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QUASI-SYMMETRIC "IB -CATEGORIES 

Abstract. This paper deals with "IB-categories where "IB is a quantaloid obtained 
from a right Gelfand quantale Q. Quantale is non-commutative extension of concept of 
locale. A notion of sheaf for Q is introduced; it turns out that these sheaves are precisely 
quasi-symmetric skeletal Cauchy-complete "IB-categories. In particular if Q is a locale, 
this construction reduces to that given in "Sheaves and Cauchy-complete Categories" by 
R.F.C. Walters. 

1. Introduction 
Quantum theory asserts that most pairs of observations are incompati-

ble, and can not be made simultaneously (Principle of Non-commutativity 
of Observations) [2], Referring to this principle, in a well circulated note 
summarizing observations made during Category Meeting at Oberwolfach in 
September 1983 (a more developed form of this note was presented in Topol-
ogy Meeting in Taormina, Sicily in April, 1984 and was published in 1986 
[11]), C. J. Mulvey asks that with what rules of deduction are physical obser-
vations naturally manipulated. He proposes a logical operation & which is 
not to be assumed commutative. Citing few more instances, he conjectures 
that the logic which arises in these situations is the one characterized by a 
complete lattice together with an associative product which is distributive 
on both sides over arbitrary joins. He coins the term quantale for such lat-
tices. He gave a talk on Quantales in 27th meeting of Peripatetic Seminars 
on Sheaves and Logic at Institut Poincare, Paris in first week of March 1984. 
However, C. J. Mulvey himself [12] and some authors [16, 17] refer to [11] 
as the article which introduced the concept of quantale. C. J. Mulvey does 
not require a quantale to possess unit for the (possibly non-commutative) 
multiplication. Hence his quantales are semigroups in SUP, the closed cate-
gory of sup-lattices. He calls a quantale unital if it is equipped with unit for 
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multiplication [10, 13]. Unital quantales are monoids in SUP and what [17, 
20] refer to as quantales are unital quantales in the sense of Mulvey. An ex-
ample of unital quantale from [7] is the set of all sup-lattice endomorphisms 
of a sup-lattice S, joins of this quantale are calculated pointwise, its multi-
plication is composition and its unit is the identity map on S. The lattice of 
two sided ideals Tidl(R) of a (possibly noncommutative) ring R (with unit) 
is also a unital quantale with top element as unit. Lidl(R), the left ideals of 
R form a quantale with top as unit from left hand side. Similarly Ridl(R), 
the right ideals of R form a quantale with top as unit from right. For details 
see [16]. 

Let A be a unital C* algebra, then the closed linear subspaces of A form 
a unital quantale where join of a family of closed linear subspaces is given 
by taking the closure of algebraic sum, and the product & of any two closed 
linear subspaces of A is given by taking the closure of their algebraic product. 
Unit for this quantale is given by the closed linear subspace generated by 
the unit of A while the top element of this quantale is the C* algebra A 
itself. Thus the top element is different from the unit. Let us write this 
quantale as Max A. Those elements of Max A on which the top element (of 
Max A) acts as a unit on the right, are exactly the closed right ideals of A 
and again form a quantale with respect to operations of Max A. However 
this quantale may no longer be unital. For any closed right ideal I of A, 
we have / & / = I. Thus the closed right ideals of a C* algebra A form 
an idempotent quantale in which the top element acts as unit from right. 
Following [10] we shall call such quantale as right Gelfand quantale (some 
authors [9] call such lattices as right-sided idempotent quantales). Similarly 
the lattice of closed left ideals of a C* algebra is a quantale with respect to 
multiplication of left ideals; again the top element of the lattice is unit from 
left hand side. 

For an ordinary category C, the hom functors C(A, —) and C(—,B) 
take values in SET, the category of abstract sets and functions. Category 
theorists have studied categories for which the hom functors hom(A, -) and 
hom(-, B) take values in a more abstract category V and have built a the-
ory (called F-enriched category theory) which is parallel to ordinary cate-
gory theory in many ways provided V is symmetric, monoidal and closed. 
Such categories are called V-categories [4, 8]. Some examples from [8] are: 
the SET-c&tegory which is just an ordinary small category; the ^-category 
(where 2 is object of truth values) which is an ordinary poset; the /^-category 
is an ordinary (generalized) metric space where R is the category whose ob-
jects are the extended non-negative reals R+ U {oo} and the morphisms 
are the greater-than-or-equal-to relations, and an ordinary ring which is an 
^46-category with one object. 
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A very special category of this type is quantaloid whose hom-sets are 
sup-lattices in which composition distributes on both sides over arbitrary 
suprema of morphisms [16], thus a quantaloid is a SUP-category. For any 
object a of a quantaloid, the homset hom(a,a) is a unital quantale [15], 
hence a quantaloid with one object is a unital quantale as well. Simplest 
example of quantaloid is the category SUP. The category of relations in 
a Grothendieck topos is also a quantaloid [16]. Given a ring R (possibly 
non-commutative) with unit, a quantaloid with two objects 0 and 1 may be 
defined as having following hom-sets; hom(0,0) = additive subgroups of R, 
hom(0,1) = Lidl{R), hom{ 1,0) = Ridl(R) and hom( 1,1) = Tidl(R), the 
identity arrows on 1 and 0 are R and the center Z(R) of R respectively; de-
tails may be seen in [16, 17]. Another example of quantaloid is Relations(H) 
[21] for which objects are the elements of H and the hom-lattices are given 
by hom(u, v) = {w G H/w < u A « } where H is a locale. 

A F-functor / from F-category X to F-category Y assigns to every 
object a of X an object f(a) of Y and to every morphism of X(a, b), a 
morphism of Y(f(a), f(b)) subject to commutativity of certain well under-
stood diagrams. A bimodule from a ^-category X to a ^-category Y is a 
F-valued relation from X to Y (for this reason, bimodules are also called 
profunctors, as, roughly speaking, a bimodule is to a functor what a relation 
is to a mapping). Lawere [8] mentions that the bimodules are sometimes 
called profunctors if the base category V = SET. A bimodule is given by a 
F-functor <f> from Yop x X to V together with morphisms 

y(y', y) ® <f>(y, x) —• <f>(y', x), 

(j)(y, x) <g> X(x, x') —> 4>(y, x'). 
Here ® is tensor product in V which is just the cartesian product in case 

V is cartesian closed. A ^-functor X—> Y can be seen as a bimodule by 
postcomposing it with the obvious Yoneda embedding. 

Can we replace the symmetric monoidal closed category V by a general 
bicategory [1] B and develop a theory of B-categories? Answer to this ques-
tion is in affirmative and quite good work has been done in this direction 
[16-20]. A lattice (in fact any poset) can be considered as a category, hence 
a quantaloid which is a SUP-enriched category becomes a bicategory. In 
this paper we obtain a bicategory (a quantaloid) "IB from a right Gelfand 
quantale Q, then define a "IB -category and introduce notion of sheaf on 
Q. We then generalize the construction given in [21] and prove that these 
sheaves are quasi-symmetric skeletal Cauchy-complete "IB -categories. 

We begin the paper with definition of right Gelfand quantale and main 
results about such quantales, details of these results may be seen in [10, 14], 
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2. R i g h t Ge l f and quan ta l e s 
A right Gelfand quantale [10] is a complete lattice Q equipped with a 

binary operation (possibly non-commutative) k : Q x Q —> Q satisfying: 
i. p & V / « = V/(p & ® ) , ( V / « ) & P = V/(ffi & P) 
ii. (p k q) k r = p k (q k r) 
iii. p & p = p 
iv. p k 1 = p 

where 1 is the top element of Q. 
For any p G Q, the left and right distributive laws give two order preserv-

ing maps p k— : Q —> Q and —kp : Q —> Q and two types of implications 
[9, 14] p —> • — and p • —> — as their right adjoints respectively. Results 
about right Gelfand quantales are summed up in the following proposition, 
details may be found in [14]. 

PROPOSITION. For a right Gelfand quantale Q and p,p',q,q',r,v € Q, 

1. q < q' => p k q < p k q' 
2 , q < q ' ^ q k p < q ' k p 
3. p < p' , q < q' => p k q < p' k q' 
4. p k q < p 
5. p < q p — p k q 
6. p A q < p k q 
7. p k 0 = 0 k p = 0 
8. p < 1 k p 
9. r < p kq r = r k q 

10. r <p-y-q<Fr>pkr < q 
11. r < p • —> q r k p < q 
12. 1 • - > p = p 
13. 1 —> • p < p < p (where p = 1 k p) 
14. p k q k r = p k r k q 
15. Call p two-sided if p = p = 1 k p. A right Gelfand quantale Q is a 

locale if and only if every element of Q is two-sided. 
16. p k q — p A q 
17. If v is two-sided then p k v — p k (p —>•«). 
18. p k v k ( v —> • p) = v k p k ( v p ) and v < p —> • v. 
19. p —» • q is two-sided. 
20. i p — {r G Q | r < p} is a right Gelfand quantale with the induced 

operations. 
21. (p k q) —> • r = q —> • (p —> • r) holds but 

(p k q) —> • r — p —» • (q —» • r) may fail. 
22. p k (p —> • q) < p k q holds but p k q < p k (p —>• • may fail. 
23. (p —> • q) k (q —> • r) < p —» • r 
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24. A / (Pi ->•<!)= ( V / P i ) • 9 where {Pi M € I } C Q 
25. (p & <7) —> • r = q • (p —>• r) 
26. p &; (p —> -<7) < p k q, ( > holds if and only if p k q < q k p ) 
27. p < • q = 1 
28. p —> • q < p —> • q 
29. p —> • <7 = p • q 
30. (p q) k ( q ^ - p ) = (p • g) & (g • p ) p & 9 = 9 & P 
31. r < p =>• p —• • g < r —> • <7 
32. (p -f • g) & (r • u) < (p & r) • (9 & u) 
33. r & (p • 5) < p -»• • (q k r) 
34. r &; (p —• • <7) < (p & r) -» • q • 

Further references on quantales are [3, 5]. 

3. Quantaloids from right Gelfand quantales 
Prom a right Gelfand quantale Q we obtain a bicategory (1) "IB as fol-

lows. Ob I B : Elements of Q 
"IB(p, q) : {r G Q | r < p k q, r = p&r} 

so that 
Arrows: Elements r e Q such that r <p k q, r = p&r 
2-Cells: order in Q. 
The identity arrow of "IB (p,p) is p itself, we denote it by Ip. 
Composition: For p, q,r 6 Q 

l B ( p , q ) x l B ( q , r ) ^ X l B ( p , r ) 

(it, 1—• u k v 

(u < u', v < v') h-> u k v < u' k v'. 

Left identity for this composition is consequence of the condition 

r < p k q, r = p k r 

imposed on the elements r of "IB (p, q) and the right identity follows from 
the fact that r < p k q ^ r = r k q . 

We shall write v o u for u k v whenever u k v stands for composition 
of arrows. It is evident that "IB (p, q) is a complete sup lattice. "IB is 
therefore a SUP-enriched category that is a quantaloid. In [17] the author 
remarks that the quantaloid Relations(H) (as discussed above) equals its 
opposite. However the quantaloid "IB does not necessarily equal its opposite 
as p € "IB (p, q) and it is not necessary that p is also in "IB (q, p). 

The quantaloid "IB comes equipped with a contravariant functor, 

(—)* : "IB —»"IB 
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which is an involution, is identity on objects and induces covariant functor 

"IB (p, q) — I B (q, p) 

r i—> q & r 

r < r' h-> q Sz r < q & r'. 

4. "IB-categories and sheaves 

A "IB-category is a set X together with functions 

e : X — » O f c p B ) 

d : X x X —• Mor(TB) 

satisfying 
i. d(xi,x2) : e (xi ) —> e f a ) 

ii- h{x) < 
iii. d(x2,^3) 0^11,12) < d(xi,x3). 

A "IB-functor F : X —> Y is a function satisfying 
i. e{F(x)) = e{x) 
ii. d(x 1,^2) < d(F(xi), F(x2)) for all X\,X2 G X. 

A "IB-category X is said to be quasi-symmetric if 

{d(x',x))* = d(x,x') 

and skeletal if 

e(x) = e(x') = w and Iw < d(x,x'), Iw < d(x',x) x = x'. 

A bimodule ip : X —> V where X and Y are "IB-categories is a function 

<p : X x Y —• Mor "IB 

satisfying 
i. <p(x,y):e(x)—• e(y) 
ii. <p(x,y) o d(x',x) < tp{x',y) 

iii. d(y,y')cxp(x,y) < tp(x,y') for all x, x' € X and y, y' G Y. 

Given a bimodule tp : X —> Y, the mapping 

Y x X —• Mor "IB ; (y, x) (<p(x, y))* 

defines a bimodule ip* : Y —• X. We call ip self-adjoint (in notation 
tp : X ^ Y) if 

d(x, x') < \j <p*(y, x') o <p(x, y) 
y 

<p(x, y') o (p*(y, x) < d(y, y') for all x, x' G X and y, y' G Y. 

Any "IB-functor F : X —• Y gives rise to a self-adjoint bimodule F where 

F(x,y) = d(F(x),y). 
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Finally we define a "IB-category X to be Cauchy-complete if every self-
adjoint bimodule Y —> X arises from a IB-functor F : Y —> X. 

We shall write D(x,x'), y) for the elements representing d(x,x'), 

ip(x, y) in Q. Following definitions agree with [6] when Q is a locale. 
A presheaf on Q is a set A together with mappings 

E\A —>Q, [ :Q x A —• A 

satisfying 
i. ( E a ) I a — a 

ii. P [ (q [ a) = (p k q) [ a 

iii. E(p [ a) = p hEa. 

A morphism of presheaves is a mapping / : A —• B satisfying 
i. Ea = Ef(a) 

ii. f{p ia) =p [ f{a). 

E and \ induce a partial order -< on underlying set of a presheaf A given by 
a -< a! Ea < Ea' and a = Ea [ a'. 

Following lemma holds. 

LEMMA, a € A is join for B C A iff a is an upper bound for B and 

Ea = \/beBEb. m 

A presheaf A is a sheaf ii every compatible family has a unique join where 
B C A is compatible if Eb[b' = Ebk Eb' [ b for all 6, b' € B. 

We write Sh(Q) and QSC "IB-categories respectively for the categories, 
sheaves on Q and morphisms, and quasi-symmetric skeletal Cauchy-com-
plete "IB-categories and "IB-functors. 

5. Sheaves as "IB-categories 
To a sheaf A we assign a "IB-category LA with A as underlying set and 

e(a) = Ea, d(a, a') — Ea k. \J{p G Q \ p I a = p [ a!}. 

Note that each of D(a, a') [ a and D(a, a') [ a' is join for the compatible 
family 

{Ea k p [ a | p [ a = p [ a'} 

which is same as 
{E akp[ a'\ p[a — p[ a'}. 

Thus 
D(a, a') [ a = D(a, a') [ a'. 

The "IB-category defined above is quasi-symmetric, we have 

PROPOSITION. LA is Cauchy-complete and skeletal. 
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Proo f . Hip \ X LA then for any x € X the family {3>(x,a) [ a \ a € ^4} 
is compatible. Let x be its join so that 

Ex = \J a) and $(:r,a) [a ~< x for all a € A. 

aeA 

Now 
h{x) < x) < \J ip* (a, x) o <p(x, a) 

aeA 

thus 
Ex = <P(x,a) = Ex and <p(x,a) < d(x,a). 

aeA 

Further 
d(x, a) = d(x, a) o /e(i) 

< \J d(x,a)o <p*(a',x) o ip(x, a') 
a'eA 

< \J d(x, a) o d(a', x) o (p(x, a') as <p(x, a') < d(x, a') 
a'eA 

< \J d(a',a) oip(x,a') 

a'eA 

< (p(x, a). 

Thus ip(x, a) = d(x, a) and therefore <p arises from IB-functor 

X —• LA\ x i—• x. 

To see that LA is skeletal, suppose 

e(a) = e(a') = w 

and 
Iw < d(a, a') < d(a', a). 

Then 
Ea = D(a, a') and Ea [ a = D(a, a') [ a, 

hence 
a = D(a, a') [ a' = Ea [ a'. 

So that a -< a'. Similarly a' -< a. m 

On the other hand underlying set of quasi-symmetric skeletal Cauchy-
complete "IB-category X can be provided with presheaf structure as follows. 

For p G Q and x G X consider, u — p Ex and define a IB-category u 
with { * } as underlying set and e(*) — u, d(*, *) =u. We obtain a self-adjoint 
bimodule tp : u —> X given by 

</?(*, x') = p & D(x, x') 
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and hence a "IB-functor F : u —> X such that 

p & D(x, x') = for all x' e X. 

Uniqueness of F(*) follows from the fact that X is skeletal. 
Now define p [ x = F(*) and put E = e. We denote this presheaf by 

TX. 
Note that D(x,x') & D(x,x") and d(x',x") o d(x, x') determine same 

arrow in I B ( e ( x ) , e ( x " ) ) for all x,x',x" G X. 
Thus D(x,x') [ x = D(x,x') [ x' and hence 

D(x, x') = Ex k \J{p € Q | p [ x = p t x'}. 

Therefore LTX is just X. Further if b, b' are in a compatible family B C I 
then Eb & Eb' = D(b, b'), we have 

PROPOSITION. TX is a sheaf. 

P r o o f . Let B C X be compatible. Consider 

u = \J Eb, then ip : u —• X given by <p(*, x) = V&eB x) 
beB 

is self-adjoint bimodule. 
Let F : u —> X be corresponding "IB-functor. We assert that F(*)is 

unique join for B. Then 

\/ Eb = E(F(*)) 
beB 

is clear. Since Eb G "IB (Eb, F(*)) for any beB, therefore 

d(Eb [ F(*),x) = d(F(*),x) o Eb 

= y d(b',x) o(EbkEb') 
b'eB 

= y d(b',x) o d(b,b') 
b'eB 

< d(b, x). 

Thus b = Eb [ F(*) because X is skeletal. Therefore b -< F(*). Hence F(*) 
is join for B (Lemma). For uniqueness suppose c is another join for B then 

d(c, x) = d(c, x) o 7 e ( c ) 

— y d(c, x) o d(b, c) 
beB 

= V d(b,x). -
beB 
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The assignments L and T are functorial where for f : A — > B in 
Sh(Q), L f : L A — • L B ; a •—> /(a); and to a "IB-functor F : X — • Y 
we assign T F : T X — > T Y ; x i—> G(* ) where G : u — > T Y is given by 
self- adjoint bimodule u T Y ; ( * , y ) \—> F ( x , y ) ( here u = E x ). We have 
already noted that L T X = X , it is also clear that T re-determines [ of A 
for L A where A is a sheaf, so that T L A = A . Thus we have proved that 

THEOREM T h e C a t e g o r i e s S h ( Q ) a n d Q S C "IB -categories are i s o m o r p h i c , m 
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