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PSEUDO BCK-SEMILATTICES

Abstract. Pseudo BCK-algebras are algebras (A, —,~», 1) of type (2, 2,0) which gen-
eralize BCK-algebras in such a way that if the operations — and ~» coincide then (A4, —,1)
is a BCK-algebra. They can be also viewed as {—,~», 1}-subreducts of non-commutative
integral residuated lattices. In the paper, we study pseudo BCK-algebras whose un-
derlying posets are semilattices or lattices; we call them pseudo BCK-join-semilattices,
pseudo BCK-meet-semilattices and pseudo BCK-lattices, respectively. After describing
their congruence properties we deal mainly with prime deductive systems of pseudo BCK-
join-semilattices.

1. Preliminaries

In the last years there appeared a number of algebraic structures which
are non-commutative generalizations of known algebras related to logic such
as pseudo MV-algebras, pseudo BL-algebras, pseudo MTL-algebras (also
called weak pseudo BL-algebras), non-commutative residuated lattices, etc.
In the logical context this means that the strong conjunction is not commu-
tative and the implication splits into two ones. Accordingly, G. Georgescu
and A. Torgulescu [6] introduced pseudo BCK-algebras as an extension of
BCK-algebras:

DEFINITION 1.1. A structure (A, <,—,~», 1), where < is a binary relation
on A, — and ~ are binary operations on A, and 1 is a distinguished element
of A, is called a pseudo BCK-algebra (pedantically, a reversed left pseudo
BCK-algebra [10]) if it satisfies the following axioms, for all z,y, z € A:

MDz—-ys(y—2)~(E—2,z~y<(y~2) = (z~ 2),
Mz<(z—y)~y,z<(z~y) -y,
(1) z < z,
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(Iv) z <1,

(V) z <yand y <z imply z =y,

(V) z<yiffz—oy=1ifz~y=1.

This definition is adopted from [10]. It is clear that pseudo BCK-algebras
can be treated as pure algebras with binary operations — and ~», and a
constant 1, since the relation <, which is always a partial order with 1 as
a greatest element, can be retrieved by (VI). Namely, if (4, <, —,~,1) is
a pseudo BCK-algebra then the algebra (A, —,~, 1) satisfies the following
identities and quasi-identity:

(1.1) @—y)~[y—2)~(z—2)]=1,
(1.2) @~y) = y~2) - (z~2))=1
(1.3) l-z=z,
(1.4) 1~ 1 =g,
(1.5) z—1=1,
(1.6) (zoy=1&y—z=1) = z=y.

Conversely, if (A, —,~+, 1) is an algebra of type (2, 2, 0} satisfying (1.1)—(1.6)
then the relation defined by z < y iff z —» y =1 (iff z ~ y = 1) is a partial
order on A which makes (4, <, —,~»,1) a pseudo BCK-algebra.

Thus the class of all pseudo BCK-algebras—considered as algebras of
type (2,2,0)—is a quasi-variety. Since BCK-algebras agree with pseudo
BCK-algebras satisfying —=~», and BCK-algebras are not closed under
homomorphic images, it follows that neither are pseudo BCK-algebras, and
hence this quasi-variety is not a variety.

By a bounded pseudo BCK-algebra we mean an algebra (A, —,~»,0,1)
such that (A, —,~»,1) is a pseudo BCK-algebra the least element of which
is 0.

The partial order < given by (VI) has no particular properties because
an arbitrary poset (P, <) with a greatest element 1 becomes a BCK-algebra
by setting z — y = 1 for z < y, and £ — y = y otherwise. Nevertheless, it
may happen that the underlying poset of a given pseudo BCK-algebra is a
semilattice or even a lattice which is the case that we are interested in.

A pseudo BCK-join-semilattice is an algebra (A,V,—,~» 1) such that
(A, V) is a join-semilattice and (A, —,~+, 1) is a pseudo BCK-algebra, where
z—y=1iff zVy = y. It can be easily seen that an algebra (A, V, —,~,1)
of type (2,2,2,0) is a pseudo BCK-join-semilattice if and only if (A4,V) is a
join-semilattice and it satisfies the identities (1.1)—(1.5) and
(1.7) zV(z—y) ~yl=(-y ~y
(1.8) z—(xzVy) =1
Therefore, the class of all pseudo BCK-join-semilattices forms a variety.
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Pseudo BCK-algebras and pseudo BCK-join-semilattices are strongly re-
lated to residuated lattices (see [12], [13]). Actually, every pseudo BCK-
algebra is isomorphic to a {—,~», 1}-subreduct of some (bounded integral)
residuated lattice, where also existing finite joins are preserved, and hence
every pseudo BCK-join-semilattice arises as a {V,—,~», 1}-subreduct of a
residuated lattice.

We say that a pseudo BCK-algebra (A, —,~»,1) is commutative if it
satisfies the identities

(1.9) (z—=y)~y=(Yy—2z)~,
(1.10) (E~y)—y=@y~z) -z

The underlying poset (A4, <) is then a join-semilattice with
(1.11) zVy=(@@—-y)~y=(c~y) -y,

so that commutative pseudo BCK-algebras are a particular case of pseudo
BCK-join-semilattices. Moreover, for each a € A, the interval [a, 1] is a dis-
tributive lattice in which z A,y = ((z ~ a) V (y ~ a)) — a = ((z — a)
V(y —a))~a.

The name commutative may seem to be misleading since pseudo BCK-
algebras are non-commutative generalizations of BCK-algebras, but we use
it as an obvious counterpart of well-known commutative BCK-algebras.

It was proved in [6] that bounded commutative pseudo BCK-algebras
(called here lattice-ordered pseudo BCK-algebras) are termwise equivalent
to pseudo MV-algebras—non-commutative generalizations of MV-algebras
introduced by G. Georgescu and A. Iorgulescu [5] and independently by J.
Rachunek [16]. The equivalence with the standard signature {®,”,~,0,1} is
given as follows: if (4, —,~»,0,1) is a bounded commutative pseudo BCK-
algebra and we put @y =(z~0) »y=(y > 0)~z, 2z~ =z — 0 and
™~ =z~ 0, then (4,8,7,~,0,1) is a pseudo MV-algebra, and the reverse
passage from (A4,®,”,~,0,1) to (4,—,~,0,1)isgiven by x my=2" Dy
andz~y=ydzx™.

Another equivalent of bounded commutative pseudo BCK-algebras rep-
resent R. Ceterchi’s pseudo Wajsberg algebras (see [2]) which are algebras of
signature {—,~»,~,~,1}. As pseudo MV- and pseudo Wajsberg algebras
are termwise equivalent, one readily sees that whenever (A, —,~,0,1) is a
bounded commutative pseudo BCK-algebra then (A4, —,~,~,~,1)—where
z~ =z — 0and ™ = r ~ 0—is a pseudo Wajsberg algebra, and conversely,
if (A,—,~,7,~,1) is a pseudo Wajsberg algebra then (4, —,~,0,1) is a
bounded commutative pseudo BCK-algebra with 0 =17 =1~

A pseudo BCK-meet-semilattice is an algebra (A, A, —,~»,1) such that
(A, A) is a meet-semilattice, (A, —,~», 1) is a pseudo BCK-algebra and z —
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y =1iff z Ay = z. It is not hard to show that an algebra (A4,A, —,~,1)
of type (2,2,2,0) is a pseudo BCK-meet-semilattice if and only if (A4, A) is
a meet-semilattice and it satisfies the identities (1.1)—(1.5) and

(1.12) zA[(z—y)~yl =z,
(1.13) (zAy) —>y=1.

As a particular kind of these pseudo BCK-algebras we can mention hoops
and pseudo hoops (see [1], [7]) that are naturally ordered integral residuated
partially ordered monoids. Indeed, given a pseudo hoop (4,®,—,~,1),
then (A, A,—,~,1) is a pseudo BCK-meet-semilattice in which z Ay =
z® (z ~ y) = (z — y) © z. Note that this is a pseudo BCK-algebra with
the condition (pP) in the sense of [10], i.e., rQy=min{fa € A: z <y —
a} =min{a € A:y <z~ a} for all z,y € A.

Finally, an algebra (A,V,A,—,~,1) is called a pseudo BCK-lattice if
(A,V,A) is a lattice, (A, —,~,1) is a pseudo BCK-algebra and z —» y =1
iffzvy =y (iff z Ay = z). Pseudo BCK-lattices form a variety that
is axiomatized by the identities (1.1)—(1.5), (1.7) and (1.8), or (1.1)—(1.5),
(1.12) and (1.13), respectively, and by the identities of lattices.

Of course, any pseudo MV-algebra is a (bounded commutative) pseudo
BCK-lattice. Also pseudc hoops can provide an example of pseudo BCK-
lattices: By a Wagjsberg pseudo hoop (7] we mean a pseudo hoop satisfy-
ing the equations (1.9) and (1.10). The {—,~», 1}-reduct of a Wajsberg
pseudo hoop is a commutative pseudo BCK-algebra and, consequently, every
Wajsberg pseudo hoop is a distributive lattice in which (1.11) holds for all

Z,Y.

In the lemma below we list some basic properties of pseudo BCK-algebras
that can be easily derived and will be used without explicit references:

LEMMA 1.2. The following hold in every pseudo BCK-algebra:

Dz (y~2)=y~(z—2),

2)y<z—oyy<zVy,

1oz=z1~vz=2,

) E—y)~ylmy=z—y [(zvy) oyvy=z~y,
Jrx—oy<(z—a)—=(2—y),zvy<(zvx)~ (2vy),

) x <y impliesz—z<z—yandy — z <z — z, the same for ~,
) of Vicr Ti exists then so does N;c;(z; — y) and

(V=) ~3= e

iel el

(
(4
(5
(6
(7

and the same holds for ~+.
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2. Deductive systems and congruence kernels

Deductive systems play an important role in the study of BCK-algebras.
The analogue for pseudo BCK-algebras was introduced in [9]:

Let (A, —,~,1) be a pseudo BCK-algebra. We call D C A a deductive
system if

(DS1) 1€ D,
(DS2) for all a,be D,ifa€ D and a — b€ D, then b€ D.

The condition (DS2) is equivalent to saying that ¢« € D and a ~ b € D
together imply b € D. Moreover, every deductive system D of (4, —,~,1)
is an order-filter in (A, <), i.e., D contains with any a also all b > a.

The set DS(A) of all deductive systems of (A, —,~», 1), partially ordered
by inclusion, is an algebraic distributive lattice in which infima coincide with
set-theoretical intersections. For any @ # X C A, the set

DX)y={acA:z1 > (... > (xzn —a)...)=1
for some z1,...,z, € X and n € N}

is the smallest deductive system containing X. We write D(z1,...,z,) for
D(X) when X = {z1,...,z5}.
For any z,y € A and n € Ny, we define z —" y inductively as follows:

+1

t-y=y, z-"My=2-(z->"y);

x ~" y is defined analogously.
Hence for every x € A,

D(z)={a€ A:z —>" a=1 for some n € N}.

A deductive system D of a pseudo BCK-algebra (A, —,~», 1) is said to
be compatible provided

(DS3) foralla,be A,a—beDiffa~be D.

The compatible deductive systems agree with the congruence kernels. As a
matter of fact, if D is a compatible deductive system then the relation Op
given by

(2.1) (a,b)cOp ff a—beDandb—aeD

is a congruence whose kernel is D, i.e., [llo, ={a € A: (a,1) € ©p} = D.
Conversely, the kernel [1l]g = {a € A : (a,1) € ©} of every congruence ©
certainly is a compatible deductive system, however, it may occur that © is
not determined by [l]e, i.e., © # Oy,

Therefore, the lattice CK(A) of all compatible deductive systems (=
congruence kernels) of a pseudo BCK-algebra (A4, —,~», 1), in general, is
not isomorphic to the congruence lattice Con(A).
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2.1. Pseudo BCK-join-semilattices. We begin with recalling several
universal algebraic notions (see e.g. [3]):

An algebra A from a variety ¢ with a constant 1 is weakly regular if,
for every ©,® € Con(A), [1le = [1]¢ implies © = &. ¥ is weakly regular
if and only if there exist binary terms di,...,d, for some n € N such that
di(z,y) = --- = dn(z,y) is equivalent to x = y.

We say that A is permutable at 1 if [1]eos = [1]aoe for all ©,® € Con(A).
It is known that A is permutable at 1 if and only if [1]eve = [1]ecs for all
©,® € Con(A).

An algebra A is distributive at 1 if [1]gn@ve) = [(ens)v(eny) for all
©,d,¥ € Con(A), and A is arithmetical at 1 if it is both permutable at 1
and distributive at 1. A variety J¢ is arithmetical at 1 if and only if there
exists a binary term t satisfying t(x,z) = ¢t(1,z) = 1 and t(z, 1) = z.

In [9] we proved that every variety of pseudo BCK-algebras is weakly
regular and arithmetical at 1, and hence congruence distributive. The terms
we used in [9] are di(z,y) = x — y and do(z,y) = t(z,y) = y — z, thus
also pseudo BCK-join-semilattices enjoy the mentioned properties:

THEOREM 2.1. The variety _Z of all pseudo BCK-join-semilattices is weakly
regular, arithmetical at 1 and congruence distributive.

Although the join operation V in pseudo BCK-join-semilattices is not
a term operation in — and ~», it turns out that the congruence kernels
still are precisely the compatible deductive systems. In addition, since the
variety _# is weakly regular, there is a one-to-one correspondence between
the congruence relations and the compatible deductive systems:

THEOREM 2.2. Let (A,V,—,~,1) be a pseudo BCK-join-semilattice. If D
is a compatible deductive system then the relation ©p defined via (2.1) is a
congruence on (A,V,—,~ 1) such that [1]e, = D. Conversely, for every
O € Con(4), [l]e is a compatible deductive system and O, = ©.

Proof. Let D be a compatible deductive system of A. By [9], Op is an
equivalence relation which is compatible with — and ~», and [1]g, = D. It
remains to show that ©p is compatible with V, too.
Suppose that (a,b) € Op, i.e.,a = b € D and b — a € D. For any
c € A, we have
(ave)— (bVe)=(a— (bVe))A(c— (bVe))
=(a—(bVe)Al
=a—(bVe)
>a — b,
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so that (aVe) —» (bVe) € D since a — b € D. Analogously, we get
(bVe) — (aVe) € D, and hence (a Ve, bVe) € Op proving Op € Con(A).

Conversely, if © € Con(A) then certainly [1]e is a compatible deductive
system. Since ¢ is weakly regular and [1]g is the kernel of both © and
O[1)e, it follows that © = Oy, =

Thus, for every pseudo BCK-join-semilattice (A4,V,—,~, 1), the lat-
tice CKC(A) of all compatible deductive systems and the congruence lattice
Con(A) are isomophic under the inverse mappings D — ©p and ©  [l]g.

PROPOSITION 2.3. Let (A,V,—,~,1) be a pseudo BCK-join-semilattice.
Then CK(A) is a complete sublattice of DS(A).

Proof. We start with proving that CKC(A) is a sublattice of DS(A), i.e., we
show that

(1]e Vex (e = [le Vs [1e

for every ©,® € Con(A). Clearly, [1]e Vps [1]e C [1]e Vek [1]e. Conversely,
take any a € [1)e Ve [1]e = [1leve = [1]eos. Then there exists b € A such
that (a,b) € © and (b,1) € ® . Since (a,b) € © yields (b — a,1) € O, we
have b — a € [l]e and b € [1] which along with b~ ((b — a) ~ a) =1
means that a € D([1]e U [1]s) = [1]e Vs [1]s.

Now, let {©; : ¢ € I} be an arbitrary family of congruences on A. First
of all, note that for every n € N, n > 2, we have [1l]g,v..ve, = [1]e,0--00,;
this easily follows by induction on n from the permutability at 1.

Put © = Vo {6:i : ¢ € I}. It is clear that \/pg{[lle, : ¢ € I} C
Vex{lle, @i € I} = [1]e. Conversely, let a € [1]e. Then a € [1]g, o.c0;, =
[1]61'1\/"'\/61'-,;, for some i1,...,i, € I, n € N. But we already know that
CK(A) is a sublattice of DS(A), therefore a € [llg, v..ve,, = [llo, Vcx
- Vex [lle,, = [e,, Vs -+~ Vps [le,,. This proves [1Je C Vps{(lle, :
1€ I}. ]

Let (A, —,~»,1) be an arbitrary pseudo BCK-algebra and @ # X C A.
The set ‘

(X)={a€A:a—-z=zforall z € X}

is called the annihilator of X. We proved in [9] that (X) € DS(A) and,
moreover, if D € DS(A) then (D) is the pseudocomplement of D in the
lattice DS(A).

We show next that in case of pseudo BCK-join-semilattices, the pseudo-
complements in DS(A) can alternatively be characterized as the so-called
polars:

Given a pseudo BCK-join-semilattice (A4,V,—,~,1), by the polar of
& # X C A we mean the set
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XS={acA:avz=1foralz e X}

We write 20 instead of {z}°. It is easily seen that X® = {2 : z € X};
other obvious properties are:

(a) X C X%
(b) X CY implies X% D Y?,
(c) X% = X9

PROPOSITION 2.4. Let A be a pseudo BCK-join-semilattice. For every @ #
X C A, we have X® € DS(A) and X® = D(X)°. In addition, D° = (D)
whenever D € DS(A).

Proof. Take z € X and assume that a € z° and a — b € z°. Then
a >b<a— (bVz)impliessl =(a ->b) Ve <(a— (bVa))Vaz, so
(a — (bvz))Vz =1. Buta — (bVz) > bvz > z, and hencea — (bvz) =1,
ie,a<bVz Thisyieldsl=avz<bVzand bVz =1 proving b € z0.
Thus z® € DS(A), and consequently, X = ({z’ : x € X} € DS(A).

Now, let a € X¢. Then a® D X% D X whence it follows a® D D(X) as
ad is a deductive system. Therefore a € a®® C D(X)? showing X® C D(X)?.
The other inclusion is a consequence of X C D(X).

Finally, assume that D is a deductive system of A. Let a € D®. Then
z=1—-2=(aVz) > z=a— zfor every z € D, so that a € (D).
Conversely, if a € (D) then for each z € D we have a V z € D, and hence
l=a— (aVz)=aVz,soac D’ u

Observe that for a non-empty subset X which is not a deductive system
we have X® C (X) since aVx = 1 yields z = (a Vz) —» £ = a — z, but the
polar X? can differ from the annihilator (X):

EXAMPLE 2.5. The set A = {0,a,b,1} equipped with the operations —
and ~ given by the following tables is a pseudo BCK-join-semilattice where
0<a<b<l:

- [0 a b 1 ~ 0 a b 1
0i1 1 1 1 0|1 1 1 1
ala 1 1 1 ai{b 1 1 1
bla a 1 1 bt10 a 1 1
110 a b 1 110 a b 1

One readily sees that a® = {1}, while (a) = {b,1}.
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2.2. Pseudo BCK-meet-semilattices and pseudo BCK-lattices. This
subsection is devoted to deductive systems of pseudo BCK-algebras which
are meet-semilattices or lattices, respectively. The presence of the meet
as a fundamental operation brings new congruence properties of these two
varieties:

THEOREM 2.6. The variety # of all pseudo BCK-meet-semilattices and the
variety £ of all pseudo BCK-lattices are weakly regular and arithmetical.

Proof. The term
m(z,y,2) = ((z 2 y) ~» ) A (22 y) ~» ) A((z — 2) ~ 2)
is the Pixley term for .# as well as for .. Indeed, we have
m(z,y,9) = (x> y) ~» YAy = y)~» ) A (z - y)~y)
=(z—-y)~yArz
m(z,y,z) = ((z - y) ~ ) A ((z = y) ~ 2) A ((z = 7) ~ )
(z—=y)~z)AZ

T

and

mw,9,2) = (4 = ) ~ &) A (@ = 9) ~ 9) A (v — 2) ~ 2)
—zA (@ —y)~ ) Ay~ )~ 2)

The description of congruence kernels in the varieties .# and % is
slightly more complicated than in case of pseudo BCK-join-semilattices.
Specifically, a compatible deductive system is not necessarily a filter in the
underlying meet-semilattice and hence not all compatible deductive systems
are congruence kernels, and on the other hand, a compatible deductive sys-
tem which is a filter need not be a congruence kernel:

EXAMPLE 2.7. Consider the BCK-lattice (4, V, A, —,1) from Figure 2.1(a)
with the operation — given as follows:

— [0 a b ¢ 1
0/1 1.1 11
a |0 1 ¢ 1 1
b0 a 1 1 1
c |0 a ¢ 1 1
10 a b ¢ 1
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(a) (b)
Fig. 2.1.

Then the equivalence relation © with the partition {0}, {a,b, ¢, 1} is a con-
gruence on (A4,V,—,1), but © is not a lattice congruence and its kernel
{a,b,c,1} is not a lattice filter.

ExaMPLE 2.8. Let (A,V,A,—,1) be the BCK-lattice as shown in Fi-
gure 2.1(b), where ¢ — y = 1 if z < y, and £ — y = y otherwise, i.e.,
— is given by the table

- [0 a b ¢ 1
o1 1 1 1 1
a0 1 b 1 1
b |0 a 1 ¢ 1
c|0 a b 1 1
1({0 a b ¢ 1

The set D = {¢, 1} is a filter and also a compatible deductive system, but
it is not a congruence kernel. Indeed, suppose that D = [l]g for some
congruence O on (A4, V, A, —,1). Then (0,b) = (cAb,1Ab) € © which yields
(0,1) = (b — 0,b — b) € O, a contradiction.

Note that the congruence ©p on (A,V, —,1) defined via (2.1) has the
partition {0}, {a}, {b}, {¢, 1}.
THEOREM 2.9. Let (A, A, —,~,1) be a pseudo BCK-meet-semilattice. Let
D be a compatible deductive system satisfying the following additional con-
dition:
(DS4) foralla,b,c€ A, ifc >a€ D andc— b€ D, thenc — (aAb) € D.
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Then the relation ®p defined by
(2.2) (a,b) e ®p iff (a—b)A(b—a)eD

is a congruence on (A, A, —,~,1) with [1]e, = D.
Conversely, for every congruence © on (A, A, —,~,1), the kernel [1]g
is a compatible deductive system satisfying (DS4) and we have ®;, = ©.

Proof. Let D be a compatible deductive system that fulfils (DS4). First
of all, when putting ¢ = 1 in (DS4) we get that D is a filter. Therefore
(a,b) e @piff (a = b)A(b—a)e Diffa — b,b— a € Diff (a,b) € Op, so
that ®p = ©p and hence ®p is a congruence relation on (A, —,~», 1) the
kernel of which is D. We show that ®p is compatible with A.

Let (a,b) € ®p, c € A. We have (aAc) > c=1€ D and (aAc) > b€ D
since (a Ac) — b>a — b e D. By (DS4) this implies (a Ac) — (bAc) € D.
Analogously, (bAc) — (aAc) € D,and so (aAc,bAc) € Pp.

Conversely, let © € Con(A). It is clear that [1]g is a compatible de-
ductive system. We prove that it enjoys the property (DS4). Assume that
(¢ — a,1) € © and (¢ — b,1) € ©. Then ((c — a) ~ a,a) € © whence
(c,ena) = (cA((c — a)~ a),cAa) € O, and similarly, (¢,cAb) € ©. Thus
(c,a AbAc) € © which entails (¢ — (aAb),1) =(c— (aAb),(aNbAc)—
(and)) € 0.

Consequently, since [l]g is the kernel of © as well as of @[y, it follows
that © = ‘13‘[1]8. (]

The same result holds for pseudo BCK-lattices:

THEOREM 2.10. Let (A,V,A,—,~,1) be a pseudo BCK-lattice. If D is a
compatible deductive system satisfying the condition (DS4) then the relation
®p defined by (2.2) is a congruence on (A, V, A, —,~», 1) such that (1], =D.
Conversely, for every congruence © on (A,V, A, —,~, 1), the kernel [1]g
is a compatible deductive system satisfying (DS4) and we have &), = ©.

3. Prime deductive systems

In this section we are concerned with those deductive systems of pseudo
BCK-join-semilattices which are meet-prime elements of the lattice of de-
ductive systems.

Let (A,V,—,~,1) be a pseudo BCK-join-semilattice. We say that a
deductive system P of A is prime if for every X, Y € DS(4), X NY C P
implies X CPorY CP.

Because of the distributivity of the lattice DS(A), the meet-primeness
coincides with the meet-irreducibility, so that P € DS(A) is prime if and
only if, for all XY € DS(A), P= X or P=Y whenever P=XNY.
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THEOREM 3.1. Let (A,V,—,~,1) be a pseudo BCK-join-semilattice. Let
D € DS(A) and let I be an ideal in the join-semilattice (A,V) such that
DNI=g. Then there exists a prime deductive system P satisfying D C P
and INP =g.

Proof. A routine application of Zorn’s lemma yields that the set of all
deductive systems having the required properties has a maximal element,
say P. Assume that P=XNY for X, Y €e DS(A) withPC X and PCY.
Then INX # @ and INY # @ in view of the maximality of P, so there exist
ze€lINXand yeINY whenceit followszVyeINXNY =INP =g,
a contradiction. Hence P is a prime deductive system. =

COROLLARY 3.2. Let (A,V,—,~,1) be a pseudo BCK-join-semilattice.

(1) If D e DS(A) and a € A\ D then D C P and a ¢ P for some prime
deductive system P of A.

(2) Every deductive system of A is the intersection of all prime deductive
systems containing it.

Proof. (1) Ifa ¢ D then DN (a] = &, where (a] = {x € A:z < a}is
an ideal in (A4, V), hence there exists a prime deductive system P such that
DCPand PNn(a]=2,ie a¢P.

(2) This follows easily from (1). =

The following technical lemma comes in useful:

LEMMA 3.3. Let A be a pseudo BCK-join-semilattice. If t ™ a =1 and
y—"a=1 form,n €N, then (zVy) =" a=1 for somer € N. The same
holds also for ~.

" a, and hence we

Proof. First note that m < n entailsx ™ a <z —
may assume that m = n.

By inductionon n € N. Forn=1wehavez - a=y — a =1, so
z,y < a whence z V y < a which is equivalent to (z Vy) — a = 1. Thus
r = 1. Suppose that the statement holds for all k¥ € N with £ < n. Let
z -»"l g =y "t g = 1. From y —"*! a = 1 we obtain y — (y ~" a) =

1, hence
@1 y—o@~»"Ey~"ae)=z~>" (@Yo~ a)=z~"1=1

From y ~" a > a it follows £ ~"t1 (y ~" a) > z ~"*! ¢ = 1, so that
z ~"+1 (y ~7™ g) = 1 which yields

(3.2) z— (z~" (y~"a) =1
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Now, by the first induction step and by (3.1), (3.2), we conclude that
z~" (y~" ((zVy) —a)) =(zVy) - (@~" (y~"0a)) =1,

and therefore

(3.3) z— (@~ [y~ ((eVy) —a)) =1

Further, (z Vy) — a > a entails y =" ((zVy) »a) >y > a=1,s0
that y —»"*! ((zVy) — a) = 1 which is equivalent to y — (y ~" ((zVy) —
a)) = 1. Hence

(34) y— (@~""(y~" ((zVy) —a) =

n—1 (y_)(y,v)n ((a:Vy)—*a)) =z~"11=1.

=z~
Again by the first induction step, from (3.3) and (3.4) we obtain
z~o" (y~o" (2 Vy) - a) =
=(@Vy) ~ @~"" y~" ((eVy) —a)) =1,
whence
(3.5) z—(z~"2 (y~" (2 Vy) -7 a) = 1.

Analogously, (z V y) =2 a > a implies y —"*! ((z Vy) =2 a) > y -"!

a = 1, and consequently, y — (y ~" ((z V y) =2 a)) = 1. This yields
(36) y— (z~"2 (y~" ((zVy) -%a)) =
=z~"2 (y - (y~" (eVy) 22 a)) =z~ 1=1
By (3.5) and (3.6),
z~"72 (y~" (2 Vy) - a)) =

=(@Vy - @~"?(y~" ((avy) -*a) =1
By repeating this procedure we gain

y~" ((zVy) -"a) =1,

and equivalently,

3.7 y—-" ((zVy) »"a)=1.
(

When interchanging x and y we have

3.8 z—-"((zVy) -"a)=1.
(

Now we can apply the induction hypothesis to (3.7) and (3.8), so there exists
s € N such that (I \% y) —S ((.’L‘ \% y) —ntl a,) = 1 and hence (.’L’ Vy) —stntl
a=1ie,r=s4+n+1. =
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PROPOSITION 3.4. Let (A,V,—,~,1) be a pseudo BCK-join-semilattice.
Then

D(z) N D(y) = D(z Vy)
for every x,y € A.
Proof. It is plain that D(z Vv y) C D(z) N D(y) since z Vy € D(z) N D(y).
Conversely, a € D(z) N D(y) if and only if z >™ a=1and y 2" a =1
for some m,n € N. But by the previous lemma there is r € N such that
(zVy)>"a=1,s0a€ D(zVy). Hence D(z)ND(y) CD(xVy). =

PRrROPOSITION 3.5. For any pseudo BCK-join-semilattice A, the compact
elements of DS(A) form a sublattice of DS(A).

Proof. Let X,Y be two compact elements of the lattice DS(A), i.e., X =
D(x1,...,2m) and Y = D(y1,...,yn) for some z;,y; € A, m,n € N. Due
to the distributivity of DS(A) and using Proposition 3.4 we have
XNY =D(z1,...,20) N D(y1,---,Yn)

= (D(z1) V-V D(zm)) N (D(Y1) V- -V D(yn))

= (D(z1) " D(y1)) V -+ V (D(zm) N D(yn))

=D(xi1Vy1)V---VD(xmViyn)

=D(z1Vy1,--y,Tm V Yn)
which is a compact element of DS(A). Thus the finitely generated deductive
systems of A form a sublattice of DS(A). =

PROPOSITION 3.6. Let A be a pseudo BCK-join-semilattice and P € DS(A).
Then P is prime if and only if, for all x,y € A,

(3.9) zVy € P impliesze P orye P.

Proof. Assume that P is a prime deductive system and let x Vy € P.
Applying Proposition 3.4 we have D(z) N D(y) = D(z V y) C P which
entails D(z) C P or D(y) C P,thusz € Pory € P.

Conversely, assume that P satisfies the condition (3.9). If P =X NY,
where both X and Y are deductive systems distinct from P, then there exist
z€ X\ Pand y €Y\ P. Obviously, zVy € XNY = P which by (3.9)
yields z € P or y € P, a contradiction. =

A proper prime deductive system P of a pseudo BCK-join-semilattice A
is called minimal prime if there is no prime deductive system @ of A such
that @ C P.

COROLLARY 3.7. Let (A,V,—,~»,1) be a pseudo BCK-join-semilattice and
let {P; : i € I} be any chain of prime deductive systems of A. Then P =
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Micr P is prime. Consequently, every prime deductive system of A contains
a minimal prime deductive system.

Proof. Let zVy € P. Take an arbitrary ¢ € I and suppose that = ¢ P;.
Then necessarily y € P;, whence we conclude y € P; for every j € I with
P, C P If P, C P, k€l,then z ¢ P (as otherwise x € P;) and hence
¢y € P. This means that y € P. =

The minimal prime deductive systems are related to the polars of deduc-
tive systems:

PROPOSITION 3.8. Let A be a pseudo BCK-join-semilattice.
(1) P € DS(A) is minimal prime if and only if

P= \/{D‘s : D € DS(A), D is compact and D ¢ P}.
DS
(2) For any D € DS(A),

D’ = ﬂ{P € DS(A) : P is minimal prime and D ¢ P}.

Proof. Since DS(A) is an algebraic distributive lattice whose compact
elements (= finitely generated deductive systems) form a sublattice and
since the polar D? is the pseudocomplement of D € DS (A), the statements
follow directly from [17], Lemma 2.3 and Lemma 2.4. See also [14], Corollary
251 . =

THEOREM 3.9. Let (A,V,—,~,1) be a pseudo BCK-join-semilattice satis-
fying the identities
-y Vy—2z)=1,

(3.10) (z~y)Viy~zx)=1.

Then for any P € DS(A), the following are equivalent:

(i) P 1is prime;
(ii) for allz,y€ A, ifcVy € P thenxz € P ory € P;
(iii) for allz,y€ A, ifzVy=1thenz € P ory € P;
(iv) forallz,ye A,z -y€ P ory—z € P;
(v) forallz,ye A, z~y€ P ory~zx € P;
(vi) the set of all deductive systems containing P is a chain (under in-
clusion).

Proof. (i) and (ii) are equivalent by Proposition 3.6. Obviously, (ii) implies
(iii), and (iii) along with (3.10) implies (iv). Likewise, (vi) yields (i) by
Corollary 3.2 (2) and Corollary 3.7. It remains to show that (iv) or (v)
implies (vi). For that purpose, let P C X and P C Y for X,Y € DS(A).
Suppose that X,Y are incomparable, i.e., X Y and Y € X. Then there
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exist z € X\Y and y € Y\ X. But we havez >y € PC XNY or
y—>x € PCXNY, whence it follows y € XNY orz € XNY, a
contradiction. =

By (iv) and (vi):

COROLLARY 3.10. Let A be a pseudo BCK-join-semilattice that satisfies
(3.10).

(1) The poset of all prime deductive systems of A forms a root-system;
(2) A is linearly ordered if and only if so is DS(A).

Proof. The assertion (1) is plain. By (iv), A is linearly ordered if and only
if the deductive system {1} is prime, and hence (2) easily follows from (v). =

4. Spectral topology

Let (A,V,—,~,1) be a pseudo BCK-join-semilattice. We denote by
P(A) and M(A) the set of all proper prime deductive systems of A and the
set of all maximal deductive systems of A, respectively. We have M(A) C
P(A). For any X C A, we put

O(X)={PeP(A): X ¢ P}
and
C(X):={PeP(A4): X CP}.

We write O(a) = O({a}) and C(a) = C({a}) for a € A. It is easily seen that
for any X C A we have

(A) O(X) = O(D(X)) and C(X) = C(D(X)),
so that we may restrict ourselves to the case when X € DS(A). Further,
(B) O(A) =P(A) and O(1) = &;

(C) given any X,Y € DS(A), O(XNY)=0(X)NnOY);
(D) for any family {X; : ¢ € I} of deductive systems of A,

0(\/ Xi> = Joxw).
i€l i€l
In particular, (C) entails
(E) O(aVb) =0O(a) N O(b) for every a,b € A.

Indeed, O(a Vv b) = O(D(aV b)) = O(D(a) N D(b)) = O(D(a)) NO(D(b)) =
O(a) N O(b).
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PROPOSITION 4.1. Let A be a pseudo BCK-join-semilattice, X € DS(A).
Then
X=[()¢(X) and X°=[)O(X).

Proof. By Corollary 3.2 (2) it holds X = (C(X).
For every P € O(X), since P is prime and X N X% = {1} C P, we have
X C P, which along with Proposition 3.8 (2) yields

X% c ﬂO(X) - ﬂ{P € P(A) : P is minimal and X ¢ P} = x4
thus X4 =N O(X). =
The properties (B), (C) and (D) together mean that
Tpiay = {O(X) : X € DS(A)}

is a topology on P(A) whose basis is {O(a) : a € A}. Observe that the
closed subsets are the sets C(X), X € DS(A).

THEOREM 4.2. For every pseudo BCK-join-semilattice A, the mapping
¢: X — O(X)

is an isomorphism of the lattice DS(A) onto the lattice of all open subsets
of P(A).

Proof. Clearly, ¢ is a surjective homomorphism. If X,Y are distinct
deductive systems then X  YorY ¢ X,say X ¢ Y, so thereisz € X\Y,
and consequently, Y C P and z ¢ P for some P € P(A). Thus P € O(X)
while P ¢ O(Y). =

COROLLARY 4.3. Let A be a pseudo BCK-join-semilattice. Then P(A) is
a compact space if and only if there exist ay,...,a, € A (n € N) such that
A= D(a,...,an).

Proof. It is obvious that P(A) = O(A) is compact iff A is a compact
element of the lattice DS(A), i.e., iff A is generated (as a deductive system)
by a finite number of elements of A. =

THEOREM 4.4. For any pseudo BCK-join-semilattice A, P(A) is a Ty-space.
If M(A) # @ then M(A)—endowed with the relative topology—is a Ti-
space. Moreover, if M(A) # @ and A satisfies the identities (3.10), then
M(A) is a Ty-space.

Proof. Let P,Q € P(A) with P # Q. If, e.g., P € Q then Q € O(P) and
P ¢ O(P). Since for any two distinct P,Q € M(A) we have P ¢ @ and
Q ¢ P, it follows that M(A) is a T}-space provided M(A) # @.

Assume now that A fulfils (3.10) and M(A) # @. Let P,Q € M(A),
P # Q. Then there exist a € P\ Q and b € @ \ P. One readily sees
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that also b - a € P\ Q and a — b € @\ P. In addition, O(a — b) N
Ob - a) = O(la - b) V(b —> a)) = 0Q) = 2, so that O(a — b)
and O(b — a) are disjoint neighbourhoods of P and Q, respectively. Thus
M(A) is a Ty-space. »

An algebraic lattice L is said to be archimedean if for each compact
element ¢ € L the intersection of the elements which are maximal below ¢
is 0. This notion was introduced by J. Martinez [14] and is motivated by
the fact that an abelian /-group G is archimedean (i.e., for all 0 < a,b € G,
na £ b for some n € N) if and only if the lattice Z(G) of its ¢-ideals is
archimedean. Further, L is called hyper-archimedean if for every x € L
the interval [z, 1] is an archimedean lattice. Again, an abelian ¢-group G
is hyper-archimedean (i.e., the homomorphic images of G are archimedean
¢-groups) exactly if Z(A) is hyper-archimedean.

THEOREM 4.5. Let A be a pseudo BCK-join-semilattice satisfying the iden-
tities (3.10). The following statements are equivalent:

(i

) P(A) is a Ty-space,

(i) P(4) = M(A),

(iii) every prime deductive system is minimal prime,

iv) DS(A) is a hyper-archimedean lattice,

(v) for every compact (= finitely generated) deductive system X, the po-
lar X4 is the complement of X in DS(A).

With any of these conditions, the lattice DS(A) is isomorphic to the lattice
Z(G) of all £-ideals of some hyper-archimedean £-group G.

Proof. (i) = (ii). Let P(A) be a T-space. Let P € P(A) and X € DS(A)
with P C X. For every a € A\ X there is Q € P(A) such that X C Q and
a ¢ Q. Then clearly P C X C Q. Suppose that P # Q. In this case there
exist z,y € A such that P € O(z), Q@ € O(y) and O(zVy) = O(z)NO(y) =
@. The last equality entails z Vy = 1, and hence y € P as P € O(x).
But this is also impossible since P C Q). Altogether, we have P = X = Q
proving that P is a maximal deductive system, so P(A) = M(A).

(ii) = (i). By Theorem 4.4.

(i) < (iii). Trivial.

(ii) < (iv). By [14], Theorem 1.6, the set of all meet-irreducible el-
ements of a hyper-archimedean lattice L is trivially ordered, and if L is
modular and its meet-irreducible elements are trivially ordered then L is
hyper-archimedean. Since DS(A) is an algebraic distributive lattice, it fol-
lows that DS(A) is hyper-archimedean if and only if P(A) is trivially or-
dered, if and only if P(A) = M(A).
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(ii) < (v). According to [14], Theorem 2.4, an algebraic distributive
lattice L has the property that ¢ V ¢* = 1 for every compact element ¢ € L
(where ¢* stands for the pseudocomplement of ¢) if and only if (a) the set
of all compact elements of L is closed under finite meets, and (b) the set
of all prime elements of L is trivially ordered. Therefore, in the light of
Proposition 3.5, and since X?¢ is the pseudocomplement of X € DS(A), the
equivalence of (ii) and (v) is clear.

Finally, by [14], Theorem 3.2, the property ¢V ¢* = 1 for every compact
c is sufficient for an algebraic distributive lattice L to be isomorphic to the
lattice Z(G) for some hyper-archimedean ¢-group G. Thus if A satisfies any
of the conditions (i)—(v) then there is a hyper-archimedean ¢-group G such
that DS(A) 2 I(G). =

PROPOSITION 4.6. Let A be a pseudo BCK-join-semilattice. Then for every
S CP(A), § =C(NS) is the closure of S in Ipay. In particular, for every
X € DS(A), we have O(X) = C(X?).
Proof. It is plain that S C C([S). Assume that S C C(X) for some
X € DS(A). Then X C (S and C(NS) C C(X) proving that C((S) is the
smallest closed subset of P(A) that contains S.

For the latter claim, given any X € DS(A), then O(X) =C(NO(X)) =
C(X®). u
COROLLARY 4.7. Let A be a pseudo BCK-join-semilattice and X € DS(A).
Then O(X) is clopen if and only if X is the complement of X in DS(A).

Proof. If O(X) is a clopen subset then O(X) = (O(X)) = C(X?), hence
O(X Vv X% = O(X)UuO(X?) = C(X%) U O(X%) = P(A) = O(A) which
implies X vV X% = A.

Conversely, assume that X V X® = A. Then P(4) = O(X) U O(X?),
whence it follows that O(X) = P(A4) \ O(X?®) = C(X?) because O(X) N
O(X‘s) =J. =
COROLLARY 4.8. Let A be a pseudo BCK-join-semilattice that satisfies
(3.10). Then any of the conditions (i)-(v) of Theorem 4.5 is equivalent
to the condition that O(X) is a clopen subset in P(A) for every compact
X € DS(A).

5. Prime deductive systems of pseudo BCK-lattices

As we have seen, every deductive system D of any pseudo BCK-algebra
A is an order-filter of the underlying poset, but if A is a pseudo BCK-lattice
then D need not be a filter. Hence we consider the class of pseudo BCK-
lattices satisfying certain simple identities that force deductive systems to
be filters.
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PROPOSITION 5.1. Given a pseudo BCK-lattice (A, V, A, —,~, 1) satisfying
the identities
T =z T A

T~y=z~ (TAy),
then every D € DS(A) is a filter in the lattice (A,V, ). If, moreover, D is
a prime deductive system then it is also a prime filter.

Proof. Let a,b€ D. Thena — (b — (bAa))=a—> (b—>a)=1€D
entailsaAbe D. »

A natural example of pseudo BCK-lattices satisfying (5.1) are commu-
tative pseudo BCK-lattices.

Though the converse of Proposition 5.1 obviously fails to be true, we
shall show below that the minimal prime filters of (A4, V,A) coincide with
the minimal prime deductive systems of (4, V, A, —,~»,1).

PROPOSITION 5.2. Let (A,V,A,—,~,1) be a pseudo BCK-lattice and let F
be a proper filter of (A,V, ). Denote

D(F,z)={acA:a—>z ¢ F} forz e A\ F,

and

D(F) = {D(F,z):z € A\ F}.

Then D(F) is a deductive system such that ©(F) C F. Moreover, if F is a
prime filter then ©(F) is a prime deductive system.

Proof. First, note that D(F) C F. Indeed, if a € D(F) and a ¢ F, then
a € O(F,a),s01=a—a¢ F, a contradiction.

Further, we show that D(F) € DS(A). Clearly, 1 € D(F) as1 — z =
z ¢ Fforallz € A\F. Assume that a,a — b € D(F), and take an arbitrary
z € A\ F. Then we have a — z ¢ F, whence a — b € D(F,a — z) and
(a b)) > (a—2z)¢F. But (a > b — (¢ > z)>b— z and
consequently, b — z ¢ F. This means b € D(F).

Before proving that ©(F') is prime whenever F' is a prime filter, observe
that the following two properties hold:

(A) z <y implies D(F,y) C D(F, z);
(B) ifaVvbe D(F,z) then a € D(F,z) or b€ D(F,x).

Indeed, z <y yieldsa -z <a— y,sothatifa >y ¢ F thena -z ¢ F,
which is (A). Ifa —» z,b > z € F then (aVb) bz =(a > 2)A(b—o2z) € F
proving (B).

Now, assume that F' is a prime filter of (4,V,A). Let a Vb € D(F).
If neither a nor b lies in D(F), then a ¢ D(F,z) and b ¢ D(F,y) for
some z,y € A\ F. Since F is prime, we have zVy ¢ F, so aVb €
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D(F,zVy). However, D(F,zVy) C D(F,z)ND(F,y) by (A), and therefore,
a€DF,zVy) COF,z)ND(F,y)orbe D(F,zVy) CD(F,z) ND(F,y)
which contradicts to a ¢ D(F,z) and b ¢ D(F,y). Altogether, aVb € D(F)
entails a € D(F) or b € D(F) as desired. »

REMARK 5.3. Observe that if a given filter F' is a deductive system then
D(F) = F. Indeed, for every a € F and z € A\ F we havea —» z ¢ F, so
a € O(F, z) yielding F C D(F).

COROLLARY 5.4. Let (A,V,\,—,~,1) be a pseudo BCK-lattice that fulfils
(5.1). Then for any X C A, X is a minimal prime deductive system of
(A,V, A, —,~, 1) if and only if X is a minimal prime filter of (A,V,A).
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