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APPLICATION OF THE FOURIER SERIES TO CONVEX
CURVES WITH AXES OF SYMMETRY

Abstract. In this paper we consider a class O of all ovals. A sufficient and necessary
condition for existence of axes of symmetry in the class O is given. Moreover, a form of
Fourier series expansion of a support function of a curve K € O is also given.

1. Preliminaries

Our geometric results complete and deepen the properties obtained in [2]
and [3] and [4].

DEFINITION 1.1. A plane, closed, simple, positively oriented curve of positive
curvature is said to be an oval (cf. [6]).

This article is concerned with ovals with axes of symmetry. The class of
all ovals we denote by O. Obviously each oval K: 2 = 2(t), t € R of the class
O belongs to the class C? and R means real numbers.

We write down some sentences about a special parametrization by an
oriented support function. This parametrization is a natural generalization
of the ordinary one in [1], [3], [5] or [6]. Let us consider an oval K: z = 2(s)
parametrized by arc lenght. Let a point O be the origin of our coordinate
system and suppose that the curve K is considered in this system. Let us
fix a point 2, = 2(8,) and consider the tangent line at z,. We can assume
that z, is chosen in such a way, that the tangent line is perpedicular to the
x-axis. For an arbitrary point z(s) we define a vector e* = cost + isint,
where ¢ is an oriented angle between the positive direction of the x-axis and
the vector e®. Now we consider an oriented distans p(t) from the origin O
of the coordinate system to the tangent line to K. Fix a point 2(s). Than

we take e'* as normal vector (n(s) = ”z,,—g;”) to K at this point (the mark

" denotes in this article the differentiation with respect to the parameter t).
If the vector e points to this half-plane which contains O then we put p(t)
equals the negative of the ordinary distance between O and the tangent line
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at 2(s). If not, we define p(t) as the ordinary distance between O and the
tangent line at z(s). Since the oval K is convex and regular, the function
p(t), t € R has got the following properties:

1. it is a periodic function ( the period T = 27);
2. it is at least at the class C1;
3. it is a positive one if only O€ intV, where 0V = K.

Using p(t) we obtain the special parametrization of K, given by
(1.1) z(t) = p(t)e® + p (t)ie®,  fort e R.

DEFINITION 1.2. The function p constructed above is called an oriented
Minkowski support function.

Furthermore, we let S! denotes the boundary of the closed unit ball in the
Euclidean 2-dimensional space centered at O, that is, the unit sphere in F2.
The spherical Lebesque measure on S! is denoted by 0. We also let L(S*)
denote the class of integrable function on S', and L2(S?) the class of square
integrable functions on S!. Thus, Lo(S') consists of all real valued Lebesque
integrable functions F' on S! with the property that {¢ F(u)2do(u) < oco.

DEFINITION 1.3. If F € Ly(S!) and Hy, Hy,... is a given orthogonal se-
quence, then the numbers
Q; = D)

(14
are called the Fourier coefficients of F (with respect to the given orthogonal
sequence), and the series

=1

(1.2)

is called the Fourier series of F (with respect to the sequence Hy, Hy,...).
We denote this fact by F ~ Y2, a; H;.

2. Conditions for existence of axes of symmetry

DEFINITION 2.1. Let K € (0. With each support function p of K we
associate a function f: R X R — R given by the formula

(21)  f@,a) =p(t) —p(r +2a —t) — [p(a) — p(7 +a)] cos (t — a) .
THEOREM 2.2. The function f does not depend on a choice of a support

functtion.

Proof. Let p,q be support functions of K. Then we have ¢(t) = p(t)+
Acost + Bsint for some A, B € R. We note that



Application of the Fourier series 595

q(t) — q(m + 2a — t) — [g(a) — q(7 + a)] cos (t — a)
= p(t)+ Acost+ Bsint —p(n+2a—t) — Acos(w+2a~—t) — Bsin(mw +2a —t).

Let f be a continuous function on the closed interval [a,b] and have a
derivative at every z in the open interval (a,b). Then there is at least one

number c¢ in the open interval (a,b) such that f'(c) = %ﬂa). Then
—[p(a)+Acosa+ Bsina—p(nw+a)— Acos (n + a)— Bsin (7 + a)] cos (t — a)
=p(t) — p(m +2a —t) + Acost + Bsint
+ Acos(2a — t) + Bsin (2a — t) — [p(a) — p(7 + a)] cos (t — a)
—[Acosa+ Bsina + Acosa + Bsina] cos (t — a)
= p(t) = p(m +2a - t) — [p(a) — p(7 + a)] cos (t — a)
+ A[cost + cos (2a —t) — 2cosacos (t — a)]
+ Bsint + sin (2a — t) — 2sint cos (t — a)]
=p(t) — p(m +2a — t) — [p(a) — p(7 + a)]cos(t —a). =

Now, we present a necessery and sufficient condition for existence of axes
of symmetry of the curve K.

THEOREM 2.3. A curve K has an azxis of symmetry in direction ie*® if and
only if
(2.2) f(t,a) =0  for arbitrary t € R.

Proof. Necessity. We assume that K has an axis of symmetry in the
direction ie*. We note that the symmetric point to z(t) with respect to the
axis of symmetry in the directtion ie*® is a point z (7 + 2a —t). We will
use the notation {u + iv,z + iy} = uy — vz for arbitrary complex numbers
u + v, + 2y. Thus, we have

(2.3) {z(n+2a—1t)—2(t),e’*} =0 for arbitrary t € R.
Hence, we have
0= {z2(m+2a—t),e"} — {2(t), e}
= {p(m+2a — t) €27 4 of (4 20 — ) eilTH2aY) giay
— {p(t)e" + p'(t)ie", e}
= p(m+ 20 — t) {200 gia} |l (7 1 2a — t) {3720 cio)

~ p(t){e”, e} — p'(t){ie®, e}
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= —p(r+2a—t)sin(r+a—1t)—p (m+2a—t)cos(r+a—t)

— p(t)sin(a — t) + p'(t) cos (a — t)
=p(r+2a—t)sin(a—t)+p (7 +2a—1t)cos(a—t)

—p(t)sin(a —t) + p'(t) cos(a — t)
= — [p(t) —p(7 +2a —t)]sin(a — t) + [p(t) — p(7 + 2a — t)]' cos (a — t),
(2.4) —[p(t)—p(w+ 2a —t)]sin(a — t) [p(t)—p (7 + 2a — t)]' cos(a —t) =0

for arbitrary t € R.
We note that (2.4) can be treated as an ordinary differential equation.
Solving this equation we obtain (2.2).

Sufficiency. We assume that a support function p of K satisfies the
identity (2.2), i.e.

p(t) — p(m + 2a — t) — [p(a) — p(7 + a)] cos (t —a) = 0.
We prove that

z(m+2a—t)+2(t)  2(m+2a—s)+2(s) ; ia
2 2 ’
for arbitrary t,s € R. We have

%{z(’n’ + 20— t) + 2(t) — (2(7 + 2a — 5) + 2(5)), i"%)
= —;—[{z(ﬂ + 2a — t), i€} 4 {2(t),1€%} — {z(7 + 2a — ), ie"*} — {2(s),ie"?}]
_ %[p(w—+—2a—t)cos(a—7r—2a+t)+p'(7r+2a—t)sin(a—7r—2a+t)
+ p(t) cos(a — t) + p/(t) sin(a — t) — p(7 + 2a — s) cos(a — 7 — 2a + s)
_p/(n+2a— s)sin(a — 7 — 2a + ) — p(s) cos(a — s) — p'(s) sin(a — )]
= 21(p(t) ~ plr -+ 2a ~ ) cos(t ~ a) + (p(t) ~ plr + 20 — 1)) (~ sin(t — )
~ (p(s) ~ plr + 20— 5)) cos(s ~ a)
~ (p(s) — p(r + 20 ~ 5))'(~sin(s — )]
= 2 1(p(@) ~ p(x + ) cos*(t — a) + (p(a) ~ plr + @) sin(t — a)

~ (p(a) — p(m + a)) cos’(s — a) — (p(a) — p(7 + a)) sin*(s — a)] = 0.

Thus, there exists an axis of symmetry of K in the direction ie*®. m
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3. Fourier series expansion of a support function of a convex body
with axes of symmetry

It is clear from context which kind of Fourier series is meant. A routine
calculations shows that the sequence 1,cost,sint, cos2t,sin2t,... is an or-
thogonal sequence as discussed in Preliminaries, where the points of S! are
in the usual way identified with the angle ¢ which, for purpose of integration,
is assumed to range between 0 and 27. Let a € R be fixed. We consider a
function

(3-1) fa(t) =p(t) — p(m +2a - t) — [p(a) — p(7 + a)] cos(t —a), t€R.

We will find a Fourier series expansion of f, on the base of the properties
of a support function p. Let the support function p of K have a Fourier series
expansion, as follows

(3.2) p(t) ~ %ao + Z (am cos mt + by, sinmt).
m>1
Then we have
p(m+2a —t)
~ —;—ao + Z(amcosm(w +2a — t) + by sinm(w + 2a — t))

m>1

1
= 50 + Z (am cos(mm + m(2a — t)) + by, sin(mn + m(2a — t)))
m>1

1
= 50 + Z (—1)™[am cos(2ma — mt) + by, sin(2ma — mt)]
m>1

1
=500+ Z (—1)™[am(cos 2ma cos mt) + sin 2ma sin mt)
m2>1
+ by (sin 2ma cos mt — cos 2ma sin mt))
1
= 50 + Z (—1)™[(am cos 2ma + by, sin 2ma) cos mt
m2>1
+ (am sin 2ma — by, cos 2ma) sin mt]
and

p(t) —p(mr+2a—1t) ~ Z {lam — (—1)™(am cos 2ma + by, sin 2ma)] cos mt
m2>1

+ b, — (—=1)™(@m sin 2ma — by, cos 2ma)] sinmt}.
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Moreover, we have

1
p(a) ~ 90 + Z (am cosma + by, sinma),
m2>1

1
p(m+a) ~ 290 + Z (@m cos(mm + ma) + by, sin(mm + ma))

m>1

1

= —ap+ Z (=1)™(am cos ma + by, sinma)

2

m>1
and
p(a) —p(mr+a) ~ Z (1 - (-1)™)(am cosma + by, sinma)
m>1

=2 Z(azk_l cos(2k — 1)a + bog-1 sin(2k — 1)a) = c.
k>1

Thus, for a fixed a, we have
(3.3) fa(t) ~ (a1 + a1 cos2a+ by sin2a — ccosa) cost
+ (b1 + a1 sin2a — by cos 2a — csina)sint

+ Z {lam — (—1)™(am cos 2ma + by, sin 2ma)] cos mit
m>2
+ [bm — (—1)™(am sin 2ma — by, cos 2ma)] sinmt}.

If fo(t) =0 (i.e. K has an axis of symmetry), then we get

(3.4) aj + a3 cos2a+ bysin2a — ccosa =0,
' b1 + a1 sin2a — by cos2a — csina = 0,
and
[1 — (=1)™ cos 2malam — (—1)™byy, sin 2ma = 0,
—(=1)™ap sin2ma + (1 + (—1)™ cos 2ma)b,, = 0,
for m > 2.

We have a system of linear equations

(3 5) { ((_l)m — COs 2ma)am — by sin2ma =0,

—am sin 2ma + ((—1)™ + cos 2ma)b, =0,

with the determinant of coefficients equals to 0. The solutions of (3.5) are
of the form

(3.6) am sin2ma — ((—1)™ + cos 2ma)by, = 0.



Application of the Fourier series 599

If m = 0(mod 2) then we have

am sin2ma — (1 + cos2ma)by, = 0,

2 ma =0,

a2 sin ma cos ma — 2b,, cos
2 cos ma(am, sinma — by, cosma) = 0.
Then
(3.7) am sinma — by, cosma =0 for cosma # 0.
For m > 3 and m = 1(mod 2) we have

am sin2ma + (1 — cos 2ma)by, =0,

2

2a,, sin ma cos ma + 2b,, sin“ ma = 0,

2sinma(am cosma + by, sinma) =0
which implies
(3.8) amcosma + bysinma =0  for sinma # 0.
Of course, we see the other solutions of the system of linear equa-
tions (3.5), that is cosma = 0 for even m and sinma = 0 for odd m not less
than 3. However, its must be omitted, because its make a sense of a as a

function of independent integer variable m.
The above considerations lead us to the following theorem.

THEOREM 3.1. Let p be a support function of K € O. If f, =0, then the
Fourier coefficients of p satisfy the conditions:

a) If m = 0(mod 2), then a,, sinma—by,, cosma = 0 and cosma # 0;
b) If m > 3 and m = 1(mod2), then a,, cosma+by,sinma = 0 and
sinma # 0.

Theorem 3 allow us to costruct examples of curves with axes of symmetry
in the given directions. Namely

THEOREM 3.2. If a curve K € O has azes of symmetry in the directions ie'®
and ie®, the B — « is commensurable with . :

Proof. Axess of symmetry of K have the directions i€ and ie*?, then by
Theorem 3, we have

e let m = 0(mod 2). Then

(3.9)

am, sinma — by, cosma = 0,
am sinmB — by, cosmfB = 0.

The determinant of this system is equal sinm(3—a) and it must be zero.
Thus § — a is commensurable with =.
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e if m > 3 and m = 1(mod 2), then

(3.10) am, cosma + by, sinma = 0,
. am cosmf3 + by, sinmf = 0.

The determinant of this system is equal sinm(8 — a) and it must be zero
too. Thus, once again 8 — a is commensurable with 7. =
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