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FIXED POINT THEOREMS FOR SET
AND SINGLE VALUED MAPS WITHOUT
CONTINUITY AND COMPATIBILITY

Abstract. The new concept of weak commutativity of type (KB) is used to prove
some fixed point theorems for set and single-valued mappings. We show that continuity
of any mapping is not necessary for the existence of common fixed point. We also show
that completeness of the whole space can be replaced by a weaker condition.

1. Introduction

Sessa [15] introduced the concept of weakly commuting maps. Jungck
[4] defined the notion of compatible maps in order to generalize the concept
of weak commutativity and showed that weakly commuting mappings are
compatible but the converse is not true. Jungck and Rhoades [5], [6] defined
S-compatibility and weak compatibility between a set valued mapping and
a single-valued mapping and generalized the weak commutativity defined
in (3].

Fixed point theorems for set valued and single-valued mappings provide
technique for soling variety of applied problems in mathematical sciences
and engineering. (e.g. Krzyska and Kubiaczyk [8], Sessa and Khan [16]).

Number of these theorems are very useful but their hypothesis are very
difficult to satisfy as they require continuity and compatibility of involved
mappings. There are so many functions which are not continuous but have
a fixed point. For example the function f defined on R by

flz)=0, z <0, fz)y=1, z>0.
This function f is not continuous at 0 but has 0 as a fixed point.
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Another example is the Dirichlet function defined on R by

f(z) =1 if z is rational,

f(z) =0 if z is irrational.

The Dirichlet function is not continuous at any point but has 1 as a fixed
point.

These observations motivated several authors of the field to prove fixed
point theorems for noncompatible, discontinuous mappings.

Pant [9]-[12] initiated the study of noncompatible maps and introduced
pointwise R-weak commutativity of mappings in [9]. He also showed that
pointwise R-weak commutativity is a necessary, hence minimal condition for
the existence of a common fixed point of contractive type maps [10].

Pathak, Cho and Kang [13] introduced the concept of R- weakly com-
muting mappings of type A and showed that they are not compatible.

Recently, I. Kubiaczyk and Bhavana Deshpande [7] extended the concept
of R- weakly commutativity of type A for single-valued mappings to set
valued mappings and introduced weak commutativity of type (KB).

In this paper, we prove some common fixed point theorems by using
concept of weak commutativity of type (KB). We show that continuity of
any mapping is not necessary for the existence of common fixed point. We
also show that completeness of the whole space can be replaced by a weaker

condition. We improve and generalize the results of Tas, Telki and Fisher
[17], Fisher [2] and Rashwan and Ahmed [14].

2. Preliminaries
In the sequel (X, d) denotes a metric space and B(X) is the set of all non
empty bounded subsets of X. As in [1], [3] we define
0(A, B) = sup{d(a,b) :a € A, b € B},
D(A, B) = inf{d(a,b) : a € A, b€ B},
H(A,B)=inf{r >0: A, D B, B, D A},

for all A, B in B(X), where

A, ={z € X : d(z,a) < r for some a € A},
B, = {y € X :d(y,b) < r for some b € B}.
If A = {a} for some a € A, we denote é(a, B), D(a,B) and H(a, B) for

8(A, B), D(A, B) and H(A, B), respectively. Also, if B = {b} and A = {a},
one can deduce that 6(A4, B) = D(A, B) = H(A, B) = d(a,b).
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It follows immediately from the definition of §(A, B) that
8(A,B) =46(B,A) >0,6(A,B)<(A,C)+46(C,B)
0(A,B)=0 iff A= B ={a}, (4, A) =diam A,

for all A, B,C € B(X).

DEFINITION 2.1 ([3]). A sequence {A,} of nonempty subsets of X is said to
be convergent to a subset A of X if

(i) Each point a in A is the limit of a sequence {a,}, where a,, is in A,
for alln € N.

(ii) For arbitrary € > 0, there exists an integer m such that A, C A, for
n > m, where Ac = {z € X : Ja € A, a depending on z and d(z,a) < €}.
A is said to be the limit of the sequence {A,}.

LeMmMA 2.1 ([3]). If {An} and {Bgn} are sequences in B(X) converging to
A and B in B(X), respectively, then the sequence {6(An, Bn)} converges to
d(A, B).

LEMMA 2.2 ([3]). Let {An} be a sequence in B(X) and y be a point in X
such that 6(An,y) — 0. Then the sequence {A,} converges to the set {y}
in B(X).

DEFINITION 2.2 ([3]). The mappings F : X — B(X) and f: X — X are
said to be weakly commuting if fFz € B(X) and
§(Ffz, fFz) < max{é(fz, Fz),diam fFz} forall z € X.

Note that if F' is single-valued mapping then the set {fFz} consists of
a single point. Therefore, diam fFx = 0 for all z € X and above inequality
reduces to the well known condition given by Sessa [15]; that is

d(Ffz, fFz) < d(fz,Fzr) forallzin X.

Two commuting mappings F' and f are weakly commuting but the con-
verse is not true as shown in [3].

DEFINITION 2.3 ([5]). The mappings F : X — B(X) and f : X — X are
d-compatible if lim, o0 6(F fzn, fF ) = 0 whenever {z,} is a sequence in
X such that fFz, € B(X), Fz, — {t}, fz, — t for some t in X.

DEFINITION 2.4 ([9]). The mappings f,g: X — X will be called R-weakly
commuting, provided there exists some positive real number R such that
d(fgz,9fz) < Rd(fz, gx)

for each z in X. f and g will be called R-weakly commuting at a point z if
d(fgz,gfx) < Rd(fz,gz) for some R > 0.
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DEFINITION 2.5 ([13]). The mappings f,g: X — X are said to be R-weakly
commuting of type (Ay) if there exists a positive real number R such that

d(fgz,g9x) < Rd(fz,gz) for allx € X.

DEFINITION 2.6 ([13]). The mappings f,g : X — X are said to be R-weakly
commuting of type (Ag) if there exists a positive real number R such that

d(gfz, ffz) < Rd(fz,gx) forallz € X.

REMARK 2.1 ({13]). (i) Compatible mappings are R-weakly commuting
mappings of type (Ay) or type (Ay) but converse is not true.

(ii) R-weakly commuting mappings are not necessarily R-weakly com-
muting of type (Ay) or R-weakly commuting of type (Ag).

DEFINITION 2.7 ([7]). The mappings f : X — X and F : X — B(X) are
said to be weakly commuting of type (KB) at x if there exists some positive
real number R such that

0(ffz,Ffxr) < R(fz, Fx).

Here f and F are weakly commuting of type (KB) on X if above inequal-
ity holds for all z € X. If f is single-valued self mapping of X the definition
of weak commutativity of type (KB) reduces to Definition 2.6.

ExAMPLE 2.1. Let X = [1,15] and d be the usual metric on X. Define
f:X—>Xand F: X - B(X) by

T if 1 <z <10,
fo=

&2 if 10 <z < 15.

[1,z] if 1<z <3,
Fz =< [3,z] if 3 <z <10,
3,251 if10<z <15

Let 2, =10+ 1,n=1,2,.... Then
lim fr, =3 and lim Fz, = {3}.
n—0o0

Also fFz, € B(X) and §(F fzn, fFz,) = 6([3,3 + £], 13,3+ 5]) — 0 as
n — 0o. Therefore the pair {F, f} is §-compatible.

On the other hand if we take z = 2 then ffz = 2, Ffz = [1,2] and
clearly f and F are weakly commuting of type (KB) at z = 2.

EXAMPLE 2.2. Let X = [1,00) and d be the usual metric on X. Define
f: X —=Xand F: X — B(X) by f(z) =2z and Fz = [1,2z — 1] for
all z € X. Then ffx = 4z, Ffx = [1,4z — 1] and for R > 3 we can see
that 6(ffz,Ffx) < RS(fz,Fz) for all z € X. Thus f and F are weakly
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commuting of type (KB) on X but there exists no sequence {z,} in X such
that condition of compatibility is satisfied.

3. Main results

THEOREM 3.1. Let f,g: X — X and F,G : X — B(X) be mappings such
that
(1) F(X) < g(X), G(X) € f(X),
(2) & (Fz,Gy) < cymax{d*(fz,gy),6%(fz, Fz),8*(9y, Gy)}
+ comax{é(fz, Fz).D(fz,Gy), D(g9y, Fz).0(gy, Gy)}
+ c3D(fz,Gy).D(gy, Fx)
for all z,y € X where c1+2ca <1, coa+c3<1, ¢, ¢, c3 >0,
(3) one of f(X) or g(X) is complete,
(4) the pairs {F, f} and {G, g} are weakly commuting of type (KB) at coin-
cidence points in X.

Then there ezists a unique fized point z in X such that {z} = {fz} =
{92} = Fz = G=.

Proof. Let 2y € X be an arbitrary point in X. By (1) we choose a point
z1 in X such that gx1 € Fxg = Z; and for this point x; there exists a point
z9 in X such that fxo € Gx1 = Z3 and so on continuing in this manner we
can define a sequence {z,} as follows:

9Tont1 € Fxon = Zon,  fTony2 € GTony1 = Zopy1 forn=0,1,2,...
Let V,, = 8(Zy, Zp41) for n =0,1,2,... By (2) we have
V2, = 6*(Zon, Zon+1) = 6*(FTon, GTont1)
< ¢y max{d*(fz2n, 9T2n+1), 0> (fTon, FT2n), 82 (9%2n+1, GT2n+1) }
+ co max{d(fxon, Fron).D(fzon, GTon+1),

D(g9zan+1, Fxan).0(9%2n41, GZ2n41) } +3D(fr2n, GT2n11)-D(9T2n+1, FTon)

< cymax{Vg,_; V&} + c2Von—1(Van—1 + Van).
If Vo, > Vo,_1 then we have

Vin < (c1 4 2¢2)Va, < Vi,
since ¢1 + 2co < 1, which is a contradiction. Thus Vs, < hV2,_1, where
h = y/c1+2c3 < 1. Similarly we have V3,41 < hVa, and so
Van = 6(Zan, Zont+1) = §(FTan, GTons1) < -+ < B*™6(Fx9, G1)

forn=1,2,... Let z, be an arbitrary point in Z, forn =0,1,2,.... Thus
we have
d(zna Zn+1) < 6(ZnaZn+1) <. S hn(S(F:L'(),G.’L'l).
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Since h < 1, therefore the sequence {z,} is a Cauchy sequence in X and
hence any subsequence thereof is a Cauchy sequence in X. Suppose that
g(X) is complete. Since

gTont1 € Fxop =2y, forn=0,1,2,...
then
d(gz2m+1, 9T2n+1) < 6(Zom, Zon) < €

for m,n > ng, np = 1,2,3,... Therefore {gzon+1} is Cauchy and hence
9Tont+1 — 2z = gv € g(X) for v € X. But fxo, € Gxan—1 = Zop—1 S0 wWe
have

d(fzan, gTon+1) < 8(Z2n-1, Zon) = Von—1 — 0.
Consequently, frs, — z. Moreover we have for n =1,2,3,...
(5(F$2n, Z) S 5(F932na f-TZn) + é(fx2n, Z),

Therefore §( Fxap, z) — 0. Similarly §(Gzan—1,2) — 0.
By (2) for n =1,2,3,... we have

62(Fzan, Gv)
< e1 max{d*(fx2q, gv), 8(f2an, F22n),6° (gv, Gv)}
+ co max{6(fxaon, Fran).D(fx2n, Gv), D(gv, Fz2,).6(gv, Gv)}
+ c3D(fxon, Gv).D(gv, Fxay)
< ¢y max{d? (fzan, gv), 62(fTan, F2n), 62(gv, Gv)}
+ co max{d(fxaon, Fropn).0(fron, Gv),8(gv, Fxaen).0(gv, Gv)}
+ ¢36(fxzon, Gv).0(gv, Fap),
and since §(fzon, Gv) — 6(z, Gv) when fzo, — 2z we get as n — 00
62(2,Gv) < ¢16%(2, Gw),
since ¢1 < 1, we see that Gv = {2} = {gv}.
But G(X) C f(X), there exists u € X such that {fu} = Gv = {gv}
= {z}. Now if Fu # Gv, §(Fu,Gv) # 0 so by (2), we have
82(Fu, Gv) < ¢; max{d?(fu, gv), 6%(fu, Fu),5*(gv, Gv)}
+ co max{é(fu, Fu).D(fu,Gv), D(gv, Fu).0(gv, Gv)}
+ c3D(fu, Gv).D(gv, Fu)
< ¢; max{d?(fu, gv), 6*(fu, Fu), 6%(gv, Gv)}
+ co max{6(fu, Fu).6( fu, Gv), 8(gv, Fu).6(gv, Gv)}
+ ¢c36(fu, Gv).6(gv, Fu).
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So we have §2(Fu, Gv) < ¢16%(Fu,Gv) and since ¢; < 1, we can see that

Fu = {fu} = {gv} = Go = {2},
Since Fu = {fu} and the pair {F, f} is weakly commuting of type (KB) at
coincidence points in X we obtain 6(f fu, F fu) < Ré(fu, Fu), which gives
{fz} =F=z.

Again since Gv = {gv} and the pair {G, g} is weakly commuting of type
(KB) at coincidence points in X we obtain 6(ggv, Ggv) < Ré(gv, Gv), which
gives {gz} = Gz. By (2), we have

62(Fz,2) < 6%(Fz,Gv)
< ¢ max{d?(fz, gv), 6(f2, Fz), 6%(gv, Gv)}
+ comax{é(fz, Fz).D(fz,Gv), D(gv, Fz).6(gv,Gv)}
+ e3D(fz,Gv).D(gv, Fz)
< ¢y max{d*(fz, gv), 6*(fz, Fz),6*(gv, Gv)}
+ comax{é(fz, Fz).0(fz,Gv), 6(gv, Fz).6(gv,Gv)}
+ ¢c36(f 2, Gv).0(gv, Fz)
< (c1 4 3)6%(Fz,2).
Since ¢; + ¢3 < 1, it follows that Fz = {z}. Consequently, we have {z} =
Fz = {fz}. Similarly {2} = Gz = {gz}. Therefore we have {z} = {fz} =
{92} = Fz = Gz.

Finally, we prove that z is unique. If not let w be another common fixed
point such that z # w and {w} = {fw} = {gw} = Fw = Gw. By (2), we
have

d?(z,w) < 6*(Fz, Gw)
< c1 max{d*(fz, gw), 8*(fz, Fz), 6*(qw, Gw)}
+ comax{6(fz, Fz).D(fz, Gw), D(gw, Fz).6(gw, Gw)}
+ c3D(fz,Gw).D(gw, Fz)
< (1 + €3)d%(z, w).
Since ¢; + ¢2 < 1. Then z = w. This completes the proof.
REMARK 3.1. Theorem 3.1, improves and generalizes the result of Rash-
wan and Ahmad [14] in the sense that J- compatibility is relaxed by weak

commutativity of type (KB), continuity of any mapping is not required and
completeness of the whole space X is replaced by completeness of f(X) or

9(X).

If F and G are single-valued mappings in Theorem 3.1, then we get the
following:
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COROLLARY 3.2. Let f,g,F,G : X — X be mappings satisfying the condi-
tion (1), (3), (4) and
(5) d*(Fz,Gy) < c1 max{d’(fz, gy), d*(fz, Fz),d*(gy, Gy)}

+ comax{d(fz, Fz).d(fz, Gy), d(gy, Fz).d(gy, Gy)}

+ esd(fz, Gy).d(gy, Fz)

for all z,y € X whereci +2c2<1,c2+c¢c3<1, ¢1,c2,c3 > 0.
Then f,g, F and G have a unique common fixed point in X.

REMARK 3.2. Corollary 3.2, improves and generalizes the result of Tas,
Telki and Fisher [17].

If we put ¢; = ¢ = 0 in Theorem 3.1, we obtain the following;:
COROLLARY 3.3. Let f,g: X — X and F,G : X — B(X) be mappings
satisfying the conditions (1), (3), (4) and the following:

(6) 8*(Fz,Gy) < c1 max{d*(fz, gy),6*(fz, Fz),6*(gy, Gy)}

for all z,y € X wherec; > 0.

Then there ezists a unique fized point z in X such that {z} = {fz} =
{92} = Fz = G=.

REMARK 3.3. Corollary 3.3 improves and generalizes the result of Fisher
[2].

If we put F'=G and f = ¢ in Theorem 3.1 then we get the following:
COROLLARY 3.4. Let f: X — X and F : X — B(X) be mappings such that
(1) F(X)C f(X),

(8) 6*(Fz,Fy) < crmax{d’(fz, fy),6*(fz, Fz),8*(fy, Fy)}
+ comax{é(fz, Fz).D(fz, Fy), D(fy, Fz).5(fy, Fy)}
+ e3D(fz, Fy).D(fy, Fx)
forallxz,y € X whereci +2co <1, c0+c3< 1, c1,¢c2,c3 > 0,
(9)  f(X) is complete,
(10) the pair {F, f} is weakly commuting of type (KB) at coincidence points
m X.
Then there exists a unique fized point z in X such that {z} = {fz} = Fz.

For a set valued map F' : X — B(X) (respectively a single-valued map
f: X — X), F* (respectively f*) will denote the set of fixed points of F
(respectively f).

THEOREM 3.5. Let f,g: X — X and F,G : X — B(X) be mappings. If
condition (2) holds for all z,y € X then

(f*Ng*)NF* = (f*Nng*)NG".
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Proof. Let u € (f*Ng*)NF* so
8%(u, Gu) = §%(Fu, Gu)
< ¢y max{d?(fu, gu), 6%(fu, Fu), 6*(gu, Gu)}
+ co max{6(fu, Fu).D(fu, Gu), D(gu, Fu).6(gu, Gu)}
+ csD(fu, Gu).D(gu, Fu)
= ¢16%(u, Gu).
Since ¢; < 1, it follows that {u} = Gu. Thus
(FFOg)NF C(ffng)NnG".
Similarly one can show that
(f*Ng)NF*2(fFNg )NG".
Theorem 3.1 and Theorem 3.5 imply the following:
THEOREM 3.6. Let f,g: X —» X and F,, : X — B(X), n € N be mappings
satisfying condition (3) and the following:
(11) Fi(X) C g(X)andF>(X) C £(X),
(12) 8% (Fpz, Foy1y)
< c1 max{d*(fz, gy), 8(fz, Fuz), 6* (g9, Far1y)}
+ co max{6(fz, Frz).D(fz, Foi1y), D(gy, Foz).6(9y, Fry1y)}
+ esD(fx, Fry1y).-D(gy, Frx)
forallz,y € X wherec; +2cp <1, ca+c3< 1, c1,c2,c3>0,n€N.

(13) the pairs {F1, f}, {F2,9} are weakly commuting of type (KB) at coin-
cidence points in X.

Then f,g and {F;};cn have a unique common fized point in X.
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