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SPLIT QUATERNIONS AND THE LIE GROUP 5}

Abstract. In this work we showed that the pseudosphere S3 is a Lie group. We
obtained a Lie algebra and a Lie product rule of this group. Moreover examining actions
of this group we gave some theorems.

1. Introduction

The only spheres which have Lie group structure in Euclidean space are
the circle S! and the sphere S3. S! is considered as the set of unit complex
numbers, S3 is considered as the set of unit quaternions and their group
structures are constructed in [1].

Pseudo spheres which have Lie group structure in semi-Riemannian
spaces are more than Euclidean spheres.

Lie group structures of the hyperbol S}, Lorentzian sphere the St and
the 2 winged hyperboloid HZ are examined in [3],[4] . Also in [3] the group
structure of the Lorentzian sphere S} constructed by means of quaternion
product.

In this work we considered the pseudosphere Sg in the semi-Euclidean
space

Rg = (R5a (+9 =y _)) .

We defined a group operation on the pseudosphere Sg by means of split
quaternion product. We showed that Sj is a Lie group together with this
operation. We obtained the Lie algebra of this group. We found the rule
of Lie product of left invariant vector fields. We gave some theorems. Fur-
thermore we defined a C°°— action which is transitive and effective from
the Lie group S onto the Lorentz manifold S5 (r) with an arbitrary radius.
We showed that some transformations which are obtained by means of this
action are isometries. Finally, we showed how the orbits of points on S5 (d)
change when the action is restricted to geodesics on the Lie group Sg.
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In this work for v = (v, ...,v5), w = (w, ..., ws) € R}, we take
(v, w) = viw) + Vaws — VW3 — V4W4 — V5WS.

If (v,v) > 0, v is a space-like vector. If (v,v) < 0, v is a time-like vector. If
(v,v) =0, v is a null vector.

2. Split quaternions
DEFINITION 2.1. Let us consider
H = {a = apl + a1i + a2j + ask : ag, a1, a2,a3 € R},

where the products of {1,1, j, k} are given as in the following table

o1 i 7 &
11 i j k
ili -1 k —j
ili -k 1 —i
klk § i 1

Elements of H' are said to be split quaternions.
H' is an algebra. A norm of a = apl + a1% + agj + ask is defined as
N(a) =a®d=a2+a? —d—d,
where
@ = agl — ajt — azj — azk

is the conjugate of a. Thus we can consider the pseudosphere S3 as the set
of split quaternions with norm 1. That is

$3 = {a = agl +a1i+ azj +ask: N (a) = 1}.

Sg is a Lie group with the split quaternion product operation. The Lie
algebra of this group is the set of pure quaternions. This is isomorphic to
the Lorentz space R3. (See [5, 6]).

3. Lie group structure of pseudosphere Sg‘

DEFINITION 3.1. Note that

S5 = {X = (21,22, 23,24, %5) € Rg 22 422 — 22 —xﬁ—zg =1,
i.e. (X, X) = 1}.

Let us define the following operation on S,
®: 853 x 8§ — 83,
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given by
31 XoY

— V1+w5V1+y5+x5y5X*®Y*,m5 /1+y§+y5 [1+x§ ,

where X* = (x1,%2,23,24), Y™ = (y1,¥2,¥3,¥4) and ® is the split quater-
nion product.

THEOREM 3.1. (S§,®) is a Lie group.

Proof. S is a differentiable manifold. e = (1,0,0,0,0) € S5 is the unit
element and for X = (x1, 2, x3,24,25), X' = (z1, —T2, —T3, —T4, —T5) €
S%. Hence the operation © is differentiable. Thus S3 is a Lie group. =

COROLLARY 3.2. The Lie group S is a Lie subgroup of S3.

Proof. Substituting X = (z1,z2,23,24,0) and X = (y1,¥2,y3,y4,0) into
equation (3.1) gives X QY = X*®@Y™*. =u

4. Lie algebra of Lie group Sg
We can write the Lie group Sg as parametrized by

(
cosh t cosh u; cosh ug cos ug, )

cosh t cosh uq cosh ug sin ug,

(4.1) Sg a(t,ul,ug,uz) = cosh t cosh u; sinh ug, > .
cosh tsinh u,,
sinh ¢ J

\
Since unit element of Lie group S3is e = (1,0,0,0,0) , it is valid

Tesg = Sp {’Ulﬁv2a U3, ’04} )

where
v; = (0,0,0,0,1)
ve = (0,0,0,1,0)
vz = (0,0,1,0,0)
v4 = (0,1,0,0,0)

The Lie algebra 7.S5 is 4-dimensional. The space of left invariant vector
fields of Lie group S5, denoted by x; (S3), then is isomorphic to 7.53:

X1 (Sg) = Tesg.
THEOREM 4.1. Let x; = x; (S3) be defined by Xile = v, 1 = 1,2,3,4. Then
xi (S3) = Sp{X1, X2, X3, X4} .
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The bracket product of X;’s are
(X1,X;]=0,(j =1,2,3,4)

[X2, X3] = 2Xy,
(X3, X4] = —2X5,
[X4,X2] = —-2X3.

Proof. The proof is straight forward. =

Since
(X6, X5] le= [vs, vs],
Lie product on the Lie algebra T, (S§) of S is given by

[v1,v5] = 0,
[v2, v3] = 2v4,
[vs, v4] = —2u03,
[v4,v9] = —2uv3.

Moreover, the Killing bilinear form of T (53) is

K (X,Y) = trace (adXadY) = 8 (g2 + asfs — asfs),

where

4
X = Z a4,
i=1

4
Y = Zﬂivi.
1=1

COROLLARY 4.2. Since
K(X,Y)=-8(X,Y)
for XY €T, (Sg) , the transformation Ad is an isometry for the Lie group
S3.
Proof. Indeed
K(X,Y) =K (AdgX,AdgY) ,(X,Y) = (Ady X, Ad;Y) . =

5. C™ action of the group S; on the manifold 53 (r)
DEFINITION 5.1. Let us define the pseudo sphere S§(r) as
S3(r) = {X = (1,22, 23,24, 75) € R} |

w422 -2l -2 -22=7%r>0, i.e.T€ R}
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Let us consider the mapping
0:855 x S5(r)— S5 (r),

for any
X = (x1,22,%3,%4,25) € S§
and
Y = (y1,92,3,¥4,95) € S3 (1),
given by

1 2 2 2
0(X,Y)= (\/ +.'L'5\/T‘ +y5 +$5y5X*®Y*’w5 /,,.2+yg+y5 /1_*_1.%)’
V14 zE\/r2 + y?

where X* = (.’131,.'172,.’1}3,.'174), Y*= (yl’yQ’y3’y4)'

THEOREM 5.1. The mapping 0, defined above, is a C*— action of the Lie
group S§ onto the manifold S5 (r). This action is transitive and effective.

Proof. (i) For X,Y € S} and P € Si (r), the equality
6(X,0(Y,P))=0(X0OY,P)

holds.

(ii) For e = (1,0,...,0) € S3 and each P € S%(r), 6 (e, P) = P. There
exists a unique X € S5 such that (X, P) = @ for all P,Q € S5 (r). Thus
0 is transitive. =

COROLLARY 5.2. Denoting by (Sg‘){ p} the orbit of the point P € S3(r) we
have (Sg){p} = S3(r).
COROLLARY 5.3. For every g € S3, the mapping 6, : S3(r) — S3(r), given
by 64(X) = 0(g, X), is an isometry.
Proof. Since for all X,Y € S3 (r)

d(XaY) = d(eg (X) ’09 (Y)) ’ where d(X’Y) = \/l(X - YaX - Y)l )

0y is an isometry. =

LEMMA 5.4. If S! is a space-like geodesic on S§ then ((Sg)sl){p} is a space-
like geodesic on S3(r).
Proof. Let
Pe (S3),,pi+p5—p3—py—ps="".
If we take t = u; = up = 0 in equation (4.1) we obtain
a(uz) = S = (cosuz,sinus, 0,0,0).
We can write

((Sg)sl){p} = {6(S*,P) : S' = (cosus,sinus,0,0,0),0 < uz < 27}
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and from this, we obtain
6 (S, P)=B(us), (8 (u),B (ua))=r"+pE>0.
Hence 8’ (u3) is a space-like vector and 8 (u3) is a space-like curve. If u; =
ug = ug = 0 in parametrical expression (4.1), then we have
a (t) = (cht,0,0,0, sht) ,t € R.
This is the parametrical expression of S_ll, which is a time-like geodesic on
Sgl. .
We give the following lemma.
LEMMA 5.5. If S_% is a time-like geodesic on S5 then ((S’g‘)s—%){p} is a time-like
geodesic on S§(r).

Proof. Let

P € S3(r),p} +p5 — p; — p§ — P =r°.

Note that
((S)gr)ipy = {6(51, P) : ST= (cht,0,0,0,sht), ¢ € R} = A(2).

Note also that (8 (), 5'(t)) ( 0. Hence §'(t) is a time-like vector and thus B(t)
is a time-like curve. A null geodesic of S§ given by parametrical expression
(4.1) which starts from the point

e=(1,0,0,0,0) € Si
is the line
n = {a(m) = (1,V3m,m,m,m) : m € R}
that lies on S. =
In this case, we give the following.
LEMMA 5.6. Let ((S5)n)(p} be the orbit of P with respect to the action
0 |n . If n is a null geodesic on S§, then in general, ((Sg)n){p} is not a null
geodesic on S3(r). But if P € S3(r), then it is a null geodesic.
Proof. Let g(m)= ((Sg‘)e){p}. Then, in general, the equality (8’ (m), 8’ (m))

= 0 is not satisfied. If P € S3(r), then (8 (m), 8 (m)) = 0. Hence 8 (m) is
a null vector and B(m) is a null geodesic. =
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