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QUASI-SYMMETRIC 7B -CATEGORIES

Abstract. This paper deals with TIB-categories where 7B is a quantaloid obtained
from a right Gelfand quantale @. Quantale is non-commutative extension of concept of
locale. A notion of sheaf for @ is introduced; it turns out that these sheaves are precisely
quasi-symmetric skeletal Cauchy-complete TB-categories. In particular if Q is a locale,
this construction reduces to that given in ”Sheaves and Cauchy-complete Categories” by
R.F.C. Walters.

1. Introduction

Quantum theory asserts that most pairs of observations are incompati-
ble, and can not be made simultaneously (Principle of Non-commutativity
of Observations) [2]. Referring to this principle, in a well circulated note
summarizing observations made during Category Meeting at Oberwolfach in
September 1983 (a more developed form of this note was presented in Topol-
ogy Meeting in Taormina, Sicily in April, 1984 and was published in 1986
[11]), C. J. Mulvey asks that with what rules of deduction are physical obser-
vations naturally manipulated. He proposes a logical operation & which is
not to be assumed commutative. Citing few more instances, he conjectures
that the logic which arises in these situations is the one characterized by a
complete lattice together with an associative product which is distributive
on both sides over arbitrary joins. He coins the term quantale for such lat-
tices. He gave a talk on Quantales in 27th meeting of Peripatetic Seminars
on Sheaves and Logic at Institut Poincare, Paris in first week of March 1984.
However, C. J. Mulvey himself [12] and some authors {16, 17] refer to [11]
as the article which introduced the concept of quantale. C. J. Mulvey does
not require a quantale to possess unit for the (possibly non-commutative)
multiplication. Hence his quantales are semigroups in SUP, the closed cate-
gory of sup-lattices. He calls a quantale unital if it is equipped with unit for
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multiplication (10, 13]. Unital quantales are monoids in SUP and what [17,
20] refer to as quantales are unital quantales in the sense of Mulvey. An ex-
ample of unital quantale from [7] is the set of all sup-lattice endomorphisms
of a sup-lattice S, joins of this quantale are calculated pointwise, its multi-
plication is composition and its unit is the identity map on S. The lattice of
two sided ideals Tidl(R) of a (possibly noncommutative) ring R (with unit)
is also a unital quantale with top element as unit. Lid{(R), the left ideals of
R form a quantale with top as unit from left hand side. Similarly Ridl(R),
the right ideals of R form a quantale with top as unit from right. For details
see [16].

Let A be a unital C* algebra, then the closed linear subspaces of A form
a unital quantale where join of a family of closed linear subspaces is given
by taking the closure of algebraic sum, and the product & of any two closed
linear subspaces of A is given by taking the closure of their algebraic product.
Unit for this quantale is given by the closed linear subspace generated by
the unit of A while the top element of this quantale is the C* algebra A
itself. Thus the top element is different from the unit. Let us write this
quantale as Maz A. Those elements of Maz A on which the top element (of
Maz A) acts as a unit on the right, are exactly the closed right ideals of A
and again form a quantale with respect to operations of Maz A. However
this quantale may no longer be unital. For any closed right ideal I of A,
we have &I = I. Thus the closed right ideals of a C* algebra A form
an idempotent quantale in which the top element acts as unit from right.
Following [10] we shall call such quantale as right Gelfand quantale (some
authors [9] call such lattices as right-sided idempotent quantales). Similarly
the lattice of closed left ideals of a C* algebra is a quantale with respect to
multiplication of left ideals; again the top element of the lattice is unit from
left hand side.

For an ordinary category C, the hom functors C(A,—) and C(—, B)
take values in SET, the category of abstract sets and functions. Category
theorists have studied categories for which the hom functors hom(A4, -) and
hom(-, B) take values in a more abstract category V and have built a the-
ory (called V-enriched category theory) which is parallel to ordinary cate-
gory theory in many ways provided V is symmetric, monoidal and closed.
Such categories are called V-categories [4, 8]. Some examples from [8] are:
the SET-category which is just an ordinary small category; the 2-category
(where 2 is object of truth values) which is an ordinary poset; the R-category
is an ordinary (generalized) metric space where R is the category whose ob-
jects are the extended non-negative reals RT U {oo} and the morphisms
are the greater-than-or-equal-to relations, and an ordinary ring which is an
Ab-category with one object.
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A very special category of this type is quantaloid whose hom-sets are
sup-lattices in which composition distributes on both sides over arbitrary
suprema of morphisms [16], thus a quantaloid is a SUP-category. For any
object a of a quantaloid, the homset hom(a,a) is a unital quantale [15],
hence a quantaloid with one object is a unital quantale as well. Simplest
example of quantaloid is the category SUP. The category of relations in
a Grothendieck topos is also a quantaloid [16]. Given a ring R (possibly
non-commutative) with unit, a quantaloid with two objects 0 and 1 may be
defined as having following hom-sets; hom(0,0) = additive subgroups of R,
hom(0,1) = Lidl(R), hom(1,0) = Ridl(R) and hom(1,1) = Tidl(R), the
identity arrows on I and 0 are R and the center Z(R) of R respectively; de-
tails may be seen in [16, 17]. Another example of quantaloid is Relations(H)
[21] for which objects are the elements of H and the hom-lattices are given
by hom(u,v) = {w € H/w < u A v} where H is a locale.

A V-functor f from V-category X to V-category Y assigns to every
object a of X an object f(a) of Y and to every morphism of X(a, b), a
morphism of Y(f(a), f(b)) subject to commutativity of certain well under-
stood diagrams. A bimodule from a V-category X to a V-category Y is a
V-valued relation from X to Y (for this reason, bimodules are also called
profunctors, as, roughly speaking, a bimodule is to a functor what a relation
is to a mapping). Lawere [8] mentions that the bimodules are sometimes
called profunctors if the base category V = SET. A bimodule is given by a
V-functor ¢ from YP x X to V together with morphisms

Y, y) ® ¢(y,x) — ¢/, z),
o(y,z) ® X(z,2') — ¢(y,").

Here ® is tensor product in V which is just the cartesian product in case
V is cartesian closed. A V-functor X—— Y can be seen as a bimodule by
postcomposing it with the obvious Yoneda embedding.

Can we replace the symmetric monoidal closed category V by a general
bicategory [1] B and develop a theory of B-categories? Answer to this ques-
tion is in affirmative and quite good work has been done in this direction
[16-20]. A lattice (in fact any poset) can be considered as a category, hence
a quantaloid which is a SUP-enriched category becomes a bicategory. In
this paper we obtain a bicategory (a quantaloid) 7B from a right Gelfand
quantale @, then define a 7B -category and introduce notion of sheaf on
(. We then generalize the construction given in [21] and prove that these
sheaves are quasi-symmetric skeletal Cauchy-complete T1B -categories.

We begin the paper with definition of right Gelfand quantale and main
results about such quantales, details of these results may be seen in [10, 14].
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2. Right Gelfand quantales
A right Gelfand quantale [10] is a complete lattice @ equipped with a
binary operation (possibly non-commutative) & : Q x @ — @ satisfying:
i p&Via=Ve&e), (Via) &p=Vi(a&p)
ii. &g &r=p&(g&)
ii. p&p=p
iv. p&i1=1p
where 1 is the top element of Q.

For any p € @, the left and right distributive laws give two order preserv-
ingmaps p &— : Q@ — @ and —&p : Q — @ and two types of implications
[9, 14) p —» - — and p - — — as their right adjoints respectively. Results
about right Gelfand quantales are summed up in the following proposition,
details may be found in [14].

PROPOSITION. For a right Gelfand quantale Q and p,p’,q,¢',7,v € Q,

lLg<qd =>p&kqg<p&dq
2.9<q¢d =>q&p<Jd&p
3p<p,qe<qd =>p&kqg<p&q
4. p&q < p

5. p < q¢g=>p=pkyg
6.p ANg < pk

7. p&0=0&p =0

8.p <1&p

9.7r < p&q=>r =rkq

10.r <p—o-qepkr <gq

1.7 <p-— g r&p <gq

12. 1-— p =p

13.1 »-p<p<p (wherep =1&0p)

U p&kaq&r =p&kr&yqg

15. Call p two-sided if p=p = 1 & p. A right Gelfand quantale Q is a
locale if and only if every element of Q is two-sided.

16. p& q = p A §

17. If v is two-sided thenp & v = p & (p — - v).

8. p&kov&(v—o-p)=v&kp&(v --p) and v < p — - v.

19. p — - g 1is two-sided.

20. |p = {r € Q|r < p} is aright Gelfand quantale with the induced
operalions.

2. (p&qg)—>-r = q —-(p — 1) holds but
p&qg)—-r =p —- (¢ - r)may fail

22.p& (p »-9)< p&q holdsbutp & q < p& (p — - q) may fail.

2.0 > 9&@g—--1)<p—o-r
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24 At (pi—-9)= (Vypi) > -quhere{p; | i€ I} CQ

25. p&qg)—-r =qg—>-(p —-1)

26. p& (p—-q)< p&q, (> holdsifand onlyifp& q < q& p)
2. p < g&p—-q = 1

28.p - -q < p—-§

29.p 24 =p—>-4¢

30. p -9 &(@—p) = p—>-D&(@—-P)ep&kqg=q&kp
3l.r < p=2p—o-gq Lr—"-gq

32.p~ Q&(r—-u) < p&r)—-(g&u)

33.T&(p—>-q) < p—»-(q&fr)

M. r&(p—-q¢9< (pkr)—>-gn

Further references on quantales are [3, 5].

3. Quantaloids from right Gelfand quantales
From a right Gelfand quantale @ we obtain a bicategory (1) 7B as fol-
lows. Ob 7B : Elements of @

IB(p,q): {r€Q|r<p&gq, r=pkr}
so that
Arrows: Elements r € @ such that r < p & ¢, r = p&r
2-Cells: order in Q.
The identity arrow of 1B (p, p) is p itself, we denote it by .
Composition: For p, q,7 € Q

C kA 41
7B (p,9) x B(g,r) 2% B (p, 7)
(u,v) +— uw&w
@< v, v<Y) = w&v < W &Y.
Left identity for this composition is consequence of the condition
r<p&gq, r=pkr

imposed on the elements r of 1B (p, ¢) and the right identity follows from
the fact that r < p & g=>r=r&q.

We shall write v o u for u & v whenever u & v stands for composition
of arrows. It is evident that TIB (p, ¢) is a complete sup lattice. 7B is
therefore a SU P-enriched category that is a quantaloid. In [17] the author
remarks that the quantaloid Relations(H) (as discussed above) equals its
opposite. However the quantaloid 7B does not necessarily equal its opposite

as p € 7B (p, ¢) and it is not necessary that p is also in 7B (g, p).
The quantaloid 1B comes equipped with a contravariant functor,

(=)*:7 1B — 1B



522 M. Nawaz

which is an involution, is identity on objects and induces covariant functor
7B (p, ) — "B (g, p)
r—q&r
r<r'— q&r< q& 7.

4. TIB-categories and sheaves
A TIB-category is a set X together with functions
e : X — Ob(TB)
d : X x X — Mor(TB)

satisfying

i. d(z1,x2) : e(xz1) — e(x2)

ii. Ie(a:) < d(ZIJ,IL‘)

ii. d(z2,x3) o d(z1,z2) < d(z1,x3).
A TIB-functor F : X — Y is a function satisfying

i. e(F(z)) = e(x)

ii. d(z1,z2) < d(F(x1), F(x2)) for all 1,22 € X.
A TIB-category X is said to be quasi-symmetric if

(d(z', 2))* = d(z,2’)
and skeletal if
e(r)=e(')=w and I, <d(z,7), I, <d(z',z)=>z=1"
A bimodule ¢ : X — Y where X and Y are TIB-categories is a function
¢: X xY — Mor B

satisfying

L p(z,y) :e(z) — e(y)

i g(z,y)o d@,a) < p(a,y)

iii. d(y,yYop(z,y) < p(z,y) forallz,2’ € X and y,y’ € Y.
Given a bimodule ¢ : X — Y, the mapping

Y x X — Mor 1B ; (y,z) — (¢(z,y))*

defines a bimodule ¢* : Y — X. We call ¢ self-adjoint (in notation
p: X»Y)if

d(z,2') < \/ ¢*(¥,7) 0 p(z,9)

p(z,y') o p*(y,2) < d(y,y') forallz,z’ € X and y,y' € Y.
Any TIB-functor F : X — Y gives rise to a self-adjoint bimodule F where
F(z,y) = d(F(z),y).
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Finally we define a TIB-category X to be Cauchy-complete if every self-
adjoint bimodule Y — X arises from a TIB-functor F: Y — X.
We shall write D(z,z’), ®(z,y) for the elements representing d(z, '),
¢(z,y) in Q. Following definitions agree with [6] when Q is a locale.
A presheaf on @Q is a set A together with mappings
E:A—Q, |:QxA— A
satisfying
i. (Ea) =a
ii. | (g} )=(p&Q)La
iii. E'(p a) =p &FEa.
A morphism of presheaves is a mapping f : A — B satisfying
i. Ea = Ef(a)
i. f(pla)=pl f(a)
FE and | induce a partial order < on underlying set of a presheaf A given by
a<dad < Fa<Fad anda=FEa|d.
Following lemma holds.
LEMMA. a € A is join for B C A iff a is an upper bound for B and
Ea = \/ycp Eb. »

A presheaf A is a sheafif every compatible family has a unique join where
B C A is compatible if Eb | ¥ = Eb & EVY | b for all b, b’ € B.

We write Sh(Q) and QSC TIB-categories respectively for the categories,
sheaves on () and morphisms, and quasi-symmetric skeletal Cauchy-com-
plete TIB-categories and 1B-functors.

5. Sheaves as 1B-categories
To a sheaf A we assign a TIB-category LA with A as underlying set and

e(a) = Ea, d(a,a’) = Ea &\/{peQ |pla=p|d}.

Note that each of D(a,d’) | a and D(a,a’) | a’ is join for the compatible
family

{Ea&pla|pla=plad]}
which is same as ‘
{Ea&pld|pla=pld}.
Thus
D(a,d’) | a = D(a,d) | d'.
The TIB-category defined above is quasi-symmetric, we have

PROPOSITION. LA is Cauchy-complete and skeletal.
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Proof. If ¢ : X - LA then for any z € X the family {®(z,a) | a | a € A}
is compatible. Let T be its join so that

Ez=\/ ®(z,a) and ®(z,a)la<Z forallac A

acA
Now
Ie(a:) < d(.’L‘,(L’) < V tp*(a, ZZI) o (,0(.’1:,(1)
acA
thus
Ex = V ®(z,a) = EZ and ¢(z,a) < d(Z,a).
acA

Further

d(Z,a) = d(Z,a) o I(z)

< \/ d(z,a) o ¢*(a’,z) 0 p(x,a’)
a’€EA

< v d(z,a) o d(d',z)o p(z,d) as (z,d') <d(z,a)
a’€eA

<V d(d,0) opla,d)
a’'€A

< ¢(z,a).

Thus ¢(z,a) = d(%,a) and therefore ¢ arises from TIB-functor
X — LA; T+— .
To see that LA is skeletal, suppose

e(a) = e(d) = w

and
I, <d(a,d), I, < d(d,a).
Then
Ea= D(a,a’) and Ea|a= D(a,d)|a,
hence

a=D(a,d)|d =Ea|d.

So that a < a’. Similarly o’ < a. =

On the other hand underlying set of quasi-symmetric skeletal Cauchy-
complete TIB-category X can be provided with presheaf structure as follows.

For p € Q and z € X consider, u = p & FEx and define a TIB-category i
with {x} as underlying set and e(x) = u, d(x, *) = u. We obtain a self-adjoint
bimodule ¢ : 4 — X given by

o(*,2') = p & D(z,z’)



Quasi-symmetric 1B -categories 525

and hence a TIB-functor F : 4 — X such that
p & D(z,2') = d(F(*),2) for all 2’ € X.

Uniqueness of F(x) follows from the fact that X is skeletal.

Now define p | z = F(*) and put £ = e. We denote this presheaf by
TX.

Note that D(z,z') & D(z,z") and d(z’,z") o d(z,z’) determine same
arrow in 1B (e(z),e(z”)) for all z,z’,2" € X.

Thus D(z,z') | x = D(z,z’) | ' and hence

D(z,) = Ez &\[{peQ|plo=pla'}.
Therefore LT X is just X. Further if b, are in a compatible family B C X
then Eb & Eb = D(b, V'), we have
PROPOSITION. T'X is a sheaf.
Proof. Let B C X be compatible. Consider
u= V Eb, then ¢ : 4 — X given by ¢(*,z) = \/,cg D(b, z)
beB

is self-adjoint bimodule.
Let F : &« — X be corresponding TIB-functor. We assert that F(*)is
unique join for B. Then

\/ Eb= E(F(x))
beB
is clear. Since Eb € TIB (Eb, F(x)) for any b € B, therefore
d(Eb | F(x),z) =d(F(x),z) o Eb
=\ d¥,z) o (Eb& EV)
YeB
=\/ d(¥/,z) od(b,¥)
veB
< d(b, z).
Thus b = Eb | F(x) because X is skeletal. Therefore b < F'(x). Hence F(x)
is join for B (Lemma). For uniqueness suppose c is another join for B then

d(c,z) = d(c,z) 0 I

= v d(c,z) o d(b,c)
beB
= \/ db,z). =

beB
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The assignments L and T are functorial where for f : A — B in
Sh(Q), Lf : LA — LB; a — f(a); and to a TB-functor FF : X — Y
we assign TF : TX — TY; x — G(x) where G : ¢ — TY is given by
self- adjoint bimodule @& » TY; (*,y) — F(x,y) ( here u = Ex ). We have
already noted that LTX = X, it is also clear that T" re-determines | of A
for LA where A is a sheaf, so that TLA = A. Thus we have proved that

THEOREM The Categories Sh(Q) and QSC TIB-categories are isomorphic. w
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