanifold and RadT M = span{&1,&2,&3,&4}-
It is easy to see RadT'M is invariant with respect to canonical complex
structures Jp, Jo, J3. Screen transversal bundle S(TM L) is spanned by

0
a.’L'g.

W=z o +z +z 9 +z
- 561‘5 68.’1:6 7(91:7 8
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By direct calculations, we have
Ur=hW=2-22+"2,
s 5
U; = JoW = EZ1 + Zy — EZ;«;,
5 5
= - T
Us=J3W = —721 + —6Z2 + Z3.
I5 s

Hence D’ = span{Ui, Uz, Us}. Thus M is a screen QR-lightlike submanifold.
On the other hand, the lightlike transversal bundle spanned by

N- —1 —i +sina—a—+cosa
1= 2 on 0 xg 010
N. —l ———?——cosai—i—sina 4
2791 0z Oz 010
1 19) ) 0
N3 = 5{_6_x3 +sma5w:~cosaaz12}

N, 1 9 + cos + sin«
= —{ —— « .
4 2 Oy dr11 012

Hence lightlike transversal is also invariant. By direct calculations, we have
Vxé1=Vx& =Vx€3=Vx€=VxN1 =VxNy =VxN3=VxN;=0
for any X € I'(T'M). On the other hand we have

le Uy = V-7U2U2 = ‘_7U3U3 =-W

_ 0 0
VuUz = $86z5 +$78m6 _x66x7 _m"’amg
_ 0 0 0
VU1U3 a _m781‘5 +m881‘6 +z58(L’7 _wﬁamg
_ 0 0
VU2U3 h zﬁamg, —wsal‘ﬁ +m83.’1)7 _x76:1:8.

By using (2.7) we obtain
ht = 0,h*(Uy,Us) = h*(Uz, Ur) = h*(Un, Us) = h*(Us, Uz) = h*(X,£) =0
and
h*(Uy, Ur) = g(Ur, Uh)Hs
h*(Uz, Uz) = g(Uz, U2)Hs
h*(Us,Us) = g(Us, Us)Hs
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for X € I'(TM), Y € I'(RadT M), where Hg = —W, hence M is totally
umbilical screen QR-lightlike submanifold.

4. Screen CR-lightlike submanifolds

In section 3, we have seen that a screen real lightlike submanifold is not
a screen QR-lightlike submanifold. In this section we will introduce another
class of lightlike submanifolds of an indefinite quaternion Kaehler manifold,
namely, screen CR-lightlike submanifolds which include screen real lightlike
submanifolds as well as quaternion lightlike submanifolds.

DEFINITION 3. Let (M,g,S(TM)) be a lightlike submanifold of an in-
definite quaternion Kaehler manifold (M,g.) We say that M is a screen
CR-lightlike submanifold of M if the following conditions are satisfied:

1. There exist real non-null distributions Dy and D’ over S(T'M) such
that

(41)  S(TM)=Dy® D', J,(Dy)=Do, Jo(D') C S(TM?1), a=1,2,3.
2. RadTM is invariant with respect to J,,i.e., J,(RadTM) = RadT M,
a=1,2,3.

It follows that Itr(T'M) is also invariant with respect to J,, i.e.,

(4.2) Jo(ltr(TM) = ltr(TM).

We denote the orthogonal complementary distribution to J, D' in S(TM*)
by p. We note that Dy and p are non-degenerate. By the definition of a
screen CR-lightlike submanifold we have

(4.3) TM =D 1D,
where
(4.4) D = RadTM 1 Dy.

We say that M is a proper screen CR-lightlike submanifold of M if Dy # 0
and D’ # 0. From (4.1), (4.2) and (4.4), for X € I'(TM) we can write

(4.5) JoX = ¢uX + F, X,

where ¢X € I'(D) and F, X € I'(J,D’). Any vector field V € T'(S(TM*1))
we put

(46) jaV =tV + faV’
where ¢,V € I'(D') and f,V € T'(p).
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EXAMPLE 4. Consider in R}® the submanifold M given by the equations

T1 = 213, T2 = T14 I3 = T15, T4 = T16
11 =+v1-— xg T19 = constant, x12 = constant.
The tangent bundle of M is spanned by

=242 7,-02 9 7.9 .0
1= 31‘1 31:13, 2= 6332 (9:1,‘14 3= 6I3 31‘15’
o 0 a 0
R TR b il P e P
0 0 0 Zg 0
7z =——’Z = ’Z = — .
7 6.’1:7 8 a.’rg 9 8I9 ,/1_z9§8z11

Hence M is a 4-lightlike submanifold with RedT'M = span{Z,, Za, Z3, Z4}
and it is invariant with respect to Ji,Jo,J3. Moreover we can see Dy =
{Zs, Zg, Z7,Zg} is also invariant. It is easy to see {Z1,Zs, Z3, Z4, Z5, Zs,
Zr,2g, Ly, W1 = J1Z9, W, = JQZg, W3 = j3Z9} is linearly independent. So
span{W1, Wy, W3} = J,(D') = S(TM?'). Finally we obtain the lightlike
transversal bundle spanned by

1 0 0 1 o o
M= 5{‘371 t _am}’ N2 = 5{‘3—932 + _az“}’

1 o o 1 0 0
N3 = 5{‘373 + _am15}’ Ne = 5{"374 + am}-

Thus we conclude that M is a proper screen CR-lightlike submanifold of R‘liﬁ.

PROPOSITION 4.1. A screen CR-lightlike submanifold of an indefinite quat-
ernion Kaehler manifold is a screen real lightlike submanifold (resp. quater-
nion lightlike) if and only if Do = {0} (resp.D’ = {0}).

Proof. Let M be a screen real lightlike submanifold of an indefinite quater-
nion Kaehler manifold. Then it is clear, the radical distribution is invariant
subspace. Since M is screen real lightlike submanifold we have Dy = {0}.
Conversely, let M be a screen CR-lightlike submanifold such that Dy = {0}.
Then we have S(TM) = D', since J,(D’) C S(TM+') we obtain that M is
a screen real lightlike submanifold. The other assertion of the proposition
can be proved as above discussion.

REMARK 3. We note that any co-isotropic, isotropic or totally lightlike
screen CR-lightlike submanifold of an indefinite quaternion Kaehler man-
ifold is a quaternion lightlike submanifold. We consider, for example, co-
isotropic submanifold M, then TM = S(TM) L RadTM and S(TM*') =
{0}), therefore D’ is undefined, so we have TM = RadTM L Dy, i.e., it is
invariant with respect to J,,a = 1,2, 3.
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THEOREM 4.1. Let M be a screen CR-lightlike submanifold of an indefinite
quaternion Kaehler manifold M. Then

1. D' is integrable if and only if
ApyV = Ap UVU,V € T(D).
2. D is integrable if and only if
(X, J.Y) = k¥ (J.X,Y),¥X, YT(D).

Proof. From (2.3), (2.7), (2.9), (4.5), (4.6) and taking tangential parts we
have

(4.7) ~AjuV = ¢VvU + t.h° (U, V)
for U,V € T'(D'). Hence we obtain
A.LUV - AJ,,VU = d’a[U, V]a

thus we get the first assertion. In a similar way, by using (2.3), (2.7), (2.9),
(4.5), (4.6) and taking the screen transversal parts we obtain

(4.8) W (X, J.Y) = FaVxY + f.h*(X,Y)
for X,Y € I'(D), hence we obtain the second assertion of theorem.

We now consider totally umbilical screen CR-lightlike submanifolds.
First we have:

COROLLARY 4.1. Let M be a totally umbilical screen CR-lightlike submani-
fold of an indefinite quaternion Kaehler manifold M. Then the induced con-
nection on M is metric connection.

The proof is similar to that of Theorem 3.5 from section 3, so we omit
it here.

LEMMA 4.1. Let M be a totally umbilical proper screen CR-lightlike sub-
manifold of an indefinite quaternion Kaehler manifold M. Then we have

(4.9) Hs e T(J, D).
Proof. From (4.8) and (3.23), for X =Y € I'(Dy) we obtain

FoVxY =0, g(XaX)faHS =0
Since Dy is non-degenerate we have, at least,a spacelike or timelike vector
field, thus f,Hg = 0, which shows us Hg € TI'(J,D’).
THEOREM 4.2. Let M be a totally umbilical proper screen CR-lightlike of
an indefinite quaternion Kaehler manifold. Then

1. M s totally geodesic or
2. the distribution D' is one dimensional.
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Proof. From (4.7), (3.23) and (2.10) we obtain

(4'10) g(X’X)g(H.S‘y jaY) =g(X’Y)g(HSajaX)
for X,Y € I'(D’). From (4.9) we have
(4.11) 9(Y,Y)§(Hs, LX) = 9(X,Y)§(Hs, J.Y).

Thus we have
9(X,Y)?
9(X, X)g(Y,Y)

Since D' and S(T M) are non-degenerate, (4.10) and (4.12) imply Hg = 0
or X and Y are linearly depend. Thus we have proved the theorem.

(4.12) 9(Hs, JoX) = §(Hs, JoX).

Now, we give an example for a totally umbilical screen CR-lightlike sub-
manifold.

EXAMPLE 5. Let M be the submanifold of R}% given in Example 4. Then
we have
VxZ1=VxZy=VxZ3=VxZy= 0,
vng, = vxzs = ?XZ7 = vng =0
for any X € I'(TM) and
g9 1
Zy —
2 3

5 g
V2529 1—2a3

Wa.

Using Gauss equation we have
hi(X, Z1) = h*(X, Z3) = h*(X, Z3) = R*(X, Z4) = 0,
h*(X,Z5) = h%(X, Zs) = h°(X,Z7) = h*(X,Zg) =0
and
ht =0, h*(Z9, Zo) = 9(Z9, Zo)Hs,

2
where Hg = — \}12—2W2, thus M is a totally umbilical and it has a metric
—a3

connection.
THEOREM 4.3. There exist no proper totally umbilical screen CR-lightlike

submanifold in positively or negatively curved indefinite guaternion Kaehler
manifolds.

Proof. We suppose that M is a proper totally umbilical screen CR-lightlike
submanifold of M with Kp(X,Y) # 0 for any X,Y € ['(TM). By direct
calculations we have

(4.13) R(X, V)N Z - I R(X,Y)Z =v(X,Y) ], Z — B(X,Y)JsZ
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for any X, Y, Z € [(TM), where ¥(X,Y) = dQ12(X,Y)+(Q23AQ31)(X,Y)
and 3(X,Y) =dQz1(X,Y) + (Qi2 A Q23)(X,Y). Thus we have

(4.14) —-3(R(X,Y)X,Y) + g(R(X,Y)h X, 1Y) =0

for X € T(Dy), Z = J1X € T(Dp) and Y € I'(D’). By using (2.18), (3.22)
and (3.23) we have

g(R(X, Y)le, j1Y) = g(Hsg, j1Y){—g(VxY, j1X) -9, ijlX)
+9(Vy X, 1X)+ g(X,Vy 1 X)}.
Then from (2.7) we get
3(R(X,Y)1 X, 1Y) = §(Hs, h"Y){-g(VxY, 1 X) — §(¥,Vx 1 X)
+3(Vy X, 1 X) + §(X,Vy1 X)}.

Since V is a metric connection we obtain g(R(X,Y)J1X,J1Y) = 0. Then,
using (4.14) we have

Ku(X,Y)=g(R(X,Y)X,Y) =0,
which is a contradiction and the proof is complete.

CONCLUDING REMARKS. We note that among QR-lightlike, screen QR-
lightlike and screen CR-lightlike submanifolds there exist no inclusion re-
lations, because a real lightlike hypersurface is a QR-lightlike submanifold
(See: [10]), it is not a screen QR-lightlike and a screen CR-lightlike sub-
manifold. On the other hand, a screen real lightlike submanifold is a screen
CR-lightlike submanifold, of course it is neither screen QR-lightlike nor QR-
lightlike. Finally, invariant lightlike submanifolds lie in the intersection of
the screen CR-lightlike and screen QR-lightlike submanifold.
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