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LIGHTLIKE SUBMANIFOLDS 
OF INDEFINITE QUATERNION KAEHLER MANIFOLDS 

Abstract. We define and study both screen QR-lightlike and screen CR-lightlike sub-
manifolds of an indefinite quaternion Kaehler manifold. We show that screen QR-lightlike 
submanifolds include quaternion submanifolds and screen CR-lightlike submanifolds in-
clude quaternion as well as screen real lightlike submanifolds. We also give some examples 
of screen QR-lightlike and screen CR-lightlike submanifolds. 

1. Introduction 
QR-submanifolds of a quaternion Kaehler manifold were introduced by 

A. Bejancu in [1]. Since then many papers appeared on these submanifolds. 
On the other hand, the geometry of lightlike submanifolds has shown an 

increasing development since K.L.Duggal- A.Bejancu defined lightlike sub-
manifolds in [4] and [3]. In their book [5], they introduced CR-lightlike sub-
manifolds and showed that CR-lightlike submanifolds are always proper,i.e., 
they don't contain invariant and totally real lightlike submanifolds. There-
fore, in [7], K.L.Duggal and the present author introduced screen CR-
lightlike submanifold which contains invariant and screen real lightlike sub-
manifolds. Lightlike real hypersurfaces of an indefinite quaternion Kaehler 
manifold studied in [9]. In [10], we defined QR-lightlike submanifold as a 
generalization of lightlike real hypersurfaces and showed that QR-lightlike 
submanifolds are also always proper. 

In the present paper, we introduce screen QR-lightlike and screen CR-
lightlike submanifolds and investigate fundamental properties of such light-
like submanifolds of indefinite quaternion Kaehler manifolds. We study 
the integrability conditions for the distributions which are involved in the 
definition of these submanifolds. We also study totally umbilical screen 
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QR-lightlike and screen CR-lightlike submanifolds. Finally we show that 
there exist no proper totally umbilical screen CR-lightlike submanifolds in 
positively or negatively curved indefinite quaternion Kaehler manifolds and 
give several examples. 

2. Preliminaries 
Let M be a 4m—dimensional manifold (m > 1) and g be semi-Riemann 

metric on M. Then M is called an indefinite quaternion Kaehler manifold 
(or, semi-Riemann quaternion) if there exists a 3-dimensional vector bundle 
of tensors of type (1,1) with local basis Hermitian structures J \ , J 2 and J3 
(that is, g(JaX, JaY) = g(X, Y), a = 1,2,3 and X, Y G T (TM)) satisfying 

(2.1) JioJ2 = -J20J1 = J3 

and 

VxJi = r(X)J2 - q(X)J3 

(2-2) V x J 2 = -r(X)Jl+p{X)h 

V x J 3 = q(X)J1-p(X)J2 

for all vector fields X tangent to M, where p,q,r are local sections of 
AX(TM). and V is Levi-Civita connection (see [8]). For sake of shortness, 
instead of (2.2) we use 

3 
(2.3) VxJa = J2Qab(X)Jb,a = 1,2,3 

6=1 

where Qa(, are certain 1—forms locally defined on M such that Qab+Qba = 0-
An indefinite quaternionic space form is a connected indefinite quater-

nion Kaehler manifold of constant quaternionic sectional curvature and its 
denoted by M(c). The curvature tensor of M(c) is given by ([8]) 

(2.4) R{X,Y)Z = -A[g{Z,Y)X-g{X,Z)Y 

3 
+ JaY)JaX - g(Z, JaX)JaY + 2g(X, JaY)JaZ} 

a=1 

for any X,Y, Z E T (TM) . 
From now on, we follow [5] for the notation and formulas used in 

this paper. A submanifold Mm immersed in a semi-Riemannian manifold 
( M m + n , g ) is called a lightlike submanifold if it is a lightlike manifold w.r.t. 
the metric g induced from g and the radical distribution Rad(TM) is of 
rank r, where 1 < r < m. Let S(TM) be a screen distribution which is 
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a semi-Riemannian complementary distribution of Rad(TM) in TM, i.e., 
TM = Rad (TM) J_ S(TM). 

Consider a screen transversal vector bundle <S(TM-L), which is a semi-
Riemannian complementary vector bundle of Rad(TM) in TM±. Since, 
for any local basis {&} of Rad(TM), there exists a local null frame {NI} of 
sections with values in the orthogonal complement of S (TM 1 ) in [5(TM)]-L 

such that g(£i,Nj) = öij. It follows that there exists a lightlike transversal 
vector bundle ltr(TM) locally spanned by {NI} [5, page 144], Let tr(TM) 
be complementary (but not orthogonal) vector bundle to TM in TM\M-
Then, 

tr(TM) = ltr(TM) JL 5(TMX) , 

TM\m = S(TM) JL [Rad(TM) © ltr(TM)] 1 ^ ( T M 1 ) . 

Following are four sub cases of a lightlike submanifold ( M , g , S ( T M ) , 
S(TM±). 

Case 1: r-lightlike if r < min{m, n}. 
Case 2: Co-isotropic if r = n < m; S{TM-1) = {0}. 
Case 3: Isotropic if r = m < n; S(TM) = {0}. 
Case 4: Totally lightlike if r = m = n; S(TM) = {0} = S(TML). 

The Gauss and Weingarten equations are: 

(2 .5 ) VxY = VxY + h{X,Y), V X , Y € r ( T M ) , 

( 2 . 6 ) VXV = -AVX + Vt
xV, V X g T ( T M ) , V eT(tr(TM))} 

where {VxY,AvX} and {h(X, Y), V^V} belong to T(TM) and 
T(ltr(TM)), respectively. V and V i are linear connections on M and on 
the vector bundle ltr(TM), respectively. The second fundamental form h is 
a symmetric ^r(M)-bilinear form on T(TM) with values in T{tr(TM)) and 
the shape operator Ay is a linear endomorphism of T(TM). Then we have 

(2.7) VXY = WxY + hl(X,Y) + hs(X,Y), 

(2.8) VxN = -AnX + V1
x(N) + D*(X,N), 

(2.9) VxW = -AwX + Vsx(W) + D\X,W), 

€ r ( T M ) , N g T(ltr(TM)) and W € r ( S ( T M x ) ) . Denote the 
projection of TM on,_S(TM) by P. Then, by using (2.5), (2.7)-(2.9) and 
taking account that V is a metric connection, we obtain 

( 2 . 1 0 ) g(hs(X, Y), W) + g(Y, Dl(X, W)) = g(AwX, Y), 

( 2 . 1 1 ) g(Ds(X,N),W)=g(N,AwX). 
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We set 

(2.12) VxPY = W*XPY + h*{X,PY), 
(2.13) VxZ = - A l X + V*t

x£, 

for X, Y e T{TM) and £ 6 T(RadTM). By using above equations we obtain 

(2.14) g(hl(X,PY),t) = g{A\X,PY), 

(2.15) g(h*(X, PY),N) = g(ANX, FY), 

(2.16) g(hl(X,Z),Q = 0, A^ = 0. 

In general, the induced connection V on M is not metric connection. 
Since V is a metric connection, by using (2.7) we get 

(2.17) (Vxg)(Y, Z) = g(hl(X, Y),Z)+ g(hl(X, Z),Y). 

However, it is important to note that V* is a metric connection on S{TM). 
We denote curvature tensors of M and M by R and R respectively. The 
Gauss equation for M, VX, Y,Ze T(TM), is given by 

(2.18) R(X, Y)Z = R(X, Y)Z + AhW)Y - Ahl[YtZ)X + Ah,{XtZ)Y 

-Ahs{YtZ)X + (Vxhl)(Y,Z) - (VYhl)(X,Z) 

+ Dl(X, hs(Y, Z)) - Dl(Y, hs(X, Z)) + ( V X H S ) ( Y , Z ) 

- ( V Y H S ) ( X , Z ) + DS(X, hl(Y, Z)) - DS(Y, hl(X, Z)). 

3. Screen QR-lightlike submanifolds 
In this section, we introduce a new class, called screen quaternion-real 

(SQR) lightlike submanifolds of an indefinite quaternion Kaehler manifold 
and investigate the geometry of such submanifolds. 

DEFINITION 1 . Let (M, g, S(TM))be a lightlike submanifold of an indefinite 
quaternion Kaehler manifold (M ,g ) . We say that M is a SQR-lightlike 
submanifold of M if the following conditions are satisfied: 
i): There exist real non-null vector subbundles L and LL of S{TML) such 
that 

(3.1) S ( T M = LlL1IJa(L)c S(TM), JA(LL) = LL. 

ii): RadTM is invariant with respect to Ja,i.e.,Ja(Rad(TM)) = Rad(TM), 
a = 1,2,3. 

It follows that ltr(TM) is also invariant with respect to Ja, a = 1,2,3, 
that is 

(3.2) Ja{ltr(TM)) = ltr(TM), 
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Let M be a screen QR-lightlike submanifold of an indefinite quaternion 
Kaehler manifold. Put D'ap = Ja(Lp) and dimLp = s,p € M. Then D'lp, 
D'2p and D'3p are mutually orthogonal vector bundle of M. We consider 
D'p = D'lp © D'2p © L>3p. Then we obtain 3s dimensional distribution globally 
defined on M. Also we have 
(3-3) Ja(D'ap) = L, = 
for each p € Ma — 1,2,3, where (a,b,c) is cyclic permutation of (1,2,3). 
We consider 
(3.4) D = RadTM 1 D0 

which is orthogonal complementary to D' in TM. It is easy to check that 
Do is an invariant non-degenerate distribution. Then, we obtain that D 
is also invariant with respect to JQ. We call D and D' the quaternion and 
anti-quaternion distribution, respectively. Thus, we have 
(3.5) TM = D © D' 
and 
(3.6) tr(TM) = ltr(TM) I L l i 1 . 

We say that M is a proper screen QR-lightlike submanifold of M if 
D0 ± {0} and D' ± {0}. 

Note the following special features: 
1. Condition ii) implies that dim(RadTM) = 4r > 4. 
2. For proper M, dim(Do) > 4m and dim(D') > 3. 
3. There exist no screen QR-lightlike hypersurface. 
Let R f f , ( m > l , q > l ) be a semi-Euclidean space. Then, the canonical 

complex structures Ji , J2, J3 of R f ^ and the Hermitian metric g are given 
by 

j V11 ! j • • • 1 2-m, Vm, Zm, Wm) 

= ( - y i , ® l , ^«>1,21, • • • , -ym,Xm, ~Wm,Zm) 

J2(xi,yi,zi,wi,. . • ,xm,ym,zm,wm) 

= ( - Z i , w i , x i , - J / 1 , . . . , -Zm,wm,xm, - y m ) 

J3{xi,yi,zi,wi,.. • ,xm,ym,zm,wm) 

= (-Wi, - Z i , y i , x i , . . . , - w m , -Zm,ym,xm) 

and 
9((xi,yi,zi,wi,.. .,xm,ym,zm,wm), ( u i , v i , t i , s i , . . . ,um,vm,tm,sm)) 

q m 

= - 5 > « i + ym + Ziti + WiSi) + (xaUa + yaVa + Zata + Wasa)• 

¿=1 a=<7+l 
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E X A M P L E 1. Consider in R\2 the submanifold M given by the equations: 

xi - xn, X2 = X12, xg = —Xs, xio = —X4, xs = constant. 

Then the tangent bundle TM is spanned by 

Z\ = 7; 1" 7; > Z2 = 7: 1- 7; , Z3 = dx\ dxu' dx2 ÖX12' dxz dx9' 

Z\ = 7: 7: ) = , = TT—, Z7 = 8x4 dx5' dx^ 8x7 
Hence M is a 4-lightlike submanifold with RadTM — Span{ZI, Z2, Z3, Z4} 
and RadTM is invariant with respect to canonical almost complex structures 
of J A of R f . We consider the vector field W = o f ^ T M 1 ) . Then we can 
obtain that J\ W = — Z7, J2 W = —Zq, J3 W = —Z$. Hence D' is spanned 
by {Z5, Zq, Z7}. We also obtain that lightlike transversal bundle spanned 
by 

m _ i r <L + _<M N2--{ 3 1 9 ] 
2 \ dx\ dx\\y 2 \ dx2 dxi2 J' 

jy l i d_ Ar4 = i ( - —\ 
2 \ 8x3 8x9)' 2 \ dx 4 <9xio/' 

which is invariant with respect to Ja,a — 1,2,3. Thus M is a screen QR-
lightlike submanifold of Rf2, with D = RadTM = {Zu Z2, Z3, Z4},D' = 
span{Z5,Z6,Z7.} 

PROPOSITION 3 . 1 . A screen QR-lightlike submanifold of an indefinite quat-
ernion Kaehler manifold is a quaternion lightlike submanifold if and only if 
D> = {0} . 

P r o o f . Let M be a quaternion lightlike submanifold of an indefinite quater-
nion Kaehler manifold. Then we can easily check that RadTM is invari-
ant with respect to Ja. Therefore ltr(TM) is also invariant with respect 
to Ja. Hence Ja{S{TMx)) = S'(TM-L), thus L = {0} . Conversely, let M 
be a screen QR-lightlike submanifold of an indefinite quaternion Kaehler 
manifoldM. such that D' = {0} . Then Ja(TM) = TM. Hence M is a 
quaternion lightlike submanifold. 

For co-isotropic, isotropic and totally lightlike submanifolds we have the 
following: 

PROPOSITION 3 . 2 . Any screen QR-coisotropic or isotropic or totally lightlike 
submanifolds of M is a quaternion lightlike submanifold. 

P r o o f . Let M be a screen QR-lightlike submanifold of an indefinite quater-
nion Kaehler manifold M. If M is coisotropic then S(TM±) = {0 } implies 
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L = {0}.Thus we have TM = D. Hence M is a quaternion lightlike sub-
manifold. Similarly the assertions for isotropic, totally lightlike M can be 
proved. 

R E M A R K 1 . In [7], Duggal and the present author introduced screen real 
submanifold of an indefinite Kaehler manifold as follows: Let M be a light-
like submanifold of an indefinite Kaehler manifold, then M is called screen 
real if J(S(TM)) C S{TML) and J{Rad(TM)) = RadTM, where J is 
the almost complex structure of an indefinite Kaehler manifold. Accord-
ing to this definition and the definition of screen QR-lightlike submanifold, 
one can conclude that a screen real lightlike submanifold of an indefinite 
quaternion Kaehler manifold is not a screen QR-lightlike submanifold due 
to Ja{D'b) = D'C C TM. 

EXAMPLE 2. Consider in R\2 a submanifold given by the equations: 

xg = x\ cos a — x3 sin a, x\o = £2 cos a — x4 sin a:, 
£11 = x\ sin a: + £3 cosa, £12 = £2 s ina + £4 cosa, a G (0, 

Then TM is spanned by 

d 8 . d 
Z\ = — 1- cos a — 1- sm a 

dx\ dxg <9xn' 
d 0 . 8 

Z2 = b cos a - 1- sin a - , 
OX 2 OX 10 OX 12 

9 . d 8 
Zz = sin a - — + cos a "3 > 

ox 3 ox 9 ox 11 
9 . d d 

Z4 = — sm a — 1- cos a dxi dx\Q dxu' 

7 - 9 7 - 9 

O £5 o x 6 

7 - 8 7 - 5 
¿7 — a , Zg — -z • OX7 OX s 

Hence M is a lightlike submanifold with RadTM — span{Z\, Z2, Z3, Z4}. 
Hence RadTM = TM1- C TM,i.e., M is a coisotropic 8-dimensional sub-
manifold of R\2. Then S(TM±) = {0} and lightlike transversal bundle is 
spanned by 

I f 9 d . d \ = o l I-COSQ- b sm a — }, 2 y ox\ 0x9 ox 11 J 
9 9

 •
 9

 \ is2 = - s — 7: b cos a — b sin a >. 
8x2 dxio dxi2) 
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if 9 . d 8 \ 
= o^ ~Q sin a - — + cos a — S, 

2 ^ (7X4 OXg OXu J 

*r 1i 9 • 9 9 \ N4 = o l sin a — 1- cos a — S. 2 ¿7x4 ¿7x10 J 
It is easy to see that RadTM and DO = span{Z§, ZQ, Z-J, Zg} are invariant. 
Hence TM = RadTM ± DQ is invariant. Thus M is a quaternion lightlike 
submanifold. 

Let M be a screen Qi?-lightlike submanifold of an indefinite quaternion 
Kaehler manifold. We denote the projection morphism of TM to the quater-
nion distribution D by 5 and choose a local field of orthonormal frames 
{i>i,..., f s } on the vector bundle L in S'(TM i). Then we have the local 
orthonormal frames 
(3.7) {-Eii, • • •, Eis, E2i, .. •, E<2,s, E31,..., E3s} 
where En = Ji(v\). Thus any vector field Y tangent to M can be written 
locally as 

3 
(3.8) Y = SY + J2^(y)Ebi 

6=1 
where (Y) = g(Y, Thus applying Ja to (3.8) we obtain 

3 
(3.9) JaY = JaSY + Eci ~ (y)Ebi ~ Uai (y)Vi' 

6=1 
For any vector field V e r (5(TM x ) ) we put 
(3.10) JaV = BaV + CaV, a = 1,2,3 
where BAV € T(D') and CAV € T(LX). 

Let M be a screen QR-lightlike submanifold of an indefinite quaternion 
Kaehler manifold M. Taking account of the definition of screen QR-lightlike 
submanifold and using (2.3), (2.7), (3.9) and (3.10) we have 
(3.11) VxJaY = Qab(X)JbY + Qac(X)JcY + JaSVxY -L0UVxY)Eci 

+ uci(VxY)Eu + Bahs(X,Y), 

(3.12) hl(X,JaY) = Jahl(X,Y), 

(3.13) hs(X, JaY) = uai (VxY)vi + Cahs(X, Y) 
for any X,Y € T(£>). 
THEOREM 3.1. Let M be a screen QR-lightlike submanifold of an indefinite 
quaternion Kaehler manifold. Then the following conditions are equivalent 



Lightlike submanifolds 709 

with each other. 

1. hs(X, JaY) = hs(JaX, Y),a G {1,2,3}, X,Y E T(D) 
2. hs(X,JaY) = 0 
3. D is integrable. 

P r o o f . (1) (2): Since Ja = JboJc, we have 

hs(X, JaY) = hs(X, {JboJc)Y) = hs{X, Jb(Jcy)) 
= hs(JbX,JcY) 
= hs(JcoJbX,Y) 
= —hs(JaX,Y), 

hence we obtain hs(X, JaY) = 0. 
(2) (3): Let us suppose hs(X,JaY) = 0. Then from (3.13), we obtain 
Uai{VxY)vi = 0, hence w A I ( [ X , Y ] ) = 0,i.e,[X, Y] € R ( D ) . 

(3)=>(1): If D is integrable, from (3.13) we have uai{[X,Y}) = hs{X,JaY) 
- hs{ JaX, Y) = 0, hence hs(X, JaY) = hs(JaX, Y). 

L E M M A 3 . 1 . Let M be a screen QR-lightlike submanifold of an indefinite 
quaternion Kaehler manifold. Then we have 

(3.14) g(hs(X, Eai),vj) = g(AViX, Eaj) 

and 

(3.15) g(AVjEai,X) = g{AViEaj,X) 

-g(Dl(Eaj,Vi),X) + g(Dl(Eai, Vj),X) 

for X G R ( D ) and Eai G R ( D ' ) -

P r o o f . Prom (2.7), (2.1) and (2.3), we have 

g(hs(Eai,X),Vj) = -g(VxVi,JaVj). 

By using (2.9) we derive 

g(hs{Eai,X),Vj) =g{AViX,Eaj). 

On the other hand from (3.14) and (2.10) we obtain 

g(AVjEai, X) = g(AViX, Eaj) + g{X, Dl(Eai, Vj)). 

Using again (3.14) we have 

g(AVjEai, X) = g(hs(X, Eaj),Vi) + g(X, Dl(Eai, Vj)). 

Since hs is symmetric, we derive 

g(AVjEai,X) = g{hs{X,Eaj),Vi) + g{X,D\Eai,Vj)). 

Thus taking account (2.10) in this equation, we get (3.15). 
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THEOREM 3.2. Let M be a screen QR-lightlike submanifold of an indefinite 
quaternion Kaehler manifold M. Then the distribution D' is integrable if 
and only if 

g(Ds(Eai, JaN),Vj) = g(Ds(Eaj, JaN))Vi) 

Baj(X) = 0 

and 
Daj(N) = 0 

for X e T{D0), where Baj{X) = g{V*Ea.Eaj,X) and Daj(N) = 
9(AjcNEai, Eaj). 

Proof . From (2.1), (2.3), (2.10) and (3.15) we have 

(3.16) g([Eai,Eaj],X) = g(VEaiEaj,X)-g(VEa3Eai,X) 

= -g(VEaiVj, JaX) + g(VEajVi, JaX) 

= g(AVjEai, JaX) - g(AViEaj, JaX) 
= 0 

for X G r(D0). In a similar way, we get 

(3.17) g([Eai, Eaj],N) = g(Ds(Eai, JaN), Vj) - g(Ds(Eaj, JaN),Vi). 

On the other hand, since E^j = JcJaVj, from (2.1), (2.7) and (2.12) we 
obtain 

(3.18) g{[Eai, Ebj],X) = g(V*EazEaj, JCX) - g{V*Eb.Ehi, JCX) 

for X £ T(D0). In a similar way, 

(3.19) g([Eai, Ebj],N) = g(AJcNEai, Eaj) - giAj^E^Eu). 

Thus, from (3.16), (3.17), (3.18) and (3.19), we obtain the assertion of 
theorem. 

Now, we will investigate necessary and sufficient conditions on distribu-
tions D and D' to be parallel. 

THEOREM 3.3. Let M be a screen QR-lightlike submanifold of an indefinite 
quaternion Kaehler manifold M. Then D defines a totally geodesic foliation 
if and only if hs(X, Y) has no components in L for I , 7 e T(Z)). 

Proof . From (2.7) and (2.3) we obtain 

g(VxY,Eai)=g(VxY,Eai) 

= ~g{JaVxY,Vi) 

for X, Y e T(D). Hence we have 

g(VxY, Eai) = g{{VxJa)Y - VxJaY, Vi). 
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Now, by using (2.3) and (2.7) we obtain 

g(VxY,Eai) = g(h(X,JaY),Vi) 

which proves our assertion. 
For D', we have the following theorem. 

THEOREM 3.4. Let Mbe a screen QR-lightlike submanifold of an indefinite 
quaternion Kaehler manifold M. Then D' defines a totally geodesic foliation 
if and only if AyX has no components on D, where X G r (D' ) and V G 
r (S (TM X ) ) . 

Proof . Using (2 .3 ) , (2 .7 ) , (2 .10) , (3 .9 ) , (3 .10) and taking the tangential 
part we obtain 

(3 .20) VE a iEaj = Qab(Eai)Ebj + Qac(Eai)Ecj 

— JaSAVjEai — u> bi(AVjEai)ECi 

+ u>ci(AVjEai)Ebi + BaVsEa.Vj. 

In similar way we have 

(3 .21) VE a iEbj = -Qcb(Eai)Ecj + Qab{Eaa)Eaj 

— JbSAVjEai + u ti(AVjEai)Ebi 

+ BbV%a tvv 

then proof of the theorem follows from (3 .20) and (3 .21) . 

Using Yano-Kon terminology [11] we say that screen QR-lightlike sub-
manifold M is a lightlike product if D and D' are its totally geodesic foli-
ations. Thus from Theorem 3.3. and Theorem 3.4. we have the following 
corollary. 

COROLLARY 3 . 1 . Let M be a screen QR-lightlike submanifold of an indef-
inite quaternion Kaehler manifold M. Then M is a lightlike product if and 
only if the following conditions are satisfied: 

1. AyX has no components in D, VX G r(£>'), V 6 T(L). 
2. hs(X,Y) has no components in L, VX,Y G R(D). 

In the rest of this section we consider totally umbilical screen QR-
lightlike submanifolds. First we recall the definition of totally umbilical 
lightlike submanifolds. 

DEFINITION 2 . [6] The lightlike submanifold M is called a totally umbilical 
lightlike submanifold if HL G T{ltr{TM)), Hs G F(S(TM±)) which satisfy 

(3 .22) hl(X,Y)=g(X,Y)HL 
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and 
(3-23) hs(X,Y) = g(X,Y)Hs 

for any X, Y € T(TM). 
Theorem 3.5. Let M be a totally umbilical screen QR-lightlike submanifold 
of an indefinite quaternion Kaehler manifold M. Then the induced connec-
tion on M is a metric connection. 
Proof . It is well known that the induced connection V on an r-lightlike 
submanifold is a metric connection if and only if hl vanishes identically on 
M [5]. From (2.3), (2.7), (3.9) and taking the lightlike transversal part we 
obtain 

hl(X,JaY) = Jahl(X,Y),VX,Y e T{D0), 
since M is totally umbilical we get 

g(X,JaY)HL = g(X,Y)JaHL. 
Thus, interchanging role of X and Y in this equation and subtracting we 
have 

g(X,JaY)HL = 0, 
hence, we derive HL = 0 due to Do is a non-degenerate distribution. Thus 
we obtain hl = 0. 
Remark 2. We note that above theorem is not true for any r-lightlike 
submanifold. Therefore it is important property of totally umbilical screen 
QR-lightlike submanifolds. 
THEOREM 3 .6 . Let M be a totally umbilical screen QR-lightlike submanifold 
of an indefinite quaternion Kaehler manifold M. If dim(L) > 1 then M is 
totally geodesic. 
Proof . From the previous theorem, we have HL = 0. So Hs = 0 is enough 
to show that M is totally geodesic. Using (3.13), we have 
(3.24) g(X, JaY)Hs = u; ai(VxY)vi + Cahs(X, Y) 
for X, Y € r(Z?o). Hence we obtain 
(3.25) 2 g ( X , JaY)Hs = wai([X, Y])Vi. 
For Eai, Eaj £ r(D'), in a similar way, we derive 
(3.26) g(Eai, Eaj)Hs = u ai(AVj)vi + CaV%aivr 

Now suppose dim(L) > 1,since L is non-degenerate, it has orthonormal 
basis. Thus we can choose vector fields Eaj,Eai,i / j such that they are 
orthogonal, then (3.26) becomes 
(3.27) u ak(AVjEai)vk + CaV s

E.vk = 0, k G {1, . . . , dim(L)}. 
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Hence we have 
uak(AVjEai) = 0. 

Using (2.10) we obtain 

g ih ' iE^Eak^Vj ) = 0, 

hence we conclude 

( 3 . 2 8 ) HS e r ( L x ) . 

For X,Y £ T(D0), if [X,Y] G T(D), then from (3.25) we derive Hs = 0. If 
[X, Y] € T(D') then from (3.25) we obtain 

Then considering ( 3 . 2 8 ) and ( 3 . 2 9 ) we derive Hs = 0, i.e, M is totally 
geodesic. 

In the end of this section we present an example for totally umbilical 
screen QR-lightlike submanifolds. 

EXAMPLE 3. Consider a submanifold M, in R\2 with the equations: 

We see that M is a 4-lightlike submanifold and RadTM = span{£,i, £2, £3, £4}. 
It is easy to see RadTM is invariant with respect to canonical complex 
structures Ji , J2, J3. Screen transversal bundle S,(TM-L) is spanned by 

( 3 . 2 9 ) H s G r(L). 

xg = x\ sin a — x2 cos a x\o — x\ cos a + X2 sin a 

= %3 sin a + x4 sin a x u = —X3 cos a + X4 sin a 
X5 — /̂L XY XG * 

The tangent bundle of M is spanned by 
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By direct calculations, we have 

U! = JXW = Zi - + 
x5 x5 

U2 = J2W = —Zi + Z2 - — Z3, 
%5 X5 

U3 = J3W = —zx + ^ z 2 + z3. X5 X5 
Hence D' = span{U\, U2, U3}. Thus M is a screen QR-lightlike submanifold. 
On the other hand, the lightlike transversal bundle spanned by 

9
 •

 9 9 1 iVi = - < — — b sin a — f- cos a • H -

- H -

dxi 8x9 dx\o 

-I 9 9
 •

 9
 \ N2 = oi cosa-— + sin a— } OX2 OXg OX 10 J 

9
 •

 9 9
 \ " n \ cosa- \ 2 L ox3 ox 11 ox 12 J 

iV4 = -« 
i f a a . 9 | 

1- cos a — 1- sma— 
2 [ ¿7X4 OX 11 OX 12 J 

Hence lightlike transversal is also invariant. By direct calculations, we have 
Vx£i = = V x 6 = = V^iVi = VxjV2 = VxiV3 - VXJV4 - 0 

for any X G T{TM). On the other hand we have 
VuJJx = VU2U2 = VUsU3 = -W 
- TT d d d d 
VUiU2 = x%- h xj- x§- X5-dx 5 8xq dxj dxg 
- TT 8 8 d d 
Vt/jC/3 = -XT- h Xs- 1-^5 ~ x6-dx$ 8XQ dxj dx% 

d d d d 
V[/2^3 = x6— ^5-37— + Xs— Xj-dx$ dxe dx-j dx% 

By using (2.7) we obtain 
hl = 0, h'{U!, U2) = hs{U2, C/i) = hs(Uu U3) = hs{U3, Ui) = hs(X, 0 = 0 

and 

h'(U1,U1)=g(UuU1)Hs 

hs(U2,U2) = g(U2,U2)Hs 

hs(U3,U3) = g(U3,U3)Hs 
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for X G r(TM), Y € T(RadTM), where Hs = - W , hence M is totally 
umbilical screen QR-lightlike submanifold. 

4. Screen CR-lightl ike submanifolds 
In section 3, we have seen that a screen real lightlike submanifold is not 

a screen QR-lightlike submanifold. In this section we will introduce another 
class of lightlike submanifolds of an indefinite quaternion Kaehler manifold, 
namely, screen CR-lightlike submanifolds which include screen real lightlike 
submanifolds as well as quaternion lightlike submanifolds. 

D E F I N I T I O N 3 . Let ( M , g , S ( T M ) ) be a lightlike submanifold of an in-
definite quaternion Kaehler manifold (M,g.) We say that M is a screen 
CR-lightlike submanifold of M if the following conditions are satisfied: 

1. There exist real non-null distributions DO and D' over S(TM) such 
that 

(4.1) S(TM) = DQ © D', JA(DO) = DO, JA(D') C 5 ( T M X ) , a = l , 2 , 3 . 

2. RadTM is invariant with respect to Ja,i.e., Ja{RadTM) = RadTM, 
a = 1,2,3. 

It follows that ltr(TM) is also invariant with respect to Ja, i.e., 

(4.2) Ja(ltr(TM) = ltr(TM). 

We denote the orthogonal complementary distribution to JAD' in ^ ( T M 1 ) 
by /i. We note that DQ and FJ, are non-degenerate. By the definition of a 
screen CR-lightlike submanifold we have 

( 4 . 3 ) TM = D _L D', 

where 

(4.4) D = RadTM _L D0. 

We say that M is a proper screen CR-lightlike submanifold of M if Do / 0 
and D' ± 0. From (4.1), (4.2) and (4.4), for X € T(TM) we can write 

( 4 . 5 ) JAX = 4>AX + FAX, 

where (F>X € T(D) and FAX e T(JAD'). Any vector field V 6 T(S(TM±)) 

we put 

(4.6) JaV = taV + faV, 

where taV G r ( D ' ) and faV G T(fi). 
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EXAMPLE 4. Consider in R]6 the submanifold M given by the equations 

xi = £13, X2 = £14 £3 = £15, £4 = £i6 

£11 = \/l — £9 £10 — constant, £12 = constant. 

The tangent bundle of M is spanned by 
d d „ d d „ d n 

Zi = 7^ + 7; ,Zi = + -—,Z3 = — + 
dx\ dx\z 8x2 d £14' dx3 dx^' 

Z4 = q 1- Q , Z5 = — j Zq = 

Ö£4 9 £16' ^£5' Ö£6' 
„ d d d xg a 
¿7 = Q , ¿8 = Q , ¿9 = d£ 7 ' (?£8 ' 9 £9 - 9 £n ' 

Hence M is a 4-lightlike submanifold with RadTM = span{ZI, Z2, Z3, Z4} 
and it is invariant with respect to Ji,J2,J3• Moreover we can see Do = 
{Z5, ZQ, Z7, ZG} is also invariant. It is easy to see {Z\, Z2, Z3, Z4, Z5, ZQ, 
Z-J, ZQ, W\ = J1Z9, W2 = J2Z9, W3 = J3Z9} is linearly independent. So 
span{Wi,W2, W3} = Ja{D') = S(TML). Finally we obtain the lightlike 
transversal bundle spanned by 

If d_ + J L \ N 2 - - l 9 I 9 } 

2\ dx\ dX13 J ' 2\ 8x2 dxu/' 

^ I f + N A - - { 9 I 9 ] 
2\ 8x3 dxi5 J ' 2\ ¿>£4 d X\Q / 

Thus we conclude that M is a proper screen CR-lightlike submanifold of i?f6. 

PROPOSITION 4.1. A screen CR-lightlike submanifold of an indefinite quat-
ernion Kaehler manifold is a screen real lightlike submanifold (resp. quater-
nion lightlike) if and only if Do = {0 } (resp.D' = {0 } ) . 

P r oo f . Let M be a screen real lightlike submanifold of an indefinite quater-
nion Kaehler manifold. Then it is clear, the radical distribution is invariant 
subspace. Since M is screen real lightlike submanifold we have DO = {0 } . 
Conversely, let M be a screen CR-lightlike submanifold such that DQ = {0 } . 
Then we have S(TM) = D', since JA(D') C S(TM-1) we obtain that M is 
a screen real lightlike submanifold. The other assertion of the proposition 
can be proved as above discussion. 

REMARK 3. We note that any co-isotropic, isotropic or totally lightlike 
screen CR-lightlike submanifold of an indefinite quaternion Kaehler man-
ifold is a quaternion lightlike submanifold. We consider, for example, co-
isotropic submanifold M, then TM = S(TM) _L RadTM and S(TMx) = 

{0 } ) , therefore D' is undefined, so we have TM = RadTM J_ DO, i.e., it is 
invariant with respect to Ja, a = 1, 2,3. 
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THEOREM 4 . 1 . Let M be a screen CR-lightlike submanifold of an indefinite 
quaternion Kaehler manifold M. Then 

1. D' is integrable if and only if 
AJaUV = AJaVU,VU,V €T(D'). 

2. D is integrable if and only if 
hs{X,JaY) = hs{JaX,Y),\/X,YF(D). 

P r o o f . From (2.3), (2.7), (2.9), (4.5), (4.6) and taking tangential parts we 
have 
(4.7) -AjaUV = <t>aVvU + tahs(U, V) 
for U, V G T(D'). Hence we obtain 

AJaUV - AJaVU = MU,V], 
thus we get the first assertion. In a similar way, by using (2.3), (2.7), (2.9), 
(4.5), (4.6) and taking the screen transversal parts we obtain 

(4.8) hs(X, JaY) = FaVxY + fahs(X, Y) 
for X, Y € R(_D), hence we obtain the second assertion of theorem. 

We now consider totally umbilical screen CR-lightlike submanifolds. 
First we have: 

COROLLARY 4 . 1 . Let M be a totally umbilical screen CR-lightlike submani-
fold of an indefinite quaternion Kaehler manifold M. Then the induced con-
nection on M is metric connection. 

The proof is similar to that of Theorem 3.5 from section 3, so we omit 
it here. 

LEMMA 4 . 1 . Let M be a totally umbilical proper screen CR-lightlike sub-
manifold of an indefinite quaternion Kaehler manifold M. Then we have 
(4.9) Hs e T(JaD'). 

P r o o f . From (4.8) and (3.23), for X = Y € T{D0) we obtain 

FaVxY = 0, g(X,X)faHs = 0. 
Since £>o is non-degenerate we have, at least,a spacelike or timelike vector 
field, thus faHs = 0, which shows us Hs G T(JaD'). 
THEOREM 4 . 2 . Let M be a totally umbilical proper screen CR-lightlike of 
an indefinite quaternion Kaehler manifold. Then 

1. M is totally geodesic or 
2. the distribution D' is one dimensional. 
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P r o o f . From (4.7), (3.23) and (2.10) we obtain 

(4.10) g(X, X)g(Hs, JaY) = g(X, Y)g(Hs, JaX) 

for X,Y € T(D'). Prom (4.9) we have 

(4.11) g(Y,Y)g(Hs,JaX) = g(X,Y)g(Hs,JaY). 

Thus we have 

(4.12) S(HS, JaX) = 3«X). 

Since D' and ¿"(TM1) are non-degenerate, (4.10) and (4.12) imply Hs = 0 
or X and Y are linearly depend. Thus we have proved the theorem. 

Now, we give an example for a totally umbilical screen CR-lightlike sub-
manifold. 

EXAMPLE 5. Let M be the submanifold of ii^6 given in Example 4. Then 
we have 

VxZi = V X Z 2 = V X Z 3 = V X Z 4 = 0, 
Vxzb = VxZe = VxZ7 = VXZ8 = 0 

for any X € T(TM) and 

VzgZg = ————nZg -=L=W2. 1-xi y/l Xn 

Using Gauss equation we have 

hs(X, Zi) = hs(X, Z2) = hs(X, Z3) = hs(X, ZA) = 0, 

hs(X, Z5) = hs{X, Z6) = hs(X, Z7) = hs(X, Z8) = 0 

and 
hl — 0, hs(Z9,Z9)=g(Z9,Z9)Hs, 

l - x 2 

where Hs = — t h u s M 
is a totally umbilical and it has a metric Vl-Zg 

connection. 

THEOREM 4.3. There exist no proper totally umbilical screen CR-lightlike 
submanifold in positively or negatively curved indefinite quaternion Kaehler 
manifolds. 

P r o o f . We suppose that M is a proper totally umbilical screen CR-lightlike 
submanifold of M with KM(X,Y) ^ 0 for any X,Y € T(TM). By direct 
calculations we have 

(4.13) R(X, Y)J\Z - Ji R(X, Y)Z = -/(X, Y)J2Z - f3(X, Y)J3Z 
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for any X,Y,Z 6 F(TM), where Y) = dQ 12{X, Y) + (Q23AQ31)(X, Y) 

and 0(X, Y) = dQ3i(X, Y) + (Q12 A Q23KX, Y). Thus we have 

(4.14) - g ( R ( X , Y)X, Y) + g(R(X, Y)J\X, J{Y) = 0 

for X g r ( D o ) , Z = JiX E T(D0) and Y € T{D'). By using (2.18), (3.22) 
and (3.23) we have 

g(R(X, Y)J\X, JXY) = g(Hs, JiY){-g{WxY, JxX) - g(Y, V x J i X ) 

+ g(VYX, JiX) + g(X, Vy J iX ) } . 

Then from (2.7) we get 

g(R(X, Y)JiX, JiY) = g(Hs, J x Y ) { - g ( V x Y , JxX) - g(Y, V x J i X ) 

+ g(VYX,J1X)+g(X,VYJ1X)}. 

Since V is a metric connection we obtain g(R(X, Y)J\X, J\Y) = 0. Then, 
using (4.14) we have 

K M ( X , Y ) = g ( R ( X , Y ) X , Y ) = 0, 

which is a contradiction and the proof is complete. 

CONCLUDING REMARKS. We note that among QR-lightlike, screen QR-
lightlike and screen CR-lightlike submanifolds there exist no inclusion re-
lations, because a real lightlike hypersurface is a QR-lightlike submanifold 
(See: [10]), it is not a screen QR-lightlike and a screen CR-lightlike sub-
manifold. On the other hand, a screen real lightlike submanifold is a screen 
CR-lightlike submanifold, of course it is neither screen QR-lightlike nor QR-
lightlike. Finally, invariant lightlike submanifolds lie in the intersection of 
the screen CR-lightlike and screen QR-lightlike submanifold. 
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