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TRANSLATIVE COVERING OF A SQUARE 
BY A SEQUENCE OF ARBITRARY-ORIENTED SQUARES 

Abstract. Given a collection of squares in the plane whose side lengths are not 
larger than 1 and whose total area is at least 3. Then the unit square can be covered by 
translates of these squares. 

1. Introduction 
More than forty years ago Leo Moser posed the following question (see, 

for instance, Problem LM 5 in [5] ) : "Can any set of rectangles of largest edge 

1 and total area 3 be used to cover a unit square (No rotations, please)?". 

In the present paper we study such coverings of the unit square I by 
squares. Let (Si) be a sequence of squares in the plane (each square has an 
arbitrary specified orientation). We say that (Si) permits a covering of I if 
there exist rigid motions ai such that I C (J <rlSi. The covering is translative 

if all the motions are translations. We say that squares Si, ¿2,... are packed 

in a rectangle R if the squares are subsets of R and if they have pairwise 
disjoint interiors. 

Moon and Moser [4] presented a covering method which permits a trans-
lative covering of I by any sequence of squares whose total area is 3 in the 
case when each square from the sequence has sides parallel to the sides of I . 
In [3] it was shown that I can be covered by any sequence of squares whose 
total area is not smaller than 2 (obviously, translations and rotations are 
used for the covering). In this paper we show that any sequence of squares 

of side lengths not greater than 1 whose total area is greater than or equal 

to 3 permits a translative covering of I. Consequently, we give the positive 
answer to the Moser's problem in case of a covering by squares. The bound 
of 3 cannot be reduced. The reason is that I cannot be translatively covered 
by any three squares of side lengths smaller than 1 and with sides parallel 
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to the sides of I . The reader can find further results concerning coverings 
by convex bodies in [1] and [2]. 

2. Preliminary lemmas 
By a x h we mean a rectangle such that one of its sides, of length a, is 

parallel to the first coordinate axis and the other side has length h. Such 
a rectangle is proper, h is called the height and a is called the width of this 
rectangle. A trapezoid is proper if it is right and if its bases are parallel 
to the first coordinate axis. Moreover, let [ci,c2] x [d\, ¿2} = {(x, y); c\ < 
x < c2, di < y < d2}. There is no loss of generality in assuming that 
I = [0,1] x [0,1]. The area of C is denoted by \C\. 

In covering methods presented in Section 3 we will use for the covering 
"large" proper rectangles or "large" proper trapezoids contained in squares 
SI, S2, • • • • The following two lemmas say how large proper rectangle and 
how large proper trapezoid is contained in each square. 

LEMMA 1. Every square of side length s contains a proper rectangle \Js2 — h2 

x h, for any 0 < h < s. 

Proof . In Fig. 1 we have b > s and therefore a = Vb2 — h? > y/ s2 — h2. • 

Let S be a square and let r be a translation such that (0,0) is one of the 
vertices of TS, that each point of TS has a non-negative second coordinate 
and that no point (c, 0) belongs to TS, for any c < 0. Denote by VI, V2, v$, V4, 
where VI = (0,0), the vertices of TS taken counter-clockwise. Denote by 
A(S), where 0° < A(S) < 90°, the angle between the segment V1V2 and the 
first coordinate axis (see Fig. 1). 

LEMMA 2. Every square S of side length not greater than \/2 contains a 
proper rectangle P = a x h, where \a < h < 2a, such that |P| = ||5| and 
that h = 2~l, where i € { 0 , 1 , 2 , . . . }. Moreover, if S does not contain | x ^ 

> 
Fig. 1. 
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and if P = a x where a > then S contains a proper trapezoid T D P 
with bases a and a + ^ . 

P r o o f . We can assume that a = a(S) < 45°. Denote by s the side length 
of S. 

Observe that if 0 < d < f -^—, then S contains a rectangle c x d, — cos a+sin a ' ° ' 
where 

(1) c = (s — dsma). 
cos a 

Indeed, we have c = ^ ^ and w = ci sin a in Fig. 2. Obviously, if d = 
, then c = d and c x dis inscribed in S. 

Put d equal to A = s in Q+
s
2 cos a in (1). This implies that c = 2A. It is 

easy to check that 

sin a + 2 cos a < sin ^arctan - ^ + 2 cos ^arctan < \/5. 

Consequently, the area of 2A x A C S is not smaller than §151. Moreover, 
S D A x 2A. Finally observe that there exists a non-negative integer i such 
that A < 2~l < 2A. Let h = 2~l and let R be the proper rectangle of 
maximum area and height h contained in S. Obviously, \R\ > 2A2 > 115|. 
This implies that there exists a proper rectangle P = a x h C S with 
|P | = §|S|. 

To prove the second part of Lemma 2 assume that P — a x d, where 
d = ^ and a > ^. 
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By |P| = \a = §|S| we have s2 = § a. Thus 4s = 4 > \/2. Moreover, 

cos a + sin a < cos 45° +sin 45° < y/2. Consequently, cos a + sin a < 4s and 
\ — cosa+sina' This implies that S D c x where c is described by (1). 

To finish the proof it is sufficient to show that v > a + ^ and that 
c + 1 > a + where v and t are marked in Fig. 2 (we assume that d — \ 
in this figure). We have t = \ t ana . Thus 

1 1 /5~ 1 /5~ 1 
c + t — a — — = \ -a — a — — >\ -a — a — — > 0. 

20 cos a V 8 20 ~ V 8 20 

Observe that |5| < sin a + ^ cos a ) 2 , because S does not contain | x 

Thus s = \J~\a < \ sin a + ^ cos a . A computation shows that 

1 / /5~ 1 \ 1 
v = — \ —a —- cos a > a + —, 

sin a \ V 8 4 J ~ 20 

provided ^ < a < s ina + ^ cosa)2 . • 

Assume that S D P = a x | , where |P| = flS1!, and ^ < a < \ and 
assume that S does not contain Observe that S contains the trapezoid 
T d P described in Lemma 2, and that it contains a homothetic copy of 
T with the ratio —1. These two proper trapezoids are said to be generated 
by P. 

The proof of Theorem will be divided into two parts depending on the size 
of the three largest squares in the sequence. The following lemma implies, 
that if in the sequence (Si) the squares S'i, S2, S3 are "large" and Ŷ , |<Si| > 3, 
then there exists a proper square Q such that > 3|Q| and I \ Q 
can be covered by Si, S2, S3 (since Y2i>4 N > 3 - ( | 5 i | + |52| + |53|) and 
(2), it follows that ¿ > 4 |Si| > 3 - (3 - 3|Q|) = 3|Q|). 

Lemma 3. Assume that Si,S2,S3 are squares and that si > S2 > S3, 
where Si denotes the side length of Si for i = 1,2,3. Moreover, assume that 
|5i| + IS2I + IS3I > 2.25 and that s3 > 0.25-\/5. If I cannot be translatively 
covered by Si, S2 and S3, then Si, S2 and S3 permit a translative covering 
of a part of I such that the uncovered part of I is contained in a proper 
square Q and 

(2) |Q|<1-|(|Si| + |S2| + |Ss|). 

Proof . Consider three cases. 

Case 1, when S3 < 0 .99 . 

By s2 + s2 + s| > 2.25, si < 1 and s3 < S2 we see that s\ > 0.625. Thus 
S2 + 0.5\/2s3 > 1. Obviously, S3 contains a proper square of side length 
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0.5\/2s3. By Lemma 1 we see that S2 (and Si as well) contains a rectangle 
(1 — 0.5\/2s3) x where ¿>2 = [s% — (1 — 0.5\/2s3)2] 2. The translations are 
defined as follows: 

(7!Si D [0.5^53, 1] x [1 - 62,1], V2S2 D [0,62] x [0,1 - 0 . 5 ^ 3 ] , 

a3S3 D [0,0.5%/2s3] x [1 - 0.5^2*3, !]• 

Consequently, we can take Q = [62,1] x [0,1 — 62]. A computation shows 
that (2) holds. 

Case 2, when s3 > 0.99 and when at least one of Si, S2, S3 does not contain 
any segment of length 1 parallel to the first coordinate axis. 

Denote such a square by Sm. There is no loss of generality in assuming 
that am — a(Sm) < 45°. Denote by s the side length of Sm and denote 
by r\ and 7*2, where r\ > r2, the side lengths of the remaining two squares. 
Obviously, s < cos am. By the proof of Lemma 2 we see that Sm contains a 
square of side length 

, s s 
d = > , sm am + cos am s + V1 - s2 

Put 63 = \Jr\ — (1 — d)2. By Lemma 1 we see that each Sl, for i € {1 ,2 ,3} 
and i ^ m, contains 63 x (1 — d) as well as (1 — d) x 63. The translations 
are defined so that amSm D [0, d] x [1 — d, 1] and that the remaining two 
squares cover ([0,63] x [0,1 — d]) U ([d, 1] x [1 — 63,1]). Consequently, we can 
take Q = [63,1] x [0,1 — 63]. A computation shows that (2) holds. 

Case 3, when S3 > 0.99 and when each square from the set {S i , S2, S3} 
contains a segment of length 1 parallel to the first coordinate axis. 

Subcase 3a, when at least one of the angles ai = a(Si), «2 = &(S2), 
as = a(S3) is between 21° and 69°. 

Denote such an angle by aj. Without loss of generality we can assume 
that 21° < a t < 45°. By Lemma 1 and by si > 0.99, S2 > 0.99 we conclude 
that each square from the set {Si , S2, S3} contains a rectangle 0.5 x 0.85. It 
is easy to see that Si contains a rectangle l x u , where 

si - cos ai 0.99 - cos 21° 
u = — . > — > 0.15. 

sinai sin 21° 
Consequently, I can be covered by Si, S2 and S3. 

Subcase 3b, when either an < 21° or an > 69° for n — 1,2,3. 
Denote by ¡3q the smallest angle among the following: 

a i , a2, <23, 90° — ai , 90° - c*2, 90° - <23. 
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Let k e {1,2,3} be an integer such that either (3q = a^ or /3o = 90° — a^. 
The side length of Sk is denoted by bo- Denote by Si and Sj the squares 
from the set {Si , 52, 53} that are not Sk- Put b = Si and b\ = Sj. Let 
¡3 = oti provided ol-l < 21°, and (3 = 90° — provided oti > 69°. Moreover, 
let (3\ = ctj provided a3 < 21°, and (3\ = 90° — ctj provided otj > 69°. 
Without loss of generality we can assume that ¡3 < (3\. By the assumption 
of Case 3 we see that bo > cos [3q , b > cos ¡3 and 61 > cos (3\. We can assume 
that /?o > 0°, ¡3 > 0° and /3i > 0°, because an = 0° for n G {1,2,3} implies 
that sn = 1 and, consequently, that I can be covered by Sn. 

Observe that Sk D d x d, where d = Sin/g0+COS|g0 (as in Case 2). We can 
assume that d < 1, because otherwise / can be covered by Sk- Moreover, 
it is easy to check that Sj D (1 — d) x Wj, where Wj = , and 
that Si contains a proper trapezoid of height 1 — d and of bases of length 
Wi = M y and (see Fig. 3; we have (3 = cti in the left-hand picture 

t 

d 

( d -i 

l A 

> 

r 

4 ' 
6/cosp 

Fig. 4. 

% 
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—2—— 1 
and ¡3 = 90° - a{ in the right-hand picture). Let z = c°sa^ = ^ ^ (see 
Fig. 4, where ¡3 = a.i in the left-hand picture and ¡3 = 90° — Qj in the 
right-hand picture). 

If z + Wj > 1, then I can be covered. Otherwise, it is possible to cover 
by S\,S2, S3 a part of I so that the uncovered part of I is contained in a 
proper square Q of side length 1 — z — w3 (see Fig. 4). A computation shows 
that 

&o + b2 + b\ + 3(1 - z - Wj)2 < 3 
provided cos(30 < bQ < 1, cos/3 < b < 1, c o s < bx < 1, 0° < /30 < ¡3 < 
fa < 21° and 1 - 2 - wj > 0. • 

3. Two covering methods 
Let 1S1, S2, • • • be a sequence of squares of total area not smaller than 3, 

and let 1 > si > «2 > • • •, where Si denotes the side length of Si. 
Now we present a preliminary covering method (the so-called j>method). 
For each positive integer i we determine the rectangle Pi = â  x hi in the 

following way. Denote by Pmax(Sl) the proper rectangle of maximum area 
and height from the set {1, . . . } that is contained in Sf, if there are two 
such rectangles (for example \ x \ and | x then we take as Pmax the one 
with the largest height. By Lemma 2 we deduce that \Pmax(Si)\ > §|Si|-
If the height of Pmax(Si) equals either 2 or 1, then let Pi — Pmax{Si). 
Otherwise, let Pi = ai x hi be the rectangle contained in Si with the largest 
possible height from the set { 1 , ^ , ^ , . . . } such that \P{\ = ||5j| and that 
^Oj < hi < 2 O b v i o u s l y , |«Ŝ| < 2.5|Pj| for each positive integer i. 

Assume that Pj and Pn have height \ and width greater than Let 
Tj be a trapezoid generated by Pj and let Tn be a trapezoid generated by 
Pn. If it is possible to cover (a,j + an + 0.05) x | by Tj and Tn, then we 
say that Tj and Tn are of the same type. For example, trapezoids denoted 
in the right-hand picture in Fig. 7 by the integers 1 and 3 are of the same 
type, but trapezoids denoted by 1 and 2 are not of the same type. 

We change the order of squares Si D Pi in the sequence so that hi > hl+\ 
and that ai > al+\ provided hi = /ij+i, for i = 1 , 2 , . . . . 

By the I — th h-layer, where I £ { 1 , 2 , . . . , h^1} we mean [0,1] x 
[(I - 1 )h,lh]. 

We place P\ in the first /ii-layer so far to the left as it is possible, i.e., the 
translation o\ is defined so that o\P\ is packed in I and that (0,0) is one of 
the vertices of o\P\ (see Fig. 5; in Figures 5, 6, 7, 8 each rectangle otPi is 
denoted by the integer i, for short). Assume that i > 1 and that P i , . . . , Pt-\ 
have been placed. Denote by Zi(l) the greatest number not larger than 1 
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A 

10 
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11 

Fig. 5. 

such that each point of the Z-th /¿¿-layer with the first coordinate not greater 
than Zi(l) is covered by a placed rectangle. 

If it is possible to pack Pi translatively in I, then denote by j the smallest 
integer such that Zi(j) + a* < 1 (i.e., the j- th layer is the possibly lowest 
layer in which we can pack Pi). We pack Pi in the j- th layer so far to the 
left as it is possible, i.e., 

(3) ViPi = [z i ( j ) ,Z i ( j ) + ai] x [(j - l)hi,jhi] 

(see <J2P2, • • •, C7P7 and agPg in Fig. 5). 
Otherwise, denote by j the smallest integer such that Zi(j) < Zi(l) for 

each l G { l , . . . , / ^ 1 } (i.e., the j-th layer is the least filled one; if there is 
a number of such equally filled layers, then we choose the possibly low-
est one). The translation <jj is defined by condition (3) (see a^Ps and 
(TioPio,<riiPii,<Ti2Pi2 in Fig. 5). 

Obviously, we always cover I by squares and (Tj is defined for Si D Pi. 
We stop the covering process immediately when I is covered. 

A placed rectangle is called right if it contains a point (x ,y ) with x > 1. 
If P is of the form a x h, then denote by Pv a vertical rectangle h x a; we 
say also that P is horizontal. 

Observe that all rectangles placed by the p-method have pairwise disjoint 
interiors. If all rectangles placed by the p-method are contained in C\ = 
[0,1.2] x [0,1] and if I is not covered, then £ |S<| < 2.5 £ \Pi\ < 2.5 • 1.2 = 
3, which is a contradiction. Unfortunately, it is possible that some right 
rectangles of height greater than or equal to g are not contained in C\. 

Assume that k € {0 , . . . ,4}. Moreover, assume that (Si) is a sequence 
of squares chosen so that if we use the p-method for the covering of I , then 
no right rectangle has height greater than | . By the ¿^-method for covering 
I by (Si) we mean the following method. 
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If either k = 0 or k > 0 and there are at most 2k rectangles of height 
\ and of width greater than then first we use for the covering the p-
method as long as there is a point of C2 = [0, | ] x [0,1] not covered by 
any placed rectangle. Otherwise, denote by Pv, Pv+i,. • •, Pv+v all rectan-
gles of height Obviously, v > 2k and av+2k > We find k pairs 
Tni,Tmi (i = 1 ,...,k) of trapezoids of the same type generated by rect-
angles Pv,..., Pv+2k- Trapezoids Tni,Tmi can be used for the translative 
covering of ppew = [an. + arm + 0-05] x 0.25. Prom now on we take each 
pair PTH, PnH for i = 1 , . . . , k as a rectangle P™ew, and we use the p-method 
for the covering as long as there is a point of C2 not covered by any placed 
rectangle. 

Figure 7 illustrates the case when there are 10 rectangles of width j and 
of height greater than ^ in the sequence. By the ¿4-method we find four 
pairs of trapezoids of the same type generated by rectangles Pi,..., Pg. In 
this figure trapezoids generated by P\ and P3, P2 and Pq, P4 and P5, P7 and 
Pg are of the same type. We take these four pairs as four "new" rectangles 
and we place them by the p-method. 

Let m be the smallest integer such that each point of C2 has been covered 
by a placed rectangle preceding P m (rectangles pp e w included, of course). 
The rectangle Pm is called the boundary rectangle. Observe that hm < 
because otherwise, if we use the p-method for the covering by (Si), then at 
least one right rectangle has height greater than 

We change the position of some placed rectangles preceding Pm (i.e., we 
move them by translations), if necessary, so that the part of I not covered 
by placed rectangles is a connected set, that placed rectangles have still 
pairwise disjoint interiors and that C2 is covered. The left-hand pictures 
in Fig. 6 and Fig. 7 illustrate the p-method, and the right-hand pictures 

I K 
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1 
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1 

3 9 
— > 

3/4 1 
Fig. 6. 



690 J. Januszewski 

illustrate the ¿o-method and the ^-method, respectively. In Fig. 7 the part 
of I not covered by four "new" rectangles is a connected set, and therefore 
we do not change the position of these "new" rectangles. In Fig. 6 we place 
rectangles P i , . . . , Pio by the p-method (here m = 11) and we change the 
position of placed rectangles, because I \ Ui£i is n ° t a connected set. 

Denote by V\ the largest number and by V2 the smallest number such 
that the uncovered part of I is contained in 1] x [ui, U2]. Each square Si 
for i > m is placed as follows. 

First consider the case when hm = \ and am > g (we say then that the 
boundary rectangle Pm is big). 

If hi = then we use P? = hi x aj D Si for the covering. Let = 1 
provided the point (1,1) is not covered by any placed rectangle preceding 
Pi. Otherwise, let fii denote the smallest number such that each point of 
[|, 1] x [fii, 1] is covered by a placed rectangle preceding Pi (vertical rectangles 
included). We place S{ so that ¿TjP" = 1] x [/Xj — au /ij]. 

In Fig. 6 we have m = 11, hm = am> and therefore we use for the 
covering vertical rectangle (obviously, here ¿tm = «2). 

If hi < then the translation ai is defined by condition (3), where j 

is the smallest integer such that Zi( j ) < 1 (see P12, Pi3 and P14 in Fig. 6). 
Let us remind that Zi(l) denotes the greatest number not larger than 1 such 
that each point of the l-th hi-layer with the first coordinate not greater than 
Zi(l) is covered by a placed rectangle (vertical rectangles included). 

Finally consider the case when either hm < | or hm = | and am < ^ 

(we say then that the boundary rectangle is smalt). The right-hand pictures 
in Figures 6 and 7 illustrate the case when the boundary rectangle is big. 
Fig. 8 illustrates the ii-method (here trapezoids generated by P2 and P3 are 
of the same type) when the boundary rectangle Pq is small (ha = | and 

«6 < I)-
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If hi = | (obviously, a» < ¿), then the translation ol is defined by 
condition (3), where j is the smallest integer such that Zi(j) < 1 (see P&, P7 
and P8 in Fig. 8). 

If either hi < | or hi — g and there is a point of C3 = [0, |] x [0,1] not 
covered by any placed rectangle preceding Pi (vertical rectangles included), 
then we move Pi in the place described by the p-method. This means that 
<Ji is defined by (3), where j is chosen in the following way. If there is an 
integer I G {1 ,2 , . . . , /i"1 } such that Zj(Z) + ai < 1, then j is the smallest 
integer such that Zi ( j ) + â  < 1 (see P\o in Fig. 8). If Zi(l) + aj > 1 for each 
I e {1 ,2 , . , . ,/ i r 1 } , then j is the smallest integer such that Zi(j) < Zi(l) for 
each I 6 {1 ,2 , . . . , hj1} (see Pg and P14 in Fig. 8). 

If hi = | and if each point of C3 is covered by a placed rectangle, then we 
use P? = % xaiD Si for the covering. Let Aj = 0 provided the point (1,0) 
is not covered by any placed rectangle preceding Pi. Otherwise, denote by 
Ai the greatest number such that each point of 1] x [0, Aj] is covered by a 
placed rectangle preceding Pi (vertical rectangles included). The translation 
&i is defined so that <7jPV = 1] x [Aj, Ai + aj] (see P11, P12 and P13 in Fig. 
8, here An = X12 = \ + a12, A i 3 = |) . 

4. Main result 

THEOREM 1. The unit square can be translatively covered by any (finite or 

infinite) sequence of squares of side lengths not greater than 1 whose total 

area is not smaller than 3. 

P r o o f . Let Si, S2, • • • be a sequence of squares of side lengths not greater 
than 1 whose total area is not smaller than 3. Without loss of generality we 
can assume that s\ > > •.., where Sj denotes the side length of S{. 
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We can assume that there are at least three squares in the sequence. If 
there is only one square, then |Si| > 3. Consequently, I can be covered 
by Si, because we know by Lemma 1 that Si D l x l . If there are only 
two squares, then |Si | + |S2 | > 3. If sj > 2, then Si D 1 x 1 and Si 
permits a covering of / . If s^ < 2, then s^ > 1- By Lemma 1 we know 
that Si D 1 x y / s \ — 1 and that S2 D 1 x y/s^ — 1- It is easy to check that 
\Js\ — 1 + \js\ — 1 > 1. Consequently, I can be covered by S\ and S^-

Part I. Assume that it is impossible to cover by Si, S2 and S3 a part of I 
so that the uncovered part of I is contained in a proper square Q and that 
(2) holds. 

Consider five cases depending on the size of the first square in the se-
quence. In all cases we present a covering method for a covering of I by 
squares Si, S 2 , . . . , and we show that if 7 is not covered by using this method, 
then the sum of areas of squares is smaller than 3, which again is a contra-
diction. 

Case 1, when hi < 
We use the io-method (obviously, the boundary rectangle is small). 
Observe that each right rectangle of height | covers a point of C3 (see, 

for example, Pg in Fig. 8). Each rectangle of height | has width smaller 
than \ . Thus each placed horizontal rectangle of height | is contained in 
C4 = [0, | ] x [0,1]. Also each placed rectangle of height smaller than | 
is contained in C\ (see, for example, Pu in Fig. 8). It is possible that a 
placed vertical rectangle of height | covers points of I \ C3 covered earlier 
by horizontal rectangles of height | (see P12 and Pg or P13 and Pio in Fig. 
8), and it is possible that a placed rectangle of height smaller than | covers 
points covered earlier by a vertical rectangle of height | (see P u and P13 
in Fig. 8). But the total area of all vertical rectangles of height | and the 
parts of right rectangles lying outside I is smaller than | + \ • | = ^ (by 
a part of 0{Pi lying outside I we mean OiP{ \ I). Consequently, if I is not 
covered, then 

Y^ |$| = 2 . 5 ^ \Pi\ < 2 . 5 + < 2 - 5 " L 2 = 3-

Case 2, when hi = \. 
We use the i4-method. 
If the boundary rectangle Pm is small, then all placed rectangles of height 

\ are contained in Ci. Denote by £1 the greatest number and by £2 the 
smallest number such that no point of the segment {(x,y); x = 1, £1 < 
V < £2} is covered by a placed rectangle of height \ (if hm < then 
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£1 = £2 = V2). Let £ = £2 — If I is not covered, then (cf. Case 1) 

^ 1 5 ^ = 2 . 5 ^ 1 ^ 1 < 2 . 5 

If the boundary rectangle Pm is big, then we use for the covering four 
pairs of trapezoids generated by rectangles of height | (see Fig. 7). Ob-
viously, the area of a part of C\ covered by four pairs of trapezoids gen-
erated by eight rectangles equals the area of these eight rectangles plus 
0.05. Assume that I is not covered. Each placed horizontal rectangle of 
height j , as well as each placed horizontal rectangle of height not greater 
than g, is contained in [0,1.25] x [0,1]. Moreover, placed horizontal rect-
angles have pairwise disjoint interiors. Consequently, = 2.5 X] l^ l < 
2 .5(1 .25-0 .05) = 3. 

Case 3, when hi = 1. 
We can assume that h2 < because otherwise I can be covered by Si 

and S 2 . We use f f for the covering: we cover by P{\ and consequently by 
Si, the second ^-layer (|Si| < 1, of course). The rectangles P2,P3, • • • are 
used for the further covering by the io-method. If I is not covered, then 
£ | S i | < 1 + 2.5 0.5 -1.25 < 3 . 

Case 4, when hi = ^ and ai > 0 . 3 5 . 

Subcase 4a, when hz = \ and + 03 > 1. 
Observe that 01 > 02 > This implies that Si permits a covering 

of 0.5 x 0.5 and that S2 and S3 permit a covering of 0.5 x 1. We have 
|Si| + |¿21 + I ¿>31 — 2.25. The reason is that it is possible to cover a part of 
I by Si , S2 and S3 so that the uncovered part is contained in Q = 0.5 x 0.5. 
Thus |Si| + |S2| + |S31 < 2.25 implies \Q\ < 1 - ¿(|Si| + |S2| + |S3|), which 
again is a contradiction (see the assumption of Part I). By Lemma 3 and by 
the assumption of Part I of the proof we conclude that S3 < 0.25\/5. 

We cover [0,1] x [0.5,1] by S2 and S3 and we use the io-method for the 
covering of [0,1] x [0,0.5] by Pi, P4, P5,.... If I is not covered, then 

N < 1 + (0.25\/5)2 + 2.5 • 0.5 • 1.25 < 3. 

Subcase 4b, when it is possible to cover 1 x 0.5 by the rectangles from the 
set {P2, P3, P4, P*,} that have height 

First assume that /14 = a2 + 03 < 1 and <22 + <23 + a4 > 1- We cover 
the second ¿-layer by S 2 , S 3 , S 4 . We show that |S2| + |S3| + |S4| < 1.5. 
Obviously, Pi = Pmax(Si) and, by Lemma 1, sf < af + tif for ¿ = 2,3,4. If 
d2 > then 

1 + 0 . 2 ( 1 - 0 + ^ < 2 . 5 1.2 = 3. 
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|S2| + |S3| + |S4| < a ^ + 0 . 5 2 + a | + 0 . 5 2 + a l + 0 . 5 2 < 0 . 7 5 + a l + 2 ( l - a 2 ) 2 < 1.5. 

If a2 < i , then |S2| + |S3| + |S4| < f + 3 a \ < 1.5. 
Now assume that = ^ and <22 + a3 + a4 < 1- Obviously, a2 + 03 + a4 + 

a.5 > 1. We cover the second 5-layer by S 2 , . •., S5. A computation shows 
that |S2| + --- + |S5| < 1-5. 

For the covering of the first ^-layer by the remaining rectangles we use 
the io -method. 

An easy computation shows that a2 + 1 < |ai — ^ provided 0.35 < a\ < 
0.9. Moreover, \Si\ < 1 < 2 . 5 - 0 . 5 - 0 . 9 - ^ < 2.51Pi| - ^ provided ai > 0.9. 
Thus 

(4) |Si| < 2 . 5 1 ^ 1 - ^ . 

As a consequence, if I is not covered, then ^ l^l < 1-5 + 2.5 • 0.5 • 1.25 — ^ 
= 3. 

Subcase 4C, when it is impossible to cover 1 x 0.5 by the rectangles from 
the set {P2, P3, P4, P5} that have height This implies that /15 < 

First assume that h2 < We use the f2-method. If I is not covered, 
then by (4) we deduce that 

V \Si\ < 2.5(0.5 • 1.25 + 0.5 • 1.2) - ^ = 3. 
z — ' 1 6 

Now assume that = \ and a2 > 0.35. We use the io-method. By 
|S2| < 2.5|P2| — Yg we conclude that if I is not covered, then X^l^l < 
2 .5-1 .25 - ^ = 3. 

Finally assume that h2 — \ and a2 < 0.35. If ai + a2 > 1, then we cover 
by Si and S2 the second f l a y e r (obviously, \Si \ + \S2\ < 1 + 0.352 + 0.52) 
and we use the io_method for the covering of the first ^-layer by P3, P 4 , . . . . 
If I is not covered, then 

Y ^ N < 1 + 0.352 + 0.52 + 2.5 • 0.5 • 1.25 < 3. 

If ai + a2 < 1 and if = ^, then we cover by | x \ D S2 and by | x ^ D S3 

the fourth layer. We use Pi , P 4 , P 5 , . . . for the covering by the ii-method 
(obviously, ai + a4 < 1 and /15 < By (4) we deduce that if I is not 
covered, then 

|Si| < 2(0.352 + 0.52) + 2.5[0.25 • (1.25 - 0.05) + 0.5 • 1.25] - < 3. 

If ai + a2 < 1 and if hz < then we use the i2-method. If I is not covered, 
then £ |$| < 2.5[0.5 • (1.25 - 0.05) + 0.5 • 1.25] - ^ < 3. 
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Case 5, when hi = ^ and ai < 0.35. 
Let n = 0 provided /i2 < and let n be the largest even integer such 

that hn — \ provided h<i = Observe that squares Si, Sj+1, where i — 
1 , 3 , . . . , n — 1, permit a covering of a layer, because each such square 
contains ^ x 

If n = 8, then I can be covered by S i , . . . , Otherwise, consider three 
possibilities. 

Subcase 5a, when n > 2 and hn+1 < | (i.e., when there is an even 
number of rectangles of height 

We cover [0,1] x [1 — gn, 1] by Si,..., Sn . The rectangles Pn+i, Pn+2-> • • • 
are used for the covering of [0,1] x [0,1 — |n] by the i4-o.5n-method. If I is 
not covered, then 

V \ S i \ < n(0.352 + 0.52) + 2.5(1 - Jn ) • 1.2 < 3. ' 8 
Subcase 5b, when n >2 and hn+\ = 
The rectangles Pi, P2, P3 are used for the covering of [0, ai + ¿12 + 03] x 

[0.5,1]. Moreover, if n 6 {4,6}, then we cover the first |-layer by S4 and 
S5. If n — 6, then we cover the second |-layer by S$ and S7. The rectangles 
Pn+2, Pn+3,... are used for the further covering by the i3_o.5n-method. 

Assume that I is not covered. Let A = ai + 02 + 03. 
If A > 1, then 

|#| < 1.5 + 3(0.352 + 0.52) < 3. 

Assume that A < 1. Obviously, A > 0.75. If no vertical rectangle of width 
| has been used for the covering, then Y! I îl < 2.5-1.2 = 3. Otherwise, let C 
be the largest number such that each point of {(x,y); x = 1, 1 — £ < y < 1} 
is covered by a placed vertical rectangle of width |. Obviously, C > 5 • 

If g < £ < then denote by I the smallest integer such that each point 
of [A, 1] x 1] is covered by a placed vertical rectangle of width Observe 
that some points of [A, 1] x [|(Z — 1), |/] can be covered by vertical rectangles 
of width | as well as by rectangles of height not greater than |. The area 
of the part of I covered by vertical rectangles of height as well as by 
rectangles of height not greater than does not exceed (1 - A)(C -
provided C < 1 a n d it does not exceed |(1 — A) provided £ > 

A standard computation shows that 

a\ + a\ + a23 < (A - 0.5)2 + 0.252 + 0.252 = A2 - A + 

Thus |Si| + |S2| + |S3| < A 2 - A + |. 
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Denote by £1 the greatest number and by £2 the smallest number such 
that no point of the segment {(x, y); x = 1, < y < £2} is covered either 
by a placed horizontal rectangle of height \ or by a placed vertical rectangle 
of width Let £ = £2 ~ £1. 

If C < 3, then 

< 1.5+A2—A+^+2.5 

If I < C < I then 

< 1.5 + A2 — A + jj + 2.5 

0.25C+(1.25-A)(0.5-C)+(1-A)( C - g 

0.25C + (1.25 - A)(0.5 - C) + ^ (1 - A) 8 

< 3. 

< 3. 

If C > 5, then £ \Si\ < 1.5 + A2 - A + I + 2.5 • 0.5 • 0.25 < 3. 
Subcase 5c, when n = 0 . 
If either hs < ^ or hs = \ and as < 0.2, then we use the io-method 

and we argue as in Case 1 (the boundary rectangle is small). Assume that 
hs = \ and that ag > 0.2. 

If there is a pair of trapezoids of the same type generated by rectangles 
of height | and width greater than ^ such that this pair permits a covering 
of 1 x 1, then we cover [0,1] x [0.75,1] by these trapezoids. The remaining 
rectangles are used for the covering by the io-method. If I is not covered, 
then 

Y^ I $ | < 2.5(0.25 + 0.75 • 1.25) < 3. 

Assume that it is impossible to cover 1 x | by any pair of trapezoids of 
the same type generated by rectangles of height | and width greater than | . 

First assume that «3 > 0.75 — ai . The first three translations are defined 
as follows: 

ctiPi = [0,a\] x [0.5,1], cr2P2 = [ai .ai +02] x [0.75,1], 

V3P3 = [«1,01 + 03] x [0.5,0.75]. 
The remaining rectangles are used for the covering of I by the ^-method. 
Assume that I is not covered. 

If no vertical rectangle of width | has been used for the covering, then 
|5j| < 2.5 • 1.2 = 3. Otherwise, denote by ( the largest number such that 

each point of {(x,y); x = 1, 1 — £ < y < 1} is covered by a placed vertical 
rectangle of width Obviously, ( > 0.2. Moreover, 0.75 < a j + 03 < 0.85 
and 0.75 <ax + a2< 0.85. 

If C > then 

|Si| < 2.5[0.5(0.85 + 0.25) + 0.5 • 1.2] < 3. 
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If C < then we change the position of all squares otSi for i > m 

(where Pm is the boundary rectangle). We do not use any vertical rectangle 
of width ^ for the covering. Let u be the greatest integer such that hu = \. 
Obviously, am + • • • + au — Ç < We place Pm,... ,PU so that 

&mPm ' U • • • U auPu = [ai + a2, ai + 02 + am H H au] x [0.75,1]. 

The rectangles Pu+i, Pu+2, • • • (of height not greater than are used for 
the further covering as in the ^-method when the boundary rectangle is 
small (this means that if h{ = then we use Pi for the covering provided 
there is a point of C3 not covered by any placed rectangle preceding Pi, and 
we use Pf otherwise). Assume that I is not covered. If there is no right 
rectangle of height \ either in the first layer or in the second layer, then 

J2\Si\< 4 + 0.52 

+ 2.5 0.25(0.5 + 0.5) + 0.25(1 - <u) + 0.5(1 - 0.05) + 0.75 • — < 3. 

If there is a right rectangle of height | in the first |-layer (obviously, the 
total area of rectangles used for the covering of this layer is smaller than 
0.25(1.25 — 0.05)) and there is no right rectangle in the second ^-layer, then 

J2\Si \ < a ? + 0.52 

+ 2.5 0.25 + 0.25(1 - ai) + 0.25(1 - 0.05) + 0.25 • 1.2 + 0.5 
16 

< 3. 

If there is a right rectangle of height | in the second |-layer, then the total 
area of rectangles used for the covering of the first two ^-layers is smaller 
than 

0.25(1.25-0.05) + 0.25 0 .75 -0 .05 + - ( 0 . 7 5 - 0 . 0 5 ) = 0.5625, 

because each right rectangle of height \ covers a point of C2. Consequently, 

< af + 0.52 + 2.5 0.25 + 0.25(1 - ai) + 0.5625 + 0.25 • — 
16 

< 3. 

Assume that <23 < 0.75 — a\ and that a\ > 0.3. We use the ^-method. 
Observe that ai + < ai + 2(0.75 — ai) < 1.2. If I is not covered, then 

< 2.5-1.2 = 3. 
Finally assume that 03 < 0.75 — a\ and that ai < 0.3. 
If a,Q > 0.46, then we use S2, • • •, Sq for the covering of the first ^-layer: 

we cover [0,0.96] x [0.5,1] by two pairs of trapezoids of the same type, and 
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the remaining square that contains 0.46 x 0.25 is used for the covering of 
[0.96,1] x [0.5,1]. It is possible, because we deduce by Lemma 2 that this 
square contains a trapezoid of height 0.25 and of bases of length 0.46 and 
0.51 parallel to the second coordinate axis and, consequently, it contains 
0.04 x 0.5. The sum of areas of five squares used for the covering of the 
second f l a y e r is smaller than 2.5(2 • 0.25 • 0.95 + 0.25 • 0.5) = 1.5. The 
rectangles Pi , P7, Pg,... are used for the covering of the uncovered part of 
I by the ^-method. If I is not covered, then 

6 

+ < a i + ° - 5 2 + 1 5 + 2.5[0.25 • 0.95 + 0.25(1.2 - 01)] < 3. 
i=1 i> 7 

If ae < 0.46, then we place S\ so that (J\P\ = [0, ai] x [0.5,1] and use the 
¿4-method for the further covering with an additional condition: if h\Q = | 
and aio > 0.2, then one pair of trapezoids (from four ones) of the same 
type is chosen from the trapezoids generated by P2, P3 and P4. We have 
04 < 0.75 — a\ (otherwise 03 > <14 > 0.75 — ai) and 04 < 0.475 (otherwise 
0-2 > «3 > 0.475 and we can cover 1 x \ by a pair of trapezoids generated by 
P2, -P3, P4). This implies tha t even if two pairs of "large" trapezoids of the 
same type together with Pi are used for covering the second ^-layer, then 
the total area of the corresponding five squares used for covering this layer 
does not exceed 

a\ + 0.52 + 2.5 • 2 • 0.25(0.75 - ai + 0.46) < 1.5 

provided a\ > 0.275, and does not exceed 

a\ + 0.52 + 2.5 • 2 • 0.25(0.475 + 0.46) < 1.5 

provided a\ < 0.275. It is easy to check that if I is not covered, then 
E N < 3 . 

Part II. Assume that it is possible to cover translatively a part of I by 
Si, S2, S3 so that the uncovered part is contained in a proper square Q\ of 
area smaller than 

i> 3 

We cover a part of I in this way. By E i > 3 1*̂ 1 > 3 |Qi | we conclude that 
there exists an integer z > 4 such that E i=4 1^1 > 3|Qi |. 

There are three possibilities: 
(i) there exists an index j e {4, 5, 6} such that Q1 can be translatively 

covered by ¿>4,..., Sj; 
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(ii) it is possible to cover translatively a part of Q\ by S4, S5, SQ SO that 
the uncovered part is contained in a proper square Q2 of area smaller than 

I Q i l - ^ l + ISsl + ISeD^^ISil; 
i=7 

(Hi) it is impossible to cover translatively a part of Q1 by S4, S5, SQ so 
that the uncovered part of QI is contained in a proper square Q and that 

| Q | < | Q I | - ^ ( | S 4 | + |S5| + |S6|). 

In case (ii) we continue this covering process, i.e., we cover a part of 
Q1 by S4,S5,S6. By 1^1 > 3|Qi | we conclude that there are two 
possibilities: 

(a) on a stage of this covering process I has been covered; 
(b) there exists an integer r and a proper square QT whose area does not 

exceed ^ 3r+i 1^1 such that the following two conditions are fulfilled: 
(61) I\Qt has been translatively covered by squares preceding S3T+1; 
(b2) it is impossible to cover translatively a part of Qr by <S'3T+I, 53T+2, 

S3T+3 so that the uncovered part of QT is contained in a proper square Q 
of area 

\Q\ < \Qr\ - ^(|S3r+l| + | 5 3 r + 2 | + |S3r+3|). 

Observe that in case (b) we have z > 3T + 3. The reason is that if 
z < 3r + 3 and \QT\ < ^ YH=Zt+I 1^1' then arguing as at the beginning of 
the proof of Theorem we see that QT can be translatively covered either by 
S W i or by S3T+1 a n d S3T+2. 

In case (b) let T be an affine transformation of E2 such that T(QT) = I. 
By Part I of the proof we conclude that T(QT) can be translatively covered 
b y T ( S 3 T + i ) , T ( S 3 T + 2 ) , . . . . 

Consequently, I can be translatively covered by Si , S'2, • 
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