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APPLICATION OF THE FOURIER SERIES TO CONVEX 
CURVES WITH AXES OF SYMMETRY 

Abstract. In this paper we consider a class O of all ovals. A sufficient and necessary 
condition for existence of axes of symmetry in the class O is given. Moreover, a form of 
Fourier series expansion of a support function of a curve K £ O is also given. 

1. Preliminaries 
Our geometric results complete and deepen the properties obtained in [2] 

and [3] and [4], 
DEFINITION 1.1. A plane, closed, simple, positively oriented curve of positive 
curvature is said to be an oval (cf. [6]). 

This article is concerned with ovals with axes of symmetry. The class of 
all ovals we denote by O. Obviously each oval K: z = z(t), t € R of the class 
O belongs to the class C 2 and R means real numbers. 

We write down some sentences about a special parametrization by an 
oriented support function. This parametrization is a natural generalization 
of the ordinary one in [1], [3], [5] or [6], Let us consider an oval K: z = z(s) 
parametrized by arc lenght. Let a point O be the origin of our coordinate 
system and suppose that the curve K is considered in this system. Let us 
fix a point z0 = z(s0) and consider the tangent line at za. We can assume 
that zQ is chosen in such a way, that the tangent line is perpedicular to the 
x-axis. For an arbitrary point z(s) we define a vector elt = cos t + i sin t, 
where t is an oriented angle between the positive direction of the x-axis and 
the vector elt. Now we consider an oriented distans p(t) from the origin O 
of the coordinate system to the tangent line to K. Fix a point z(s). Than 

"c 1 we take elt as normal vector (n(s) = ,.z„y) to K at this point (the mark 
v w Ik Mil v 

' denotes in this article the differentiation with respect to the parameter t). 
If the vector elt points to this half-plane which contains O then we put p(t) 
equals the negative of the ordinary distance between O and the tangent line 
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at z(s). If not, we define p(t) as the ordinary distance between O and the 
tangent line at z(s). Since the oval K is convex and regular, the function 
p(t), t € R has got the following properties: 

1. it is a periodic function ( the period T = 2-rr); 
2. it is at least at the class C 1 ; 
3. it is a positive one if only 0 € intV, where dV = K. 

Using p(t) we obtain the special parametrization of K, given by 

(1.1) z{t) = pity* +p'(t)iea, for t 6 R. 

DEFINITION 1.2. The function p constructed above is called an oriented 
Minkowski support function. 

Furthermore, we let S 1 denotes the boundary of the closed unit ball in the 
Euclidean 2-dimensional space centered at O, that is, the unit sphere in E2. 
The spherical Lebesque measure on S1 is denoted by a. We also let L(Sl) 
denote the class of integrable function on S1, and / ^ ( S 1 ) the class of square 
integrable functions on . Thus, L2ÍS1) consists of all real valued Lebesque 
integrable functions F on S1 with the property that \si F(u)2da(u) < oo. 

DEFINITION 1.3. If F E L2(S'1) and H0,Hi,... is a given orthogonal se-
quence, then the numbers 

(F, Hi) (1.2) ai = 
\Hi\\2  

are called the Fourier coefficients of F (with respect to the given orthogonal 
sequence), and the series 

oo 
(1.3) 

¿=i 
is called the Fourier series of F (with respect to the sequence Ho, Hi , . . . ) . 
We denote this fact by F ~ aiHi-

2. Conditions for existence of axes of symmetry 

DEFINITION 2.1. Let K e O. With each support function p of K we 
associate a function f : R x R —> R given by the formula 

(2.1) f(t, a) = p(t) - p(7T + 2 a - t ) - [p(a) - p{tt + a)] cos (t - a). 

THEOREM 2.2. The function f does not depend on a choice of a support 
functtion. 

Proof . Let p, q be support functions of K. Then we have q(t) = p(t)+ 
A cos t + B sin t for some A,BeR. We note that 
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q(t) — q(7r + 2a — t) — [g(a) — q(ir + a)] cos (t — a) 
= p(t) + Acost + Bsmt-p('K + 2a-t)-Acos(n + 2a — t)-Bsm('K + 2a-t). 

Let / be a continuous function on the closed interval [a, 6] and have a 
derivative at every x in the open interval (a,b). Then there is at least one 
number c in the open interval (a, b) such that / '(c) = f(h)

b~Ja
(a) • Then 

— [p(a) + j4cosa+f?sina—p(7r + a) — cos (7r + a) —B sin {IT + a)] cos (t — a) 
= p(t) - p(iv + 2a - t) + A cos t + B sin t 

+ A cos (2a — t) + B sin (2a — t) — [p(a) — P(TT + a)] cos (T — a) 

— [A cos a + B sin a + A cos a + B sin a] cos (t — a) 

= p(t) — p(n + 2a — t) — [p(a) — p(-ir + a)] cos (t — a) 

+ A [cos t + cos (2a — t) — 2 cos a cos (t — a)] 

+ B [sin t + sin (2a — t) — 2 sin t cos (t — a)] 

= p(t) — p(ir + 2a — t) — \p(a) — p{iv + a)] cos (t — a). • 

Now, we present a necessery and sufficient condition for existence of axes 
of symmetry of the curve K. 

THEOREM 2.3 . A curve K has an axis of symmetry in direction ieia if and 
only if 

(2.2) f(t, a) = 0 for arbitrary t G R. 

Proof . Necessity. We assume that K has an axis of symmetry in the 
direction ieia. We note that the symmetric point to z(t) with respect to the 
axis of symmetry in the directtion ieta is a point z (IT + 2a — t). We will 
use the notation {u + iv, x + iy} = uy — vx for arbitrary complex numbers 
u + iv, x + iy- Thus, we have 

(2.3) {z (IT + 2a - t) - z(t),eia} = 0 for arbitrary t G R. 

Hence, we have 

0 = {z (tt + 2a - i ) , eia} - {z(t), eia} 

= {p(ir + 2a- t) e
i(7r+2a_t) + p> + 2a - t) iei^+2a~t\ eia} 

- M i K ' + p ' ^ e V 0 } 

= p (tt + 2a - t) {e
i^+2a~t), eia} + p' (vr + 2a - t) {iei^+2a~t\ eia} 

-p(t){eit,eia}-p'(t){ieit,eia} 
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= — p (n + 2a — t) sin (n + a — t) — p' (ir + 2a — t) cos (n + a — t) 

— p(t) sin (a —t) + p'(t) cos (a — t) 

= p (7r + 2a — t) sin (a — t)+ p' (TT + 2a — t) cos (a — t) 

— p(t) sin (a —t) + p'(t) cos (a — t) 

= - \p(t) -p(TV + 2a- t)] sin (a - t) + [p(t) - p (TT + 2a - t)]' cos ( a - t ) , 
so 

(2.4) -\p(t)-p (TT + 2a - i)] sin (a - t) \p(t)-p (n + 2a- t)]' cos (a-t) = 0 

for arbitrary t G R. 
We note that (2.4) can be treated as an ordinary differential equation. 

Solving this equation we obtain (2.2). 
Sufficiency. We assume that a support function p of K satisfies the 

identity (2.2), i.e. 

p(t) — p(ir + 2 a — t) — \p(a) — p( it + a)] cos (t — a) = 0. 

We prove that 

F.z(ir + 2a-t) + z(t) _ z (TT + 2a - a) + z{s) .gia| ^ Q 

for arbitrary t,s G R. We have 

+ 2 a - t ) + z(t) - (z(TT + 2a - s) + z(s)),ieia} 

= + 2 a- t), ieia} + {z(t),ieia} - {z{ TT + 2 a- s),ieia} - {z(s), ieia}] 

= ^ [p(7r + 2a — t) cos(a — IR — 2a + t) + p'(7r + 2a — t) sin(a — IT — 2a + t) 
£ 
+ p(t) cos (a — t) + p'(t) sin(a — t)— P(TT + 2 a — s) cos (a — N — 2 a + s) 

— p'(ir + 2 a — s) sin(a — 7r — 2a + s) — p(s) cos (a — s) — p'(s) sin(a — s)] 

= ^[(pW - Pi71" + 2a - t)) cos(t - a) + (p(i) - p(yr + 2a - i ) ) ' ( - sin(i - a)) 

— (p(s) — p(ir + 2a — s)) cos(s — a) 

— (p(S) - P(TT + 2a - « ) ) ' ( - sin(s - a))] 

= ^[(p(a) — p(jr + a)) cos2(i — a) + (p(a) — p(ir + a)) sin2(i — a) 
¿i 

— (jp{a) - p(-K + a)) cos2(s — a) - (p(a) — p(7r + a)) sin2(s — a)] = 0. 

Thus, there exists an axis of symmetry of K in the direction ieia. • 
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3. Fourier series expansion of a support function of a convex body 
with axes of symmetry 
It is clear from context which kind of Fourier series is meant. A routine 

calculations shows that the sequence 1, cost, sint, cos2t, sin2t, . . . is an or-
thogonal sequence as discussed in Preliminaries, where the points of S 1 are 
in the usual way identified with the angle t which, for purpose of integration, 
is assumed to range between 0 and 2ir. Let a E R be fixed. We consider a 
function 

(3.1) fa(t) =p(t) -p{it + 2a-t) - \p(a) -p(?r + o)] cos(t - a), t € R. 

We will find a Fourier series expansion of fa on the base of the properties 
of a support function p. Let the support function p of K have a Fourier series 
expansion, as follows 

(3.2) p(t) ~ ^ao + ^ ( a m c o s m £ + 6msinrni). 
m> l 

Then we have 

p( 7r + 2 a - t ) 

~ + ^(a m cosm(7r + 2a — t) + bmsinm(7r + 2a — t)) 
m> 1 

= ^oo + ^ (am cos(m7r + m(2a — t)) + bm sin(m7r + m(2a — t))) 
m> 1 

= ^ao + ^ (—l)m[am cos(2 ma — mt) + bm sin(2 ma — mt)] 
m> 1 

= ^ao + (—1 )m [am (cos 2ma cos mt) + sin2masinmi) 
m> 1 

+ 6m(sin 2ma cos mt — cos 2ma sin mt)] 

= -ao + y ^ - l H K n cos 2 ma + sin 2ma) cosmt 

m> 1 

+ (am sin 2ma — bm cos 2ma) sin mi] 

and 
p(i) — p(7r + 2a — i) ~ ^ { [ a m — (—l)m(am cos2ma + bm sin2ma)] cos mt 

m> l 
+ — (—l)m(amsin2rna — bm cos 2ma)} sin mi}. 
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Moreover, we have 

P ( a ) ~ xOo + ^ («m cos ma -f bm sin m a ) , 
m> 1 

p(7r + a ) ~ ^ a o + ^ (am cos(m7r + m a ) + bm sin(m7r + ma)) 
m> l 

= : 2 ° o + (—l) m (g 7 r e cos ma + frm sin m a ) 
m>l 

and 

p(a) — p(n + a) ~ ^ ( 1 — ( — l ) m ) ( a m cos ma + bm sin ma) 
m> l 

= 2 cos(2 k — l ) a + ¿>2fc-i sin(2fc — l ) a ) = c. 
fc>i 

Thus , for a fixed a , we have 

(3.3) f a {t) ~ ( a i + a i cos 2a + b\ sin 2a — c cos a ) cos i 

+ (&i + a i sin 2a — &i cos 2a — c sin a ) sin t 

+ ^ { [ a m — ( — l ) m ( a m cos 2 m a + bm sin 2ma)] cos mt 
m> 2 

+ — ( — l ) m ( a m s i n 2 m a — bm cos 2ma)\ sin m i } . 

If f a ( t ) = 0 (i.e. K has an axis of symmetry) , then we get 

\ a\+ a\ cos 2a + b\ sin 2a — c c o s a = 0, 

I &i + a i sin 2a — &i cos 2a — c sin a = 0, 

{ 
and 

[1 - ( - l ) m c o s 2 r n a ] a m - ( - l ) m b m s i n 2 m a = 0, 

- ( - l ) m a m s i n 2 r n a + (1 + ( - l ) m c o s 2 r n a ) b m = 0, 

for m > 2. 
We have a sys tem of linear equations 

^ ^ I ( ( — l ) m — c o s 2 m a ) a m — b m s i n 2 m a = 0, 

1 —am sin 2 m a + ( ( — l ) m + cos 2 m a ) b m = 0, 

with the determinant of coefficients equals to 0. T h e solutions of (3.5) are 
of the form 

(3.6) a m s i n 2 m a — ( ( — l ) m + cos 2 ma)bm = 0. 
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If m = O(mod 2) then we have 

am sin 2 ma — (1 + cos 2 ma)bm = 0, 

am2 sin ma cos ma — 2bm cos2 ma = 0, 

2 cos ma(am sin ma — bm cos ma) = 0. 

Then 

(3.7) am sin ma — bm cos ma = 0 for cos ma / 0. 

For m > 3 and m = l(mod2) we have 

am sin 2 mo + (1 — cos 2 ma)bm = 0, 
2am sin ma cos ma + 2bm sin2 ma = 0, 
2 sin ma(am cos ma + bm sin ma) = 0 

which implies 

(3.8) am cos ma + bm sin ma — 0 for sin ma ^ 0. 

Of course, we see the other solutions of the system of linear equa-
tions (3.5), that is cos ma = 0 for even m and sin ma = 0 for odd m not less 
than 3. However, its must be omitted, because its make a sense of a as a 
function of independent integer variable m. 

The above considerations lead us to the following theorem. 

T H E O R E M 3 . 1 . Let p be a support function of K € O. If fa = 0 , then the 
Fourier coefficients of p satisfy the conditions: 

a) If m = 0(mod2), then Om sin ma—bm cos ma — 0 and cos ma ^ 0; 
b) If m > 3 and m = l (mod2), then am cos ma+bm sin ma = 0 and 

sin ma ^ 0. 

Theorem 3 allow us to costruct examples of curves with axes of symmetry 
in the given directions. Namely 

T H E O R E M 3 . 2 . If a curve K G O has axes of symmetry in the directions iem 

and iel@, the ¡3 — a is commensurable with IT. 

P r o o f . Axess of symmetry of K have the directions iem and then by 
Theorem 3, we have 

• let m = 0(mod2). Then 

J a m sin ma — bm cos ma = 0, 
(o.yj < 

I &m sin m/3 — b m cos m(3 - 0. 

The determinant of this system is equal sin m(j3 — a) and it must be zero. 
Thus (3 — a is commensurable with IT. 
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• if m > 3 and m = l(mod2), then 

(3.10) 
a m cos ma + bm sin ma = 0, 
a m cos mß + bm sin mß = 0. 

The determinant of this system is equal sin m(/3 — a) and it must be zero 
too. Thus, once again ¡3 — a is commensurable with 7r. • 
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