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TRANSLATIVE COVERING OF A SQUARE
BY A SEQUENCE OF ARBITRARY-ORIENTED SQUARES

Abstract. Given a collection of squares in the plane whose side lengths are not
larger than 1 and whose total area is at least 3. Then the unit square can be covered by
translates of these squares.

1. Introduction

More than forty years ago Leo Moser posed the following question (see,
for instance, Problem LM 5 in [5]): “Can any set of rectangles of largest edge
1 and total area 3 be used to cover a unit square (No rotations, please)?”.

In the present paper we study such coverings of the unit square I by
squares. Let (S;) be a sequence of squares in the plane (each square has an
arbitrary specified orientation). We say that (S;) permits a covering of I if
there exist rigid motions o; such that I C |J0;S;. The covering is translative
if all the motions are translations. We say that squares S1, So, ... are packed
in a rectangle R if the squares are subsets of R and if they have pairwise
disjoint interiors.

Moon and Moser [4] presented a covering method which permits a trans-
lative covering of I by any sequence of squares whose total area is 3 in the
case when each square from the sequence has sides parallel to the sides of I.
In (3] it was shown that I can be covered by any sequence of squares whose
total area is not smaller than 2 (obviously, translations and rotations are
used for the covering). In this paper we show that any sequence of squares
of side lengths not greater than 1 whose total area is greater than or equal
to 3 permits a translative covering of I. Consequently, we give the positive
answer to the Moser’s problem in case of a covering by squares. The bound
of 3 cannot be reduced. The reason is that I cannot be translatively covered
by any three squares of side lengths smaller than 1 and with sides parallel
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to the sides of I. The reader can find further results concerning coverings
by convex bodies in [1] and [2].

2. Preliminary lemmas

By a x h we mean a rectangle such that one of its sides, of length a, is
parallel to the first coordinate axis and the other side has length h. Such
a rectangle is proper, h is called the height and a is called the width of this
rectangle. A trapezoid is proper if it is right and if its bases are parallel
to the first coordinate axis. Moreover, let [c1,c2] X [d1,d2] = {(z,y); a1 <
z < ¢g, di < y < dg}. There is no loss of generality in assuming that
I =[0,1] x [0,1]. The area of C is denoted by |C|.

In covering methods presented in Section 3 we will use for the covering
“large” proper rectangles or “large” proper trapezoids contained in squares
S51,59,.... The following two lemmas say how large proper rectangle and
how large proper trapezoid is contained in each square.

LEMMA 1. Every square of side length s contains a proper rectangle v/s% — h?
X h, for any 0 < h < s.

Proof. In Fig. 1 we have b > s and therefore a = Vb2 — h2 > /5?2 — h2. »

h b
a
S
a(s) .
Fig. 1.

Let S be a square and let T be a translation such that (0, 0) is one of the
vertices of 7S5, that each point of 75 has a non-negative second coordinate
and that no point (¢, 0) belongs to 75, for any ¢ < 0. Denote by v1, v2, v3, v4,
where v; = (0,0), the vertices of 7S taken counter-clockwise. Denote by
a(S), where 0° < a(S) < 90°, the angle between the segment viv2 and the
first coordinate axis (see Fig. 1).

LEMMA 2. Every square S of side length not greater than V2 contains a
proper rectangle P = a x h, where 3a < h < 2a, such that |P| = %|S| and
that h = 2%, where i € {0,1,2,...}. Moreover, if S does not contain % X %
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and if P = a % i—, where a > %, then S contains a proper trapezoid T O P
with bases a and a + %.

Proof. We can assume that a = a(S) < 45°. Denote by s the side length
of S.

Observe that if 0 < d < m, then S contains a rectangle ¢ x d,
where
1 c= s —dsina).
(1) pl )
Indeed, we have ¢ = =2 and w = dsina in Fig. 2. Obviously, if d =
“satsima then ¢ =d and ¢ x d is inscribed in S.

Fig. 2.

Put d equal to A = gr57%esss in (1). This implies that ¢ = 2A. It is
easy to check that

1 1
sina + 2cosa < sin (arctan 5) + 2cos (a.rctan 5) < V5.

Consequently, the area of 2A x A C S is not smaller than 2|S|. Moreover,
S D A x 2. Finally observe that there exists a non-negative integer ¢ such
that A’ < 27¢ < 2X\. Let h = 27" and let R be the proper rectangle of
maximum area and height h contained in S. Obviously, |R| > 2A% > 2|S|.
This implies that there exists a proper rectangle P = a x h C S with
|P| = 25|,

To prove the second part of Lemma 2 assume that P = a x d, where
d= % and a > %
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By |P| = ja = £|S| we have s® = 2a. Thus4s = 4‘/%a > /2. Moreover,

cosa + sm a < cos45° +sin45° < /2. Consequently, cosa+sina < 4s and
1 This implies that § D ¢ x 1, where c is descrlbed by (1).

4= cosa+sma
To finish the proof it is sufficient to show that v > a + 20 and that
c+t>a+ %, where v and ¢ are marked in Fig. 2 (we assume that d = %

in this figure). We have t = l tana. Thus

1
+ — - = — __> —a — -
¢ t N CosS & @ 20 8a @ 20>O

Observe that |S| < (Z sina + 5 cos a) , because S does not contain i— X

Thus s = 4/ ga < %sina + % cosa. A computation shows that

= 1 5 1cs > +1
v_sina \/8a g ") =9 20’

provided $ < a < 8(isina + fcosa)?. =

=

Assume that S D P = a X —, where |P| = 2|S|, and $ <a < % and
assume that S does not contain 3 X3 2. Observe that S contains the trapezoid
T D P described in Lemma 2, and that it contains a homothetic copy of
T with the ratio —1. These two proper trapezoids are said to be generated
by P.

The proof of Theorem will be divided into two parts depending on the size

of the three largest squares in the sequence. The following lemma implies,
that if in the sequence (S;) the squares S;, Sa, S3 are “large” and Y |S;| > 3,
then there exists a proper square @ such that )_..,|S;| > 3|Q| and I \ Q
can be covered by Si,S2,S3 (since Y., 1Si| > 3 — (|S1] + |S2| + |S5]) and
(2), it follows that > ., |Si| > 3 — (3 —3|Q|) = 3|Q)).
LEMMA 3. Assume that S1,5,53 are squares and that s1 > s > sg,
where s; denotes the side length of S; for i =1,2,3. Moreover, assume that
|S1] + |S2| + |S3| > 2.25 and that s3 > 0.25v/5. If I cannot be translatively
covered by S1, So and Ss3, then S1, S2 and Ss permit a translative covering
of a part of I such that the uncovered part of I is contained in a proper
square @ and

&) Q1 < 1= 3(15)| + 182l + 1S5,

Proof. Consider three cases.

Case 1, when s3 < 0.99.
By 5%+ 52+ 52 > 2.25, 51 < 1 and s3 < s2 we see that s3 > 0.625. Thus
s2 + 0.5v/2s3 > 1. Obviously, S3 contains a proper square of side length
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0.5\/533. By Lemma 1 we see that S (and S; as well) contains a rectangle
(1 - 0.5v/2s3) x by, where by = [s3 — (1 — 0.5\/533)2]%. The translations are
defined as follows:

0151 D [0.5v/2s3,1] X [1 — ba, 1], 6252 D [0,b2] x [0,1 — 0.5v/2s3],

0383 D [0,0.5v/2s3] x [1 — 0.5v/2s3, 1].

Consequently, we can take @ = [b2,1] X [0,1 — ba]. A computation shows
that (2) holds.

Case 2, when s > 0.99 and when at least one of S1,S2, S3 does not contain
any segment of length 1 parallel to the first coordinate axis.

Denote such a square by S,,,. There is no loss of generality in assuming
that am = a(Sy) < 45°. Denote by s the side length of S, and denote
by 1 and rq, where r1 > 79, the side lengths of the remaining two squares.
Obviously, s < cos ap,. By the proof of Lemma 2 we see that S, contains a
square of side length

s s
d= — > .
sinqy, +cosam ~ s+ 11— s2

Put b3 = 1/r§ — (1 — d)2. By Lemma 1 we see that each S;, for i € {1,2,3}
and 7 # m, contains b X (1 — d) as well as (1 — d) x bs. The translations
are defined so that 0,5, O [0,d] x [1 — d,1] and that the remaining two
squares cover ([0,b3] x [0,1—d])U([d,1] x [1 — b3, 1]). Consequently, we can
take @ = [bs, 1] x [0,1 — bs3]. A computation shows that (2) holds.

Case 3, when s3 > 0.99 and when each square from the set {S1,Ss,S3}
contains a segment of length 1 parallel to the first coordinate axis.

Subcase 3a, when at least one of the angles a1 = a(S1), az = a(S2),
a3 = a(S3) is between 21° and 69°.

Denote such an angle by o;. Without loss of generality we can assume
that 21° < oy < 45°. By Lemma 1 and by s; > 0.99, s2 > 0.99 we conclude
that each square from the set {51, S2, S3} contains a rectangle 0.5 x 0.85. It
is easy to see that S; contains a rectangle 1 x u, where

— .99 — 21°
u:sl .cosal>09 . cos > 0.15.
sin oy sin 21°

Consequently, I can be covered by Sy, S2 and Sj3.
Subcase 3b, when either ap < 21° or a, > 69° forn =1,2,3.
Denote by gy the smallest angle among the following:

ai, ag, as, 90° — a1, 90° — a2, 90° — as.
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Fig. 3.

Let k € {1,2,3} be an integer such that either 8y = ax or fp = 90° — a.
The side length of Sy is denoted by by. Denote by S; and S; the squares
from the set {S1,S52,53} that are not Sy. Put b = s; and by = s;. Let
8 = a; provided o; < 21°, and # = 90° — a; provided a; > 69°. Moreover,
let /1 = a; provided a; < 21°, and 81 = 90° — o provided a; > 69°.
Without loss of generality we can assume that 8 < ;. By the assumption
of Case 3 we see that bg > cos Gy, b > cos 8 and by > cos 3. We can assume
that Bp > 0°, 8 > 0° and B; > 0°, because a, = 0° for n € {1,2,3} implies
that s, = 1 and, consequently, that I can be covered by S,.

Observe that S O d x d, where d = —=22_— (as in Case 2). We can

. sin Bg+cos (o
assume that d < 1, because otherwise I can be covered by Si. Moreover,
it is easy to check that S; D (1 — d) x wj;, where w; = U%ﬂf’m and

that S; contains a proper trapezoid of height 1 — d and of bases of length

w; = = (1c0;1%sm/3 and 2 ﬁ (see Fig. 3; we have 8 = a; in the left-hand picture
d W W
d d
S [
Y i t 0
W 4
N b/cosp i

Fig. 4.
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b
and 3 = 90° — ¢; in the right-hand picture). Let z = ﬁ;l = b;?;ﬂ (see
Fig. 4, where 8 = «; in the left-hand picture and 8 = 90° — a; in the
right-hand picture).
If 2+ w; > 1, then I can be covered. Otherwise, it is possible to cover
by S1, 52,53 a part of I so that the uncovered part of I is contained in a
proper square Q of side length 1 — 2 —w; (see Fig. 4). A computation shows

that

b+ b+ b3 +3(1-2z—w;)?><3

provided cos By < bg < 1,cos 3 <b<1,cos6 <b1 <1, 0° <[ <P <
Br<21°andl1-z—w; >0. =

3. Two covering methods

Let S1,59,... be a sequence of squares of total area not smaller than 3,
and let 1 > 59 > 82 > ..., where s; denotes the side length of S;.

Now we present a preliminary covering method (the so-called p-method).

For each positive integer ¢ we determine the rectangle P; = a; X h; in the
following way. Denote by Pp,4(S;) the proper rectangle of maximum area
and height from the set {1, %, %, ...} that is contained in S;; if there are two
such rectangles (for example % X % and % x %), then we take as P, the one
with the largest height. By Lemma 2 we deduce that |Pmas(Si)| > 2(Si.
If the height of Pp,.(S;) equals either % or 1, then let P; = Ppaz(S;).
Otherwise, let P; = a; x h; be the rectangle contained in S; with the largest
possible height from the set {1,3,%,...} such that |P| = £|S;| and that
3@; < h; < 2a;. Obviously, |S;| < 2.5|P;| for each positive integer i.

Assume that P; and P, have height é and width greater than % Let
T; be a trapezoid generated by P; and let T; be a trapezoid generated by
P,. If it is possible to cover (a; + a, + 0.05) x % by T; and T,, then we
say that T; and T;, are of the same type. For example, trapezoids denoted
in the right-hand picture in Fig. 7 by the integers 1 and 3 are of the same
type, but trapezoids denoted by 1 and 2 are not of the same type.

We change the order of squares S; D P; in the sequence so that h; > hj+1
and that a; > a;4+1 provided h; = hijy;, fori =1,2,....

By the I — th h-layer, where I € {1,2,...,h7!} we mean [0,1] x
(I = 1)h,lh].

We place P in the first hi-layer so far to the left as it is possible, i.e., the
translation o is defined so that o1 P; is packed in I and that (0, 0) is one of
the vertices of o1P; (see Fig. 5; in Figures 5, 6, 7, 8 each rectangle o;P; is
denoted by the integer i, for short). Assume that ¢ > 1 and that Py,..., P,
have been placed. Denote by z;(l) the greatest number not larger than 1
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N
6 7 10
4 5 12
11
3 9
1

2 8
Fig. 5.

such that each point of the I-th h;-layer with the first coordinate not greater
than z;(l) is covered by a placed rectangle.

If it is possible to pack P; translatively in I, then denote by 7 the smallest
integer such that z;(j) + a; < 1 (i.e., the j-th layer is the possibly lowest
layer in which we can pack P;). We pack P; in the j-th layer so far to the
left as it is possible, i.e.,

(3) 0Py = [2i(j), zi(§) + as] X [(j — 1)hs, jhi]
(see oo Py, ...,07P; and ogPy in Fig. 5).

Otherwise, denote by j the smallest integer such that z;(j) < z;(l) for
each | € {1,... ,hi_l} (i-e., the j-th layer is the least filled one; if there is
a number of such equally filled layers, then we choose the possibly low-
est one). The translation o; is defined by condition (3) (see osPs and
o10P10, 011 P11, 012 P12 in Fig. 5).

Obviously, we always cover I by squares and o; is defined for S; O F;.
We stop the covering process immediately when I is covered.

A placed rectangle is called right if it contains a point (z,y) with z > 1.
If P is of the form a x h, then denote by PY a wvertical rectangle h x a; we
say also that P is horizontal.

Observe that all rectangles placed by the p-method have pairwise disjoint
interiors. If all rectangles placed by the p-method are contained in C; =
[0,1.2] x [0,1] and if I is not covered, then Y |S;| < 25> |P| <25-1.2=
3, which is a contradiction. Unfortunately, it is possible that some right
rectangles of height greater than or equal to % are not contained in Cj.

Assume that k € {0,...,4}. Moreover, assume that (S;) is a sequence
of squares chosen so that if we use the p-method for the covering of I, then
no right rectangle has height greater than %. By the tgx-method for covering
I by (S;) we mean the following method.
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If either k = 0 or k > 0 and there are at most 2k rectangles of height
% and of width greater than %, then first we use for the covering the p-
method as long as there is a point of C» = [0,3] x [0,1] not covered by
any placed rectangle. Otherwise, denote by F,, Py41,..., P4, all rectan-
gles of height 3. Obviously, v > 2k and a,4or > i. We find k pairs

Ty T, (i = 1,...,k) of trapezoids of the same type generated by rect-

angles Py, ..., Py or. Trapezoids Ty, Ty, can be used for the translative
covering of PP" = [an, + @m, + 0.05] x 0.25. From now on we take each
pair Pp;, Py, for i =1,...,k as a rectangle P**", and we use the p-method

for the covering as long as there is a point of Cs not covered by any placed
rectangle.

Figure 7 illustrates the case when there are 10 rectangles of width i and
of height greater than é in the sequence. By the t4-method we find four
pairs of trapezoids of the same type generated by rectangles Pj,..., Py. In
this figure trapezoids generated by P, and Ps, P, and Ps, Py and Ps, Py and
Py are of the same type. We take these four pairs as four “new” rectangles
and we place them by the p-method.

Let m be the smallest integer such that each point of C3 has been covered
by a placed rectangle preceding Py, (rectangles P**" included, of course).
The rectangle P, is called the boundary rectangle. Observe that h,, < ;},
because otherwise, if we use the p-method for the covering by (S;), then at
least one right rectangle has height greater than 41.

We change the position of some placed rectangles preceding P, (i.e., we
move them by translations), if necessary, so that the part of I not covered
by placed rectangles is a connected set, that placed rectangles have still
pairwise disjoint interiors and that C; is covered. The left-hand pictures
in Fig. 6 and Fig. 7 illustrate the p-method, and the right-hand pictures

A ’ A
13
;.
6 8 = 4 5 10
1’:
4 5 10 6 7
i i . 12 |13 |
1 i 1
) 1 3 9
¥4 1 34 1

Fig. 6.
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v

Fig. 7.

illustrate the t;-method and the t4-method, respectively. In Fig. 7 the part
of I not covered by four “new” rectangles is a connected set, and therefore
we do not change the position of these “new” rectangles. In Fig. 6 we place
rectangles P, ..., Pjo by the p-method (here m = 11) and we change the
position of placed rectangles, because I \ U£1 o;P; is not a connected set.

Denote by v; the largest number and by v, the smallest number such
that the uncovered part of I is contained in [2,1] x [v1,v2]. Each square S;
for i > m is placed as follows.

First consider the case when h,, = i and a,, > % (we say then that the
boundary rectangle P, is big).

If h; = %, then we use P = h; x a; O S; for the covering. Let p; =1
provided the point (1,1) is not covered by any placed rectangle preceding
F;. Otherwise, let p; denote the smallest number such that each point of
(2, 1]x [, 1] is covered by a placed rectangle preceding P; (vertical rectangles
included). We place S; so that o; PY = (3, 1] x [u; — ai, pa)-

In Fig. 6 we have m = 11, h,,, = ﬁ, am > %, and therefore we use for the
covering vertical rectangle Pf; (obviously, here p,, = vs).

If h; < é, then the translation o; is defined by condition (3), where j
is the smallest integer such that z;(j) < 1 (see P2, P13 and P4 in Fig. 6).
Let us remind that 2;(l) denotes the greatest number not larger than 1 such
that each point of the [-th h;-layer with the first coordinate not greater than
2i(l) is covered by a placed rectangle (vertical rectangles included).

Finally consider the case when either h,, < % or hy, = % and a, < %
(we say then that the boundary rectangle is small). The right-hand pictures
in Figures 6 and 7 illustrate the case when the boundary rectangle is big.
Fig. 8 illustrates the ¢;-method (here trapezoids generated by P> and P are
of the same type) when the boundary rectangle Py is small (hg = % and
ag < %)-
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L 14

3/4 78 98
Fig. 8.

If h; = } (obviously, a; < %), then the translation o; is defined by
condition (3), where j is the smallest integer such that z;(j) < 1 (see P, Py
and P; in Fig. 8).

If either h; < é or hy= % and there is a point of C3 = [0,%] x [0,1] not
covered by any placed rectangle preceding P; (vertical rectangles included),
then we move P; in the place described by the p-method. This means that
o; is defined by (3), where j is chosen in the following way. If there is an
integer | € {1,2,...,h{1} such that z;(l) + a; < 1, then j is the smallest
integer such that z;(7) + a; < 1 (see Py in Fig. 8). If 2;(I) + a; > 1 for each
& ) ) T h;l}, then j is the smallest integer such that z;(j) < 2;(l) for
each | € {1,2,...,!1;1} (see Py and P4 in Fig. 8).

Ifh; = é and if each point of Cj5 is covered by a placed rectangle, then we
use P! = % x a; O S; for the covering. Let A; = 0 provided the point (1,0)
is not covered by any placed rectangle preceding P;. Otherwise, denote by
A; the greatest number such that each point of [%, 1] x [0, A;] is covered by a
placed rectangle preceding P; (vertical rectangles included). The translation
o; is defined so that o; P = [g, 1] x [Ai, Ai + a;] (see Pi1, P19 and Py3 in Fig.
8, here A1y = 3, iz =4 +a12, iz = 3) .

4. Main result

THEOREM 1. The unit square can be translatively covered by any (finite or
infinite) sequence of squares of side lengths not greater than 1 whose total
area is not smaller than 3.

Proof. Let S1,52,... be a sequence of squares of side lengths not greater
than 1 whose total area is not smaller than 3. Without loss of generality we
can assume that s; > s > ..., where s; denotes the side length of S;.
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We can assume that there are at least three squares in the sequence. If
there is only one square, then |S;| > 3. Consequently, I can be covered
by 51, because we know by Lemma 1 that S; D 1 x 1. If there are only
two squares, then |Sy| + |S2| > 3. If s2 > 2, then §; D 1 x 1 and S
permits a covering of I. If s? < 2, then s2 > 1. By Lemma 1 we know
that Sy D1 x \/.'351 — 1 and that S5 D1 x \/sg — 1. It is easy to check that
V87 — 1+ +/s%2 — 1 > 1. Consequently, I can be covered by S; and S».

Part I. Assume that it is impossible to cover by 51,52 and Ss a part of I
so that the uncovered part of I is contained in a proper square ¢ and that
(2) holds.

Consider five cases depending on the size of the first square in the se-
quence. In all cases we present a covering method for a covering of I by
squares S1, So, . . ., and we show that if I is not covered by using this method,
then the sum of areas of squares is smaller than 3, which again is a contra-
diction.

Case 1, when h; < %.

We use the tp-method (obviously, the boundary rectangle is small).

Observe that each right rectangle of height % covers a point of C3 (see,
for example, Py in Fig. 8). Each rectangle of height % has width smaller
than %. Thus each placed horizontal rectangle of height % is contained in
Cy = [0,2]) x [0,1]. Also each placed rectangle of height smaller than }
is contained in Cjy (see, for example, Pi4 in Fig. 8). It is possible that a
placed vertical rectangle of height % covers points of I \ C3 covered earlier
by horizontal rectangles of height % (see P13 and Py or P13 and Pjg in Fig.
8), and it is possible that a placed rectangle of height smaller than % covers
points covered earlier by a vertical rectangle of height % (see P4 and Pi3
in Fig. 8). But the total area of all vertical rectangles of height % and the
parts of right rectangles lying outside I is smaller than % + % . % = % (by
a part of o, P; lying outside I we mean o;P; \ I). Consequently, if I is not
covered, then

3
Si| = 2. Bl <2514+ — 2.5-1.2=23.
Sisi=2s X1l <251+ ) <

Case 2, when hy = %.

We use the t4-method.

If the boundary rectangle P, is small, then all placed rectangles of height
% are contained in C;. Denote by £; the greatest number and by &> the
smallest number such that no point of the segment {(z,y); z = 1, & <
y < &} is covered by a placed rectangle of height % (if hy < i, then
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&1 =v1, & =v2). Let £ =& — &. If I is not covered, then (cf. Case 1)
3
| = 2. P, 2.5114+0.2(1 — — 25-1.2=3.
Sois1 =253 PRI <251+ 0201 - + fee] <

If the boundary rectangle P, is big, then we use for the covering four
pairs of trapezoids generated by rectangles of height % (see Fig. 7). Ob-
viously, the area of a part of Cy covered by four pairs of trapezoids gen-
erated by eight rectangles equals the area of these eight rectangles plus
0.05. Assume that I is not covered. Each placed horizontal rectangle of
height %, as well as each placed horizontal rectangle of height not greater
than 81" is contained in [0,1.25] x [0,1]. Moreover, placed horizontal rect-
angles have pairwise disjoint interiors. Consequently, > |S;| =2.5) |F| <

2.5(1.25 — 0.05) = 3.

Case 3, when hy = 1.

We can assume that ho < %, because otherwise I can be covered by 5y
and So. We use P} for the covering: we cover by P, and consequently by
S1, the second 3-layer (|S1| < 1, of course). The rectangles Py, Ps,... are
used for the further covering by the tg-method. If I is not covered, then
>8] <1+425-0.5-1.25 < 3.

Case 4, when hy = % and a; > 0.35.

Subcase 4a, when hy = % and az + a3 > 1.

Observe that a1 > ay > % This implies that S; permits a covering
of 0.5 x 0.5 and that S, and S35 permit a covering of 0.5 x 1. We have
|S1] + |S2| + |S3| > 2.25. The reason is that it is possible to cover a part of
I by 51,52 and S3 so that the uncovered part is contained in ¢ = 0.5 x 0.5.
Thus |S1| + | S2| + |Ss| < 2.25 implies |@| < 1 — £(]S1] + |S2| + |Ss]), which
again is a contradiction (see the assumption of Part I). By Lemma 3 and by
the assumption of Part I of the proof we conclude that s3 < 0.25v/5.

We cover [0,1] x [0.5,1] by Sz and S3 and we use the to-method for the
covering of [0,1] x [0,0.5] by Pi, Py, Ps,.... If I is not covered, then

D ISl <14 (0.25V5)2 +2.5-0.5-1.25 < 3.

Subcase 4b, when it is possible to cover 1 X 0.5 by the rectangles from the
set { Py, P3, P4, Ps} that have height ;.

First assume that hy = %, az + a3 <1 and ag + as + a4 > 1. We cover
the second i-layer by S2,S3,Ss. We show that |S| + |Ss| + |Ss] < 1.5.
Obviously, P; = Pmqz(S;) and, by Lemma 1, s? < a? + h? for i = 2,3,4. If
as > %, then
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|Sa|+|S3|+|S4| < a3+0.52+a3+0.52+a3+0.5% < 0.75+a3+2(1—ap)? < 1.5.

If ap < %, then |So| + |S3| + |S4] < 2 + 343 < 15.

Now assume that hs = % and as + a3 + a4 < 1. Obviously, as +as+ a4+
a5 > 1. We cover the second %-layer by Sa2,...,85. A computation shows
that [Sa| +--- + |S5| < 1.5.

For the covering of the first %—layer by the remaining rectangles we use
the tg-method.

An easy computation shows that a% —+—i < %al — % provided 0.35 < a; <
0.9. Moreover, |S;| <1< 2.5-0.5-0.9— & < 2.5|P1| — & provided a; > 0.9.
Thus

1

4 2.5|P| — —.
@ 81l < 2817 -

As a consequence, if I is not covered, then 3" |S;| < 1.5+2.5-0.5-1.25 - &
=3.

Subcase 4c, when it is impossible to cover 1 x 0.5 by the rectangles from
the set { Pz, P3, P4, Ps} that have height % This implies that hy < %.

First assume that he < %. We use the t3-method. If I is not covered,
then by (4) we deduce that

1
> I8l < 2.5(0.5-1.2540.5-1.2) — =3

Now assume that hy = % and az > 0.35. We use the tg-method. By
|S2| < 2.5|P2| — & we conclude that if I is not covered, then 3 |S;| <
25-1.25 - Z =3.

Finally assume that ho = % and ag < 0.35. If a; +as > 1, then we cover
by S1 and S, the second 1-layer (obviously, |Si| + |S2| < 1+ 0.35% + 0.5%)
and we use the tg-method for the covering of the first %-layer by P3, Py,. ...
If I is not covered, then

D 18] <140.35% +0.5% +2.5-0.5-1.25 < 3.

If a; +ag <1 and if hg =%,thenwecoverby%x% D5 andby%x% D S3
the fourth %-layer. We use Py, Py, Ps, ... for the covering by the ¢;-method
(obviously, a1 + a4 < 1 and hs < }). By (4) we deduce that if I is not
covered, then

1
> 18] < 2(0.35% + 0.5%) + 2.5[0.25 - (1.25 — 0.05) + 0.5 - 1.25] — 5 <3

If a1 +ao <1andif hg < %, then we use the t3-method. If I is not covered,
then 3 |S;| < 2.5[0.5- (1.25 — 0.05) + 0.5 - 1.25] — & < 3.



Translative covering of a square 695

Case 5, when hy; = % and a1 < 0.35.

Let n = 0 provided hg < %, and let n be the largest even integer such
that h, = % provided hy = %— Observe that squares S;, S;y1, where ¢ =
1,3,...,n — 1, permit a covering of a %—layer, because each such square
contains % X %.

If n = 8, then I can be covered by Sy, ...,Ss. Otherwise, consider three
possibilities.

Subcase 5a, when n > 2 and hpyy < % (i.e., when there is an even
number of rectangles of height —é— ).

We cover [0,1] x[1— %n, 1] by S1,...,Sn . The rectangles Py41, Poyo, ...
are used for the covering of [0,1] x [0,1 — {n] by the t4_g 5n-method. If I is
not covered, then

1
> 1Si| < n(0.35% +0.5%) + 2.5(1 — g 12<3.

Subcase 5b, whenn > 2 and hp 1 = %

The rectangles Py, Py, Ps are used for the covering of [0,a; + a2 + a3] X
[0.5,1]. Moreover, if n € {4,6}, then we cover the first 1-layer by S and
Ss. If n = 6, then we cover the second %—layer by Sg and S7. The rectangles

P,i2, Pyy3,... are used for the further covering by the t3_g 5,-method.
Assume that I is not covered. Let A\ = a1 + a2 + as.
If A>1, then

D ISi| < 1.5+ 3(0.35% 4 0.5%) < 3.

Assume that A < 1. Obviously, A > 0.75. If no vertical rectangle of width
1 has been used for the covering, then 3° |S;| < 2.5-1.2 = 3. Otherwise, let ¢
be the largest number such that each point of {(z,y); z=1, 1-{( <y < 1}
is covered by a placed vertical rectangle of width i. Obviously, ¢ > %

If % <(< %, then denote by [ the smallest integer such that each point
of [X, 1] x [§1, 1] is covered by a placed vertical rectangle of width 4. Observe
that some points of [}, 1] x [%(l -1), %l] can be covered by vertical rectangles
of width i as well as by rectangles of height not greater than -é—. The area
of the part of I covered by vertical rectangles of height %, as well as by
rectangles of height not greater than %, does not exceed (1 — A)(¢ — §)
provided ¢ < % and it does not exceed %(1 — A) provided ¢ > %.

A standard computation shows that

3
a2 +a2+a2<(A-05)240.252+0252 =22 -+ 5

Thus |Sl| + |SQ| + |S3| < A2 — A+ g
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Denote by £; the greatest number and by £ the smallest number such
that no point of the segment {(z,y); z =1, & < y < &} is covered either
by a placed horizontal rectangle of height % or by a placed vertical rectangle
of width 3. Let £ = & — &1.

If ¢ < 1, then

. 2_y,9 _ _ ol 1]
> ISi] < 1.5+ /\+8+2.5[O.25C+(1.25 A)(0.5—¢)+(1 /\)(( 8)_ <3.

If $ <( <3, then

Yoisil< 1.5+/\2—/\+-z-+2.5[0.25C+(1.25—,\)(0.5—C)+é(1—)\) <3.

If¢>1, then 3|8 <15+X2 - A+ 2 +25.05-0.25 < 3.

Subcase 5¢, when n = 0.

If either hg < % or hg = + and ag < 0.2, then we use the ty-method
and we argue as in Case 1 (the boundary rectangle is small). Assume that
hg = %1 and that ag > 0.2.

If there is a pair of trapezoids of the same type generated by rectangles
of height % and width greater than % such that this pair permits a covering
of 1 x %, then we cover [0,1] x [0.75, 1] by these trapezoids. The remaining
rectangles are used for the covering by the ¢g-method. If I is not covered,
then

> 18il < 2.5(0.25 4 0.75 - 1.25) < 3.

Assume that it is impossible to cover 1 x % by any pair of trapezoids of
the same type generated by rectangles of height % and width greater than %

First assume that ag > 0.75 —a1. The first three translations are defined
as follows:

o1 P = [0,0,1] X [0.5, 1], oo Py = [al,al + a2] X [0.75, 1],
o3P = [al,al + a3] X [0.5,0.75].

The remaining rectangles are used for the covering of I by the t2-method.
Assume that [ is not covered.

If no vertical rectangle of width % has been used for the covering, then
> 1Si] < 2.5-1.2 = 3. Otherwise, denote by ¢ the largest number such that
each point of {(z,y); £ =1, 1 —{ <y < 1} is covered by a placed vertical
rectangle of width %. Obviously, ¢ > 0.2. Moreover, 0.75 < a; + a3 < 0.85
and 0.75 < a; + a2 < 0.85.

If ¢ > 3, then

> 18] < 2.5[0.5(0.85 + 0.25) + 0.5 - 1.2] < 3.
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If ¢ < %, then we change the position of all squares ¢;5; for ¢ > m
(where P, is the boundary rectangle). We do not use any vertical rectangle
of width % for the covering. Let u be the greatest integer such that h, = %.

Obviously, @ + - -+ a0y =( < % We place P,,..., P, so that

OmPr U Uoy Py = [a1 + a2, a1 + a2+ am + -+ -+ ay] x [0.75,1].

The rectangles P, 1, Pyto,... (of height not greater than %) are used for

the further covering as in the f9-method when the boundary rectangle is
small (this means that if h; = %, then we use P; for the covering provided
there is a point of C3 not covered by any placed rectangle preceding P;, and
we use PP otherwise). Assume that I is not covered. If there is no right

2
rectangle of height % either in the first i——layer or in the second %—layer, then

> ISl < af +0.5°

0 [0'25(0'5 +0.5) +0.25(1 — a1) +0.5(1 ~ 0.05) + 0.75 - %] <3.

If there is a right rectangle of height % in the first %—layer (obviously, the
total area of rectangles used for the covering of this layer is smaller than
0.25(1.25 — 0.05)) and there is no right rectangle in the second 1-layer, then

> 18i| < a? +0.52

25 [0.25 +0.25(1 — a;) + 0.25(1 — 0.05) + 0.25 - 1.2 + 0.5 - 1%] <3.

If there is a right rectangle of height % in the second %—layer, then the total
area of rectangles used for the covering of the first two %-layers is smaller
than

1
0.25(1.25 — 0.05) + 0.25 [0.75 —0.05 + 5(0.75 - 0.05)] = 0.5625,
because each right rectangle of height % covers a point of Cy. Consequently,
3
> ISil < af +0.52+2.5 [0.25 +0.25(1 — a1) + 0.5625 + 0.25 - 1—6] <3.

Assume that a3 < 0.75 — a1 and that a; > 0.3. We use the t4-method.
Observe that a; + 2a3 < a; + 2(0.75 — ay) < 1.2. If I is not covered, then
Y |Si| <25-1.2=3.

Finally assume that a3 < 0.75 — a; and that a; < 0.3.

If ag > 0.46, then we use Ss, ..., Sg for the covering of the first %-layer:
we cover [0,0.96] x [0.5,1] by two pairs of trapezoids of the same type, and
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the remaining square that contains 0.46 x 0.25 is used for the covering of
[0.96,1] x [0.5,1]. It is possible, because we deduce by Lemma 2 that this
square contains a trapezoid of height 0.25 and of bases of length 0.46 and
0.51 parallel to the second coordinate axis and, consequently, it contains
0.04 x 0.5. The sum of areas of five squares used for the covering of the
second %—layer is smaller than 2.5(2-0.25-0.95 4+ 0.25 - 0.5) = 1.5. The
rectangles P;, Pr, P, ... are used for the covering of the uncovered part of
I by the to-method. If I is not covered, then

6

D IS+ > 18il < af +0.5% + 1.5+ 2.5[0.25 - 0.95 + 0.25(1.2 — a1)] < 3.

i=1 i>7
If ag < 0.46, then we place S; so that o1 P, = [0,a;] x [0.5,1] and use the
t4-method for the further covering with an additional condition: if hig = %
and ajp > 0.2, then one pair of trapezoids (from four ones) of the same
type is chosen from the trapezoids generated by P», P3 and Py. We have
ag < 0.75 — a1 (otherwise az > a4 > 0.75 — a1) and a4 < 0.475 (otherwise
az > ag > 0.475 and we can cover 1 x % by a pair of trapezoids generated by
P,, P3, Py). This implies that even if two pairs of “large” trapezoids of the
same type together with P; are used for covering the second %-layer, then
the total area of the corresponding five squares used for covering this layer
does not exceed

a? +0.5% +2.5-2-0.25(0.75 — a; + 0.46) < 1.5
provided a; > 0.275, and does not exceed
a? +0.52 +2.5-2-0.25(0.475 + 0.46) < 1.5

provided a; < 0.275. It is easy to check that if I is not covered, then
Z lSll < 3.

Part II. Assume that it is possible to cover translatively a part of I by
S1, 82, 53 so that the uncovered part is contained in a proper square 1 of
area smaller than

(151| +[Sa| +|S5]) < ZlSI

z>3
We cover a part of I in this way. By ) ,.4|Si| > 3|@Q1| we conclude that
there exists an integer z > 4 such that >, , |S;| > 3|Q1].
There are three possibilities:

(z) there exists an index j € {4, 5, 6} such that ; can be translatively
covered by Sy,...,S5;;
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(i%) it is possible to cover translatively a part of Q1 by S, S5, S so that
the uncovered part is contained in a proper square (o of area smaller than

|Q1|——(|S4|+|55|+|56| Z|S|,

(¢47) it is impossible to cover translatively a part of Q1 by Si, S5, S¢ so
that the uncovered part of (J; is contained in a proper square () and that

1
Q1 < 1Q1] = 5(Sal + 55| + IS6)-

In case (i1) we continue this covering process, i.e., we cover a part of
Q1 by S4,85,86. By >.7_,|Si| > 3|Q1] we conclude that there are two
possibilities:

(a) on a stage of this covering process I has been covered;

(b) there exists an integer 7 and a proper square () whose area does not
exceed $ 37 . |Si| such that the following two conditions are fulfilled:

(b1) I \ @ has been translatively covered by squares preceding S3,41;

(b2) it is impossible to cover translatively a part of @, by S3;+1, S3r+2,
S3r+3 so that the uncovered part of () is contained in a proper square @)
of area

Q1 < 1Qr] = 3 (1Ssrs1] + S5r-2] + 1S5

Observe that in case (b) we have z > 37 + 3. The reason is that if
z<37+3and |Q;| <3137 . . |Si| then arguing as at the beginning of
the proof of Theorem we see that @), can be translatively covered either by
S3r41 or by S3-11 and S3,40.

In case (b) let 7 be an affine transformation of E? such that 7(Q,) = I.
By Part I of the proof we conclude that 7(Q,) can be translatively covered
by T(S3741), T (S3r+2),----

Consequently, I can be translatively covered by S1,52,.... =

References

[1] G. Fejes T6th and W. Kuperberg, Packing and Covering with Conver Sets, in:
Handbook of Convex Geometry, Vol. B, North-Holland, Amsterdam, 1993, 799-860.

[2] H. Groemer, Covering and packing by sequences of convex bodies, in: Discrete Ge-
ometry and Convexity, Ann. New York Acad. Sci., Vol. 440 (1985), 262-278.

[3] J. Januszewski, Covering the unit square by squares, Beitr. Algebra Geom. 43 (2)
(2002), 411-422.

[4] J. W. Moon and L. Moser, Some packing and covering theorems, Colloq. Math. 17
(1967), 103-110.



700 J. Januszewski

[5] W. Moser and J. Pach, Research problems in discrete geometry, Privately published
collection of problems, 1994.

INSTITUTE OF MATHEMATICS AND PHYSICS
UNIVERSITY OF TECHNOLOGY AND NATURAL SCIENCES
Ul. Kaliskiego 7

85-796 BYDGOSZCZ, POLAND

E-mail: januszew@utp.edu.pl

Received June 23, 2006.



