

A. H. Majeed, Heba Asmaiel

JORDAN STRUCTURE ON PRIME RINGS WITH CENTRALIZERS

Abstract. Our object in this paper is to study the generalization of Borut Zalar result in [1] on Jordan centralizer of semiprime rings by prove the following result: Let R be a prime of characteristic different from 2, and U be a Jordan ideal of R . If T is an additive mapping from R to itself satisfying the following condition

$$T(ur + ru) = uT(r) + T(r)u,$$

then $T(ur) = uT(r)$, for all $r \in R$, $u \in U$.

1. Introduction

Let R be an associative ring with the center Z . R is called prime ring if $aRb = 0$ implies $a = 0$ or $b = 0$ and semiprime if $aRb = 0$ implies $a = 0$. An additive subgroup U of R is said to be a Jordan ideal of R if $ur + ru \in U$, for all $u \in U$, $r \in R$. An additive mapping $T : R \rightarrow R$ which satisfies $T(xy) = T(x)y$ ($T(xy) = xT(y)$), for all $x, y \in R$, then T is left (right) centralizer. A centralizer is both left and right centralizer. Many studies were done on Jordan structure of an associative ring and also on Jordan structure of an associative ring with derivation see [2], [3], [5], [6]. But now we want to study the Jordan structure of an associative ring with centralizer. If we introduce a new product in R given by $x \circ y = xy + yx$, then Jordan derivation is an additive mapping D which satisfies

$$D(x \circ y) = D(x) \circ y = x \circ D(y), \text{ for all } x, y \in R$$

and Jordan homomorphism is an additive mapping A which satisfies

$$A(x \circ y) = A(x) \circ A(y), \text{ for all } x, y \in R.$$

Key words and phrases: prime ring, semiprime ring, Jordan ideal, left (right) centralizer, centralizer, Jordan centralizer, centralizer Jordan derivation, homomorphism.

2000 *Mathematics Subject Classification:* 16A12, 16A68, 16A72.

Therefore we can define Jordan centralizer to be an additive mapping T which satisfies

$$T(x \circ y) = T(x) \circ y = T(x) \circ y = x \circ T(y), \text{ for all } x, y \in R.$$

An easy computation shows that every centralizer is Jordan centralizer. In [1] Borut Zalar proved that every Jordan centralizer of semiprime ring of characteristic different from 2 is a centralizer. Our object in this paper is to study the generalization of this result on Jordan ideal of prime ring by proving the following result; Let R be a prime ring of characteristic different from 2, and U be a Jordan ideal of R . Let T be an additive mapping from R to itself satisfying the following condition

$$T(ur + ru) = uT(r) + T(r)u,$$

then $T(ur) = uT(r)$, for all $r \in R, u \in U$.

Now we must give some useful theorems need it to prove the main theorem in this paper.

THEOREM A [5]. *Let R be a semiprime ring of 2-tortion free, then any non-zero Jordan ideal of R contains a non-zero ideal of R .*

THEOREM B [2]. *Let R be a semiprime ring of 2-tortion free. Suppose that $a \in R$, such that a commutes with every $[a, x], x \in R$, then $a \in Z$.*

THEOREM C [7]. *Let R be a semiprime ring of characteristic different from 2, and U be a Jordan ideal of R , suppose that $t \in R$, such that t commute with u^2 for all $u \in U$, then t commute with every element of U .*

THEOREM D [7]. *Let R be a semiprime ring of characteristic different from 2, and U be a Jordan ideal of R . Suppose that $t \in R$, such that commutes with every element of $[U, U]$, then t commutes with every element of U .*

2. Results

Let R be an associative prime ring of characteristic different from 2, U be a Jordan ideal of R , and T be an additive mapping from R into itself satisfying the condition

$$T(ur + ru) = uT(r) + T(r)u, \text{ for all } r \in R, u \in U. \quad (*)$$

In particular, if $r = u$ in equation (*), then we get

$$2T(u^2) = T(u)u + uT(u), \text{ for all } u \in U.$$

Put

$$(u)^r = T(ur) - uT(r), \text{ for all } r \in R \text{ and } u \in U,$$

and

$$(r)^u = T(ru) - T(r)u, \text{ for all } r \in R \text{ and } u \in U.$$

So we can show by using equation (*) that: $(u)^r = -(r)^u$.

The following lemmas help us to prove the main theorem in this paper.

LEMMA 1. *For all $r \in R$ and $u \in U$, $T(uru) = uT(r)u$.*

Proof. In (*), replace r by $u.2r + 2ru$, then we get

$$\begin{aligned} T(u(u.2r + 2ru) + (u.2r + 2ru)u) &= uT(u.2r + 2ru) + T(u.2r + 2ru)u, \\ T(2u^2r + 4uru + 2ru^2) &= 2u^2T(r) + 4uT(r)u + 2T(r)u^2, \\ T(2u^2.r + r.2u^2) + 4T(uru) &= 2u^2T(r) + 4uT(r)u + 2T(r)u^2. \end{aligned}$$

Since $2u^2 \in U$ we have

$$2u^2T(r) + T(r)2u^2 + 4T(uru) = 2u^2T(r) + 4uT(r)u + 2T(r)u^2.$$

Then

$$4T(uru) = 4uT(r)u.$$

Since the characteristic of R is different from 2, we get

$$T(uru) = uT(r)u, \text{ for all } r \in R, u \in U. \blacksquare$$

If we replace u by $u + v$ in last equation, we get the following

COROLLARY 1. *For all $u, v, r \in R$*

$$T(urv + vru) = uT(r)v + vT(r)u.$$

LEMMA 2 ([5]). *For any $t \in R$, if $tv^2 + v^2t = 0$ for all $v \in U$, then $t = 0$.*

LEMMA 3. *For all $v \in U$ and $r \in R$, $[v^2, r](v^2)^r = 0$ and $(v^2)^r[v^2, r] = 0$.*

Proof. Since $T(ur + ru) = uT(r) + T(r)u$, for all $r \in R, u \in U$, we get $2T(u^2) = uT(u) + T(u)u$, for all $u \in U$. Then by using Theorem 1 in [4] T is centralizer on U .

$$\text{i.e. } (T(uv) - T(u)v) = 0, \text{ for all } u \in U.$$

$$\text{i.e. } (uv - vu)(T(uv) - T(u)v) = 0.$$

Replace u by $2vr + 2rv$, for all $r \in R$, we get

$$((2vr + 2rv)v - v(2vr + 2rv))(T((2vr + 2rv)v) - T(2vr + 2rv)v) = 0,$$

$$(2vrv + 2rv^2 - 2v^2r - 2vrv)(T(2vr + 2rv) - 2vT(r)v - 2T(r)v^2) = 0.$$

By using Lemma 1, we have

$$(2rv^2 - 2v^2r)(T(2rv^2) - 2T(r)v^2) = 0.$$

By using the relation $(u)^r = -(r)^u$ for all $u \in U$ and $r \in R$, we get

$$(2v^2r - 2rv^2)(T(2v^2r) - 2v^2T(r)) = 0.$$

Since R has characteristic different from 2, we get

$$(v^2r - rv^2)(T(v^2r) - v^2T(r)) = 0,$$

i.e. $[v^2, r](v^2)^r = 0$, for all $v \in U$ and $r \in R$. Similarly, we can prove $(v^2)^r [v^2, r] = 0$. ■

After replacing r by $r + s$ for all $s \in R$ in Lemma 3 we get the following:

COROLLARY 2.

1. $[u^2, r](u^2)^s + [u^2, s](u^2)^r = 0$.
2. $(u^2)^s[u^2, r] + (u^2)^r[u^2, s] = 0$, for all $u \in U$ and $r, s \in R$.

LEMMA 4. For all $u \in U$ and $r \in R$, $(u^2)^r = 0$.

Proof. By (2) of Corollary 2, we have

$$(1) \quad (u^2)^s[u^2, r] + (u^2)^r[u^2, s] = 0, \quad \text{for all } u \in U \text{ and } r, s \in R.$$

So

$$[u^2, z](u^2)^r[u^2, s] + [u^2, z](u^2)^s[u^2, r] = 0.$$

By equation (1), we have

$$(2) \quad [u^2, r](u^2)^s[u^2, z] + [u^2, z](u^2)^s[u^2, r] = 0.$$

Replace z by zt in equation (2) and by Jacobi's identities, we get

$$[u^2, r](u^2)^s(z[u^2, t] + [u^2, z]t) + (z[u^2, t] + [u^2, z]t)(u^2)^s[u^2, r] = 0.$$

By equation (2), we get

$$\begin{aligned} & [u^2, r](u^2)^s z[u^2, t] - z[u^2, r](u^2)^s[u^2, t] - \\ & - [u^2, z](u^2)^s[u^2, r]t + [u^2, z](u^2)^s[u^2, r] = 0, \end{aligned}$$

i.e.

$$\begin{aligned} (3) \quad & [[u^2, r](u^2)^s, z][u^2, t] + [u^2, z](t(u^2)^s[u^2, r] - (u^2)^s[u^2, r]t) = 0, \\ & [[u^2, r](u^2)^s, z][u^2, t] + [u^2, z](-t(u^2)^r[u^2, s] - (u^2)^r[u^2, s]t) = 0, \\ & [[u^2, r](u^2)^s, z][u^2, t] + [u^2, z][(u^2)^r[u^2, s], t] = 0. \end{aligned}$$

Replace z by $[u^2, z]$ in equation (3), we get

$$\begin{aligned} & [u^2, z][u^2, z][(u^2)^r[u^2, s], t] + z[u^2, [u^2, z]][(u^2)^r[u^2, s], t] + \\ & + z[[u^2, r](u^2)^s, [u^2, z]][u^2, t] + [[u^2, r](u^2)^s, z][u^2, z][u^2, t] = 0. \end{aligned}$$

In view of equation (3), we get

$$[u^2, z][u^2, z][(u^2)^r[u^2, s], t] + [[u^2, r](u^2)^s, z][u^2, z][u^2, t] = 0.$$

Again in view of equation (3), we get

$$-[u^2, z][[u^2, r](u^2)^s, z][u^2, t] + [[u^2, r](u^2)^s, z][u^2, z][u^2, t] = 0,$$

i.e.

$$(4) \quad [[[u^2, r](u^2)^s, z], [u^2, z]][u^2, t] = 0, \text{ for all } r, s, t, z \in R, u \in U.$$

Replace t by ct in equation (4) and by Jacobi's identities, we get

$$[[[u^2, r](u^2)^s, z], [u^2, z]][u^2, ct] = 0,$$

$$(5) \quad [[[u^2, r](u^2)^s, z], [u^2, z]](c[u^2, t] + [u^2, c]t) = 0.$$

In view of equation (4), the second term is zero and equation (5) becomes

$$[[[u^2, r](u^2)^s, z], [u^2, z]]R[u^2, t] = 0.$$

Since R is prime ring, so

$$\text{either } [u^2, t] = 0, \text{ for all } t \in R \text{ or } [[[u^2, r](u^2)^s, z], [u^2, z]] = 0.$$

If $[u^2, t] = 0$, then $u^2 \in Z$. So, $(u^2)^r = 0$, for all $u \in U$ and $r \in R$. If

$$[[[u^2, r](u^2)^s, z], [u^2, z]] = 0, \text{ for all } r, s, z \in R, u \in U,$$

i.e.

$$(6) \quad [[u^2, r](u^2)^s, z][u^2, z] = [u^2, z][[[u^2, r](u^2)^s, z]].$$

Put $t = z$ in equation (3), we get

$$[u^2, z][(u^2)^r[u^2, s], z] + [[u^2, r](u^2)^s, z][u^2, z] = 0.$$

In view of equation (6), the last equation becomes

$$[u^2, z][(u^2)^r[u^2, s], z] + [u^2, z][[[u^2, r](u^2)^s, z]] = 0.$$

By Jacobi's identities, we get

$$[u^2, z][(u^2)^r[u^2, s] + [u^2, r](u^2)^s, z] = 0.$$

By equation (1), we get

$$[u^2, z][(u^2)^r[u^2, s] - [u^2, s](u^2)^r, z] = 0,$$

i.e.

$$[u^2, z][[(u^2)^r, [u^2, s]], z] = 0, \text{ for all } r, s, z \in R, u \in U.$$

Linearized on z , we get

$$(7) \quad [u^2, z][[(u^2)^r, [u^2, s]], t] + [u^2, t][[(u^2)^r, [u^2, s]], z] = 0,$$

for all $r, s, t, z \in R, u \in U$. Replace t by u^2t in equation (7), we get

$$\begin{aligned} & [u^2, z](u^2)[[(u^2)^r, [u^2, s]], t] + [[(u^2)^r, [u^2, s]], u^2t] \\ & + ([u^2, u^2]t + u^2[u^2, t])[[(u^2)^r, [u^2, s]], z] = 0. \end{aligned}$$

Now, since $[u^2, u^2] = 0$, then the third term is zero, and in view of equation (7) second term is zero so the last equation becomes

$$u^2[u^2, t][[(u^2)^r, [u^2, s]], z] + [u^2, z]u^2[[(u^2)^r, [u^2, s]], t] = 0,$$

and in view of equation (7), we get

$$-u^2[u^2, z]([(u^2)^r, [u^2, s]], t) + [u^2, z]u^2([(u^2)^r, [u^2, s]], t) = 0,$$

i.e.

$$[[u^2, z], u^2][(u^2)^r, [u^2, s]], t] = 0, \text{ for all } r, s, t, z \in R, u \in U.$$

Then

$$[[u^2, z], u^2]R[(u^2)^r, [u^2, s]], t] = 0.$$

Since R is prime ring, then

$$\begin{aligned} &\text{either } [[u^2, z], u^2] = 0, \text{ for all } u \in U, r \in R, \\ &\text{or } [(u^2)^r, [u^2, s]], t] = 0, \text{ for all } r, s, t \in R, u \in U. \end{aligned}$$

If

$$[[u^2, z], u^2] = 0, \text{ i.e. } [u^2, [u^2, z]] = 0,$$

by Theorem B, we get $u^2 \in Z$, then $(u^2)^r = 0$ for all $u \in U, r \in R$.

If

$$[(u^2)^r, [u^2, s]], t] = 0, \text{ for all } r, s, t \in R, u \in U,$$

then $[(u^2)^r, [u^2, s]] \in Z$, i.e. $(u^2)^r[u^2, s] - [u^2, s](u^2)^r \in Z$. Put $\alpha = (u^2)^r[u^2, s]$ and $\beta = [u^2, s](u^2)^r$. Now, trivially we have $\alpha^2 = 0$ and $\beta^2 = 0$, so $(\alpha - \beta)^3 = \beta\alpha\beta - \alpha\beta\alpha$. Now, since $[(u^2)^r, [u^2, s]] \in Z$, then

$$[u^2, s][(u^2)^r, [u^2, s]] = [(u^2)^r, [u^2, s]][u^2, s].$$

By expanding and using Corollary 2 and Lemma 3 itself, we get

$$(8) \quad -[u^2, s][u^2, s](u^2)^r = (u^2)^r[u^2, s][u^2, s].$$

And also, from $[(u^2)^r, [u^2, s]] \in Z$, we get

$$(u^2)^r[(u^2)^r, [u^2, s]] = [(u^2)^r, [u^2, s]](u^2)^r.$$

Also, by expanding and using Lemma 3 and Corollary 2, we get

$$(9) \quad (u^2)^r(u^2)^r[u^2, s] = -[u^2, s](u^2)^r(u^2)^r.$$

Now,

$$\alpha\beta = ((u^2)^r[u^2, s])([u^2, s](u^2)^r).$$

By equation (8), we get

$$\alpha\beta = -[u^2, s][u^2, s](u^2)^r(u^2)^r,$$

by equation (9), we get

$$\alpha\beta = ([u^2, s](u^2)^r)((u^2)^r[u^2, s]) = \beta\alpha.$$

So, $(\alpha - \beta)^3 = 0$. Now, since R is prime ring and $\alpha - \beta \in Z$, then $\alpha - \beta = 0$, i.e.

$$(10) \quad [(u^2)^r, [u^2, s]] = 0, \text{ for all } r, s \in R, u \in U.$$

If we replace s by st in the equation (10), we get

$$[(u^2)^r, s[u^2, t]] + [u^2, s]t = 0.$$

By Jacobi's identities, we get

$$[(u^2)^r, s[u^2, t]] + [(u^2)^r, [u^2, s]]t = 0.$$

Also Jacobi's identities yields

$$s[(u^2)^r, [u^2, t]] + [(u^2)^r, s][u^2, t] + [(u^2)^r, [u^2, s]]t + [u^2, s][(u^2)^r, t] = 0.$$

In view of equation (10), the first and third terms of the last equation are zero so, we get

$$[(u^2)^r, s][u^2, t] + [u^2, s][(u^2)^r, t] = 0,$$

for all $r, s, t \in R$, $u \in U$. Put $s = [u^2, s]$ in last equation, we get

$$[(u^2)^r, [u^2, s]][u^2, t] + [u^2, [u^2, s]][(u^2)^r, t] = 0.$$

Again by equation (10), we get

$$[u^2, [u^2, s]][(u^2)^r, t] = 0, \text{ for all } r, s, t \in R, u \in U.$$

So,

$$[u^2, [u^2, s]]R[(u^2)^r, t] = 0.$$

Since R is prime ring, so either $[u^2, [u^2, s]] = 0$ or $[(u^2)^r, t] = 0$.

If $[u^2, [u^2, s]] = 0$ for all $s \in R$, $u \in U$, then by Theorem B we obtain that $u^2 \in Z$ and hence $(u^2)^r = 0$ for all $r \in R$, $u \in U$. In case $[(u^2)^r, t] = 0$, for all $t \in R$. i.e. $(u^2)^r \in Z$. Then by Lemma 3

$$(u^2)^r[u^2, r] = 0, \text{ for all } r \in R, u \in U.$$

So, if for some u and r , $(u^2)^r \neq 0$, since R is prime ring, then $[u^2, r] = 0$, so $u^2 \in Z$. We get $(u^2)^r = 0$. Hence $(u^2)^r = 0$, for all $u \in U$, $r \in R$. ■

Now, we can prove the main theorem in this paper which state:

THEOREM. *Let R be a prime ring of characteristic different from 2, U be a Jordan ideal of R and $T : R \rightarrow R$ be an additive mapping such that*

$$T(ur + ru) = uT(r) + T(r)u, \quad (*)$$

for all $u \in U$, $r \in R$. Then

$$T(ur) = uT(r), \quad \text{for all } u \in U, r \in R.$$

Proof. Replace r by ur in equation (*), then

$$(1) \quad T(uur + uru) = uT(ur) + T(ur)u$$

So,

$$(2) \quad T(uur + uru) = T(u^2r + uru) = T(u^2r) + uT(r)u$$

But, by Lemma 4

$$(u^2)^r = 0 = T(u^2r) - u^2T(r), \quad \text{for all } u \in U, r \in R,$$

i.e. $T(u^2r) = u^2T(r)$. So, equation (2) becomes

$$(3) \quad T(u^2r + uru) = u^2T(r) + uT(r)u.$$

By comparing equation (1) and (3), we get

$$\begin{aligned} u^2T(r) + uT(r)u &= uT(ur) + T(ur)u. \\ u(uT(r) - T(ur)) &= (T(ur) - uT(r))u. \\ u.(u)^r + (u)^r.u &= 0, \quad \text{for all } u \in U, r \in R. \end{aligned}$$

Linearizing the above equation on u , we get

$$u.(v)^r + v.(u)^r + (u)^r.v + (v)^r.u = 0.$$

Replace v by $2v^2$, and use Lemma 4, we get

$$2v^2.(u)^r + 2(u)^r.v^2 = 0,$$

i.e.

$$v^2.(u)^r + (u)^r.v^2 = 0, \quad \text{for all } u, v \in U, r \in R,$$

and so by Lemma 2, we get $(u)^r = 0$, for all $u \in U, r \in R$, i.e. $T(ur) = uT(r)$, for all $u \in U, r \in R$. ■

References

- [1] B. Zalar, *On centralizer of semiprime rings*, Comment. Math. Univ. Carolinae 32, V.4, (1991), 609–614.
- [2] I. N. Herstein, *Topics in Ring Theory*, Univ. of Chicago Press, Chicago, (1969).
- [3] I. N. Herstein, *Rings with Involution*, Univ. of Chicago Press, Chicago, (1967).
- [4] J. Vukman, *An identity related to centralizers in semiprime rings*, Comment. Math. Univ. Carolinae 40, V. 3, (1999), 447–456.
- [5] N. M. Shammu, *Some results on Jordan structure of prime rings*, Msc. Thesis from Baghdad University. College of Science, (1979).
- [6] R. Awtar, *Lie and Jordan structure in prime rings with derivation*, Proc. Amer. Math. Soc, V.(41), No. 1, (1973).
- [7] R. Awtar, *Jordan structure in semiprime rings*, Cand. J. Math.3, V. 28, No. 5, (1979), 1067–1072.

A. H. Majeed

DEPARTMENT OF MATHEMATICS
COLLEGE OF SCIENCE
BAGHDAD UNIVERSITY
BAGHDAD, IRAQ

Received June 5, 2006.