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PSEUDO BCK-SEMILATTICES 

Abstract . Pseudo BCK-algebras are algebras {A, — 1 ) of type (2,2,0) which gen-
eralize BCK-algebras in such a way that if the operations —• and coincide then (A, —1) 
is a BCK-algebra. They can be also viewed as { — l } - s u b r e d u c t s of non-commutative 
integral residuated lattices. In the paper, we study pseudo BCK-algebras whose un-
derlying posets are semilattices or lattices; we call them pseudo BCK-join-semilattices, 
pseudo BCK-meet-semilattices and pseudo BCK-lattices, respectively. After describing 
their congruence properties we deal mainly with prime deductive systems of pseudo BCK-
join-semilattices. 

1. Preliminaries 
In the last years there appeared a number of algebraic structures which 

are non-commutative generalizations of known algebras related to logic such 
as pseudo MV-algebras, pseudo BL-algebras, pseudo MTL-algebras (also 
called weak pseudo BL-algebras), non-commutative residuated lattices, etc. 
In the logical context this means that the strong conjunction is not commu-
tative and the implication splits into two ones. Accordingly, G. Georgescu 
and A. Iorgulescu [6] introduced pseudo BCK-algebras as an extension of 
BCK-algebras: 

DEFINITION 1.1. A structure {A, <, — 1 ) , where < is a binary relation 
on A, —> and are binary operations on A, and 1 is a distinguished element 
of A, is called a pseudo BCK-algebra (pedantically, a reversed left pseudo 
BCK-algebra [10]) if it satisfies the following axioms, for all x,y,z € A: 

(I) x —• y < (y —y z) ~> {x —> z), x y < (y z) —> (x z), 
(II) x < (x -> y) y, x < (x y) y, 

(III) x < x, 
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(IV) X < 1 , 
(V) x < y and y < x imply x = y, 

(VI) x<yiSx—>y = l i S x ^ y = l. 
This definition is adopted from [10]. It is clear that pseudo BCK-algebras 

can be treated as pure algebras with binary operations —> and and a 
constant 1, since the relation <, which is always a partial order with 1 as 
a greatest element, can be retrieved by (VI). Namely, if (A, <, — 1 ) is 
a pseudo BCK-algebra then the algebra (A, — 1 ) satisfies the following 
identities and quasi-identity: 
(1 .1) (x y) [(y z) (x -» z)} = 1, 
(1 .2) y) ->• [(y z) z)] = 1, 
(1.3) 1 —» a; = x, 
(1.4) 1 x = x, 
(1.5) x —> 1 = 1, 
(1.6) (x —> y = 1 &; y —>x = l) x = y. 
Conversely, if (A, — 1 ) is an algebra of type (2,2,0) satisfying (1.1)-(1.6) 
then the relation defined by x < y iff x —* y — 1 (iff x y = 1) is a partial 
order on A which makes (A, <, — 1 ) a pseudo BCK-algebra. 

Thus the class of all pseudo BCK-algebras—considered as algebras of 
type (2,2,0)—is a quasi-variety. Since BCK-algebras agree with pseudo 
BCK-algebras satisfying — a n d BCK-algebras are not closed under 
homomorphic images, it follows that neither are pseudo BCK-algebras, and 
hence this quasi-variety is not a variety. 

By a bounded pseudo BCK-algebra we mean an algebra (A, —>,^,0,1) 
such that (A, — 1 ) is a pseudo BCK-algebra the least element of which 
is 0. 

The partial order < given by (VI) has no particular properties because 
an arbitrary poset (P, <) with a greatest element 1 becomes a BCK-algebra 
by setting x —> y = 1 for x < y, and x —• y = y otherwise. Nevertheless, it 
may happen that the underlying poset of a given pseudo BCK-algebra is a 
semilattice or even a lattice which is the case that we are interested in. 

A pseudo BCK-join-semilattice is an algebra (A, V, — 1 ) such that 
{A, V) is a join-semilattice and (A, — 1 ) is a pseudo BCK-algebra, where 
x —> y = 1 iff x Vy = y. It can be easily seen that an algebra (A, V, — 1 ) 
of type (2,2,2,0) is a pseudo BCK-join-semilattice if and only if (A, V) is a 
join-semilattice and it satisfies the identities (1.1)—(1.5) and 
(1.7) x V [(a: -> y) y] = {x y) y, 
(1.8) x ^ (xVy) = 1. 
Therefore, the class of all pseudo BCK-join-semilattices forms a variety. 
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Pseudo BCK-algebras and pseudo BCK-join-semilattices are strongly re-
lated to residuated lattices (see [12], [13]). Actually, every pseudo BCK-
algebra is isomorphic to a { — l } - s u b r e d u c t of some (bounded integral) 
residuated lattice, where also existing finite joins are preserved, and hence 
every pseudo BCK-join-semilattice arises as a {V, —>,~>, l}-subreduct of a 
residuated lattice. 

We say that a pseudo BCK-algebra (A, —>,-^,1) is commutative if it 
satisfies the identities 

(1.9) {x y) y = (y x) ^ x, 

(1.10) { x ^ y ) ^ y = ( y ^ x ) ^ x . 

The underlying poset (A, <) is then a join-semilattice with 

(1.11) x Vy = {x y) y = ( x y ) -»• y, 
so that commutative pseudo BCK-algebras are a particular case of pseudo 
BCK-join-semilattices. Moreover, for each a £ A, the interval [a, 1] is a dis-
tributive lattice in which x Aa y = ((x a) V (y a)) —»• a = ((x —> a) 
V (y —> a)) a. 

The name commutative may seem to be misleading since pseudo BCK-
algebras are non-commutative generalizations of BCK-algebras, but we use 
it as an obvious counterpart of well-known commutative BCK-algebras. 

It was proved in [6] that bounded commutative pseudo BCK-algebras 
(called here lattice-ordered pseudo BCK-algebras) are termwise equivalent 
to pseudo MV- algebras—non-commutative generalizations of MV-algebras 
introduced by G. Georgescu and A. Iorgulescu [5] and independently by J. 
Rachunek [16]. The equivalence with the standard signature {©," , 0,1} is 
given as follows: if (A, — 0 , 1 ) is a bounded commutative pseudo BCK-
algebra and we put x © y = (x 0) —• y = (y —• 0) x, x~ = x —> 0 and 

= x 0, then (A, ffi,~ , 0,1) is a pseudo MV-algebra, and the reverse 
passage from (A , ©,~ , 0,1) to (A , — 0 , 1 ) is given by x —> y = x~ © y 
and x y = y © . 

Another equivalent of bounded commutative pseudo BCK-algebras rep-
resent R. Ceterchi's pseudo Wajsberg algebras (see [2]) which are algebras of 
signature { — , 1}. As pseudo MV- and pseudo Wajsberg algebras 
are termwise equivalent, one readily sees that whenever (A, — 0 , 1 ) is a 
bounded commutative pseudo BCK-algebra then {A, — , 1)—where 
x~ = x —> 0 and = x 0—is a pseudo Wajsberg algebra, and conversely, 
if {A, — , 1) is a pseudo Wajsberg algebra then (A, — 0 , 1 ) is a 
bounded commutative pseudo BCK-algebra with 0 = 1~ = 1~. 

A pseudo BCK-meet-semilattice is an algebra (A, A, — 1 ) such that 
(A, A) is a meet-semilattice, (A, — 1 ) is a pseudo BCK-algebra and x —> 
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y = 1 iff x A y = x. It is not hard to show that an algebra (A , A, — 1 ) 
of type (2,2, 2,0) is a pseudo BCK-meet-semilattice if and only if (A , A) is 
a meet-semilattice and it satisfies the identities (1.1)—(1.5) and 

As a particular kind of these pseudo BCK-algebras we can mention hoops 
and pseudo hoops (see [1], [7]) that are naturally ordered integral residuated 
partially ordered monoids. Indeed, given a pseudo hoop (A, ©, — 1 ) , 
then {A, A, — 1 ) is a pseudo BCK-meet-semilattice in which x A y — 
x © (x y) = (x —» y) O x. Note that this is a pseudo BCK-algebra with 
the condition (pP) in the sense of [10], i.e., x © y = min{a € A : x < y 
a} = min{a € A : y < x a} for all x, y € A. 

Finally, an algebra {A, V, A, — 1 ) is called a pseudo BCK-lattice if 
(A, V, A) is a lattice, (A, — 1 ) is a pseudo BCK-algebra and x —» y = 1 
iff x V y = y (iff x A y = x). Pseudo BCK-lattices form a variety that 
is axiomatized by the identities (1.1)—(1.5), (1.7) and (1.8), or (1.1)—(1.5), 
(1.12) and (1.13), respectively, and by the identities of lattices. 

Of course, any pseudo MV-algebra is a (bounded commutative) pseudo 
BCK-lattice. Also pseudo hoops can provide an example of pseudo BCK-
lattices: By a Wajsberg pseudo hoop [7] we mean a pseudo hoop satisfy-
ing the equations (1.9) and (1.10). The { — l } - r e d u c t of a Wajsberg 
pseudo hoop is a commutative pseudo BCK-algebra and, consequently, every 
Wajsberg pseudo hoop is a distributive lattice in which (1.11) holds for all 
x,y. 

In the lemma below we list some basic properties of pseudo BCK-algebras 
that can be easily derived and will be used without explicit references: 

LEMMA 1.2. The following hold in every pseudo BCK-algebra: 

(1) x -> (y z) = y (x z), 
(2) y <x y, y < x y, 
(3) 1 —> x = x, 1 x = x, 
(4) [(x -> y) y] -> y = x y, [(x y) y] y = x y, 
(5) x y < {z —> x) —> (z —> y), x y < (z x) (z y), 
(6) x < y implies z x < z —• y and y —> 2 < x —> z, the same for 
(7) ¿ / V i e / x i e x ^ s then so does f\iej(xi —* y) and 

(1 .12) 

(1.13) 
x A [(s y) y] = x, 

{x Ay) y = 1. 

and i/ie same holds for 
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2. Deductive systems and congruence kernels 
Deductive systems play an important role in the study of BCK-algebras. 

The analogue for pseudo BCK-algebras was introduced in [9]: 
Let (A, — 1 ) be a pseudo BCK-algebra. We call D C A a deductive 

system i f 

(DS1) 1 € D, 
(DS2) for all a, b G D, if a G D and a -> b G D, then b G D. 

The condition (DS2) is equivalent to saying that a G D and a b G D 
together imply b G D. Moreover, every deductive system D of (A, 1) 
is an order-filter in (A, <), i.e., D contains with any a also all b> a. 

The set VS(A) of all deductive systems of (A, — 1 ) , partially ordered 
by inclusion, is an algebraic distributive lattice in which infima coincide with 
set-theoretical intersections. For any 0 ^ X C A, the set 

D(X) = { a G A : x i —> ( . . . —> (xn —• a ) . . . ) = 1 

for some x\,..., xn G X and n G N} 

is the smallest deductive system containing X. We write D(xi,..., xn) for 
D(X) when X = {x\,..., xn}. 

For any x, y G A and n G No, we define x y inductively as follows: 

x ->° y = y, x ->n+1 y = x -» (x y)\ 

x y is defined analogously. 
Hence for every x G A, 

D{x) = {a G A : x ->n a = 1 for some n G N}. 

A deductive system D of a pseudo BCK-algebra (A, — 1 ) is said to 
be compatible provided 

(DS3) for all a, b G A, a b G D iff a b G D. 

The compatible deductive systems agree with the congruence kernels. As a 
matter of fact, if D is a compatible deductive system then the relation ©£> 
given by 

(2.1) (a, b) G @D iff a -» b G D and b -» a G D 

is a congruence whose kernel is D, i.e., [l]eD = { « 6 i : (a, 1) £ ©d} = D. 
Conversely, the kernel [l]e = {a G A : (a, 1) G ©} of every congruence 0 
certainly is a compatible deductive system, however, it may occur that © is 
not determined by [1]©, i.e., © ^ ©[i]e-

Therefore, the lattice CK(A) of all compatible deductive systems (= 
congruence kernels) of a pseudo BCK-algebra {A, — 1 ) , in general, is 
not isomorphic to the congruence lattice Con(yl). 
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2.1. Pseudo BCK-join-semilattices. We begin with recalling several 
universal algebraic notions (see e.g. [3]): 

An algebra A from a variety with a constant 1 is weakly regular if, 
for every 0 , $ G Con(/l), [1]@ = [1]$ implies 0 = J ^ is weakly regular 
if and only if there exist binary terms d\,..., dn for some n G N such that 
d\{x, y) = • • • = dn(x, y) is equivalent to x = y. 

We say that A is permutable at 1 if [1]©0<J> = [ l ]$o© for all 0 , $ G Con(yl). 
It is known that A is permutable at 1 if and only if [ l ] © v $ = [ l ]©o$ for all 

G Con(A). 
An algebra A is distributive at 1 if [l]©n($v*) = [l](en$)v(en*) f° r 

0 , G Con(A), and A is arithmetical at 1 if it is both permutable at 1 
and distributive at 1. A variety J(i is arithmetical at 1 if and only if there 
exists a binary term t satisfying t(x, x) = t( l , x) = 1 and t(x, 1) = x. 

In [9] we proved that every variety of pseudo BCK-algebras is weakly 
regular and arithmetical at 1, and hence congruence distributive. The terms 
we used in [9] are d\(x,y) = x —> y and d2(x,y) = t(x,y) = y —> x, thus 
also pseudo BCK-join-semilattices enjoy the mentioned properties: 

THEOREM 2.1 . The variety fl of all pseudo BCK-join-semilattices is weakly 
regular, arithmetical at 1 and congruence distributive. 

Although the join operation V in pseudo BCK-join-semilattices is not 
a term operation in —> and it turns out that the congruence kernels 
still are precisely the compatible deductive systems. In addition, since the 
variety J ? is weakly regular, there is a one-to-one correspondence between 
the congruence relations and the compatible deductive systems: 

THEOREM 2.2 . Let (A, V, — 1 ) be a pseudo BCK-join-semilattice. If D 
is a compatible deductive system then the relation @D defined via (2.1) is a 
congruence on (j4, V, — > , 1 ) such that [1]©D = D. Conversely, for every 
0 G Con(^4), [1]© is a compatible deductive system and 0[i]e = 0-

P r o o f . Let D be a compatible deductive system of A. By [9], ©£> is an 
equivalence relation which is compatible with —> and and [1]©D = D. It 
remains to show that is compatible with V, too. 

Suppose that (a,b) G 0 d , i-e-, a b E D and b —> a G D. For any 
c G A, we have 

(a V c) (b V c) = (a (b V c)) A (c (b V c)) 
= (a —> (b V c)) A 1 
= a - > ( 5 V c ) 
> a —> b, 
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so that (a V c) —» (b V c) G D since a —> b G D. Analogously, we get 
(b V c) —• (a V c) € .D, and hence (a V c, 6 V c) G ©D proving ©D G Con(^4). 

Conversely, if © G Con (A) then certainly [1]© is a compatible deductive 
system. Since J ? is weakly regular and [1]© is the kernel of both 0 and 
0[i]e , it follows that 0 = ©[i]e- • 

Thus, for every pseudo BCK-join-semilattice (A, V, — 1 ) , the lat-
tice C1C(A) of all compatible deductive systems and the congruence lattice 
Con(A) are isomophic under the inverse mappings D \—> ©£> and 0 H-> [1]©. 

PROPOSITION 2 . 3 . Let { A , V , — 1 ) be a pseudo BCK-join-semilattice. 
Then CIC(A) is a complete sublattice ofDS(A). 

P r o o f . We start with proving that CJC(A) is a sublattice of T>S(A), i.e., we 
show that 

[l]e Vex [1]* = [l]e VpS [1]* 
for every @, $ G Con(A). Clearly, [1]© Vvs [1]$ C [l]e \JCK [1]$. Conversely, 
take any a G [1]© VciC [1]$ = [l]@v$ = [l]©o$- Then there exists b G A such 
that (a, b) G © and (b,1) G $ . Since (a, b) G © yields (6 —> a, 1) G 0 , we 
have b —> a G [1]© and b G [1]$ which along with b ((b —> a) a) = 1 
means that a G D([l]© U [1]$) = [1]© Vvs [1]$-

Now, let {©i : i G 1} be an arbitrary family of congruences on A. First 
of all, note that for every n G N, n > 2, we have [l]eiv-ven = [l]eio-oe„; 
this easily follows by induction on n from the permutability at 1. 

Put 0 = V c o n M : i G I}. It is clear that Vusd1]©* : t € / } C 
VcJciMei : i e !} = t1]©- Conversely, let a G [1]©. Then a G [l]eil0...oein = 
[l]©i1v-ve in for some ii,...,in G I, n G N. But we already know that 
CK{A) is a sublattice of DS{A), therefore a G [1]©; v - v©jn = [ 1 ] V c k 
• • • Vac [l]©in = [l]e4l • • • [l]e ln- This proves [l]©nc V ^ i f 1 ] ^ : 

i G I}, m 

Let {A, — 1 ) be an arbitrary pseudo BCK-algebra and 0 ^ X C A. 
The set 

( X ) = {a G A : a —> x = x for all x G X} 

is called the annihilator of X. We proved in [9] that (X) G VS( A) and, 
moreover, if D G VS(A) then (D) is the pseudocomplement of D in the 
lattice VS{A). 

We show next that in case of pseudo BCK-join-semilattices, the pseudo-
complements in VS{A) can alternatively be characterized as the so-called 
polars: 

Given a pseudo BCK-join-semilattice (A, V, — 1 ) , by the polar of 
0 ^ X C A we mean the set 
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Xs
 = {a G A : a V x = 1 for all x G X}. 

We write xs instead of {a;}5. It is easily seen that Xs — Di^ 5 : x ^ 
other obvious properties are: 

(a) X QXSS, 
(b) X C Y implies X s D Y s , 
(c) Xi<5<5 = X5 . 

PROPOSITION 2 .4 . Let A be a pseudo BCK-join-semilattice. For every 0 ^ 
X C A, we have Xs G VS(A) and Xs = D(X)6. In addition, Ds = (D) 
whenever D G VS{A). 

P r o o f . Take x G X and assume that a G x5 and a —> b G xs. Then 
a —> b < a (b\/ x) implies 1 = (a —> b) V x < (a —> (b V x)) V a;, so 
(a (b\/x))\/x = 1. But a (feVx) > 6Va; > x, and hence a (6Vx) = 1, 
i.e., a < bV x. This yields l = a V r < 6 V j ; and b V x = 1 proving b G x5. 
Thus xs G ZXS(A), and consequently, X = f j i ^ : x G X} G £><S(,4). 

Now, let a € Xs. Then a6 D X6S D X whence it follows a6 D D(X) as 
a5 is a deductive system. Therefore a G ass C D(X)S showing Xs C D(X)S. 
The other inclusion is a consequence of X C D(X). 

Finally, assume that D is a deductive system of A. Let a G Ds. Then 
x = l - > i = ( a V x ) - > i = a - > x f o r every x G D, so that a G (D). 
Conversely, if a G (D) then for each x G D we have a V i 6 D, and hence 
1 = a —> (a V x) = a V x, so a G Ds. • 

Observe that for a non-empty subset X which is not a deductive system 
we have Xs C (X) since a V x — 1 yields x = (a V x) —> x = a —> x, but the 
polar Xs can differ from the annihilator {X}: 

EXAMPLE 2.5. The set A = { 0 , a, b, 1 } equipped with the operations —> 
and given by the following tables is a pseudo BCK-join-semilattice where 
0 < a < b < 1: 

-»• 0 a b 1 ^ 0 a b 
0 1 1 1 1 
a a 1 1 1 
6 a a 1 1 
1 0 a b 1 

0 1 1 1 
a b 1 1 
b 0 a 1 
1 0 a b 

One readily sees that as = {1}, while (a) = {6,1}. 
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2.2. Pseudo BCK-meet-semilattices and pseudo BCK-lattices. This 
subsection is devoted to deductive systems of pseudo BCK-algebras which 
are meet-semilattices or lattices, respectively. The presence of the meet 
as a fundamental operation brings new congruence properties of these two 
varieties: 
T H E O R E M 2 .6 . The variety M of all pseudo BCK-meet-semilattices and the 
variety of all pseudo BCK-lattices are weakly regular and arithmetical. 
P r o o f . The term 

m(x, y, z) = ((x y) z) A ((z —> y) ®) A ((a: —> z) z) 
is the Pixley term for ^ as well as for ££. Indeed, we have 

™(x, y, y) = ((x -* y) y) A {{y -»• y) ^ x) A ((x y) y) 
= {(x->y)~^y) Ax 
= x, 

m(x, y, x) = ((x —• y) x) A ((x —• y) x) A ((x —> x) x) 
= ((x —• y) x) A x 
= x 

and 
m(y, y, x) = ((y y) x) A ((x -» y) y) A ((y x) x) 

= x A ((x y) y) A ((y x) x) 
= x. • 

The description of congruence kernels in the varieties and is 
slightly more complicated than in case of pseudo BCK-join-semilattices. 
Specifically, a compatible deductive system is not necessarily a filter in the 
underlying meet-semilattice and hence not all compatible deductive systems 
are congruence kernels, and on the other hand, a compatible deductive sys-
tem which is a filter need not be a congruence kernel: 
EXAMPLE 2.7. Consider the BCK-lattice (A, V, A, — 1 ) from Figure 2.1(a) 
with the operation —> given as follows: 

0 a b c 1 
0 1 1 1 1 1 
a 0 1 c 1 1 
b 0 a 1 1 1 
c 0 a c 1 1 
1 0 a b c 1 
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1 

1 

a 
b 

0 0 

(a) (b) 

Fig. 2.1. 

Then the equivalence relation © with the partition {0}, {a, b, c, 1} is a con-
gruence on (.A, V,—>,1), but © is not a lattice congruence and its kernel 
{a, b, c, 1} is not a lattice filter. 

EXAMPLE 2.8. Let {A, V, A, — 1 ) be the BCK-lattice as shown in Fi-
gure 2.1(b), where x y = 1 ii x < y, and x —> y = y otherwise, i.e., 
—• is given by the table 

The set D = {c, 1} is a filter and also a compatible deductive system, but 
it is not a congruence kernel. Indeed, suppose that D — [1]© for some 
congruence 0 on (A, V, A, — 1 ) . Then (0, b) = (cAb, 1A6) G 0 which yields 
(0,1) = (6 —> 0, b —> b) G ©, a contradiction. 

Note that the congruence @D on (A, V, —>, 1) defined via (2.1) has the 
partition {0}, {a}, {&}, {c, 1}. 

THEOREM 2.9. Let (J4, A, — 1 ) be a pseudo BCK-meet-semilattice. Let 
D be a compatible deductive system satisfying the following additional con-
dition: 

-> 0 a b c 1 

0 1 1 1 1 1 
a 0 1 6 1 1 
b 0 a 1 c 1 
c 0 a 6 1 1 
1 0 a b c 1 

( D S 4 ) for all a,b,c G A, if c —> a G D and c —> b G D, then c —» (aAb) G D. 
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Then the relation defined by 

(2.2) (a, b) G iff (a —> 6) A (6 —> a) G £) 

is a congruence on (A, A, — 1 ) with = 

Conversely, for every congruence 0 on (A, A, — 1 ) , the kernel [1]© 
is a compatible deductive system satisfying (DS4) and we /iawe 3>[i]e = ©• 

P r o o f . Let D be a compatible deductive system that fulfils (DS4). First 
of all, when putting c = 1 in (DS4) we get that D is a filter. Therefore 
(a, b) G iff (a —• b) A (b a) G D iff a -> 6, b -> a € -D iff (a, 6) G so 
that = ©£> and hence <&£> is a congruence relation on (A, — 1 ) the 
kernel of which is D. We show that <&£> is compatible with A. 

Let (a, b) G c G A We have (a Ac) - > C = 1 G D and (a Ac) b € D 

since (a A c) —> b > a —• 6 G £>. By (DS4) this implies (a A c) —> (6 A c) G 
Analogously, ( 6 A c ) - + ( a A c ) 6 -D, and so (a A c, b A c) G $£>. 

Conversely, let © G Con(A). It is clear that [1]© is a compatible de-
ductive system. We prove that it enjoys the property (DS4). Assume that 
(c —> a, 1) G 0 and (c —• b, 1) G ©. Then ((c —• a) a, a) G © whence 
(c,cAa) = ( c A ( ( c - + a ) - v » a ) , c A a ) G 0, and similarly, (c,cAb) G 0. Thus 
(c, a A b A c) G 0 which entails (c —> (a A b), 1) = (c —> (a A 6), (a A 6 A c) —> 

( oA6 ) ) G 0. 
Consequently, since [1]© is the kernel of 0 as well as of $[i ] e , it follows 

t h a t 0 = $[1]Q. • 

The same result holds for pseudo BCK-lattices: 

THEOREM 2.10. Let {A, V, A, 1) be a pseudo BCK-lattice. If D is a 

compatible deductive system satisfying the condition (DS4) then the relation 

defined by (2.2) is a congruence on (A, V, A, — 1 ) such that [1]$0 =D. 

Conversely, for every congruence © on (A, V, A, — 1 ) , the kernel [1]© 
is a compatible deductive system satisfying (DS4) and we have i>[i]e = 0 . 

3. Prime deductive systems 
In this section we are concerned with those deductive systems of pseudo 

BCK-join-semilattices which are meet-prime elements of the lattice of de-
ductive systems. 

Let {A, V, — 1 ) be a pseudo BCK-join-semilattice. We say that a 
deductive system P of A is prime if for every X, Y G VS(A), X fl Y" C P 

implies X CP or Y CP. 

Because of the distributivity of the lattice T>S(A), the meet-primeness 
coincides with the meet-irreducibility, so that P G VS{A) is prime if and 
only if, for all 1 , 7 6 T>S(A), P = X or P = Y whenever P = X n Y. 
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THEOREM 3.1. Let (-4, V,—>,~>, 1) be a pseudo BCK-join-semilattice. Let 
D G T>S{A) and let I be an ideal in the join-semilattice (A, V) such that 
Dr\ I = 0. Then there exists a prime deductive system P satisfying D C P 
andlnP = 0. 

P r o o f . A routine application of Zorn's lemma yields that the set of all 
deductive systems having the required properties has a maximal element, 
say P. Assume that P = X n Y for X, Y G VS(A) with P C X and P C Y. 
Then J f \X ^ 0 and IC\Y ^ 0 in view of the maximality of P, so there exist 
x G I FL X and y G ID Y whence it follows x\/ y € I C\ X C\Y = I n P = 0, 
a contradiction. Hence P is a prime deductive system. • 

COROLLARY 3.2. Let (A, V , — b e a pseudo BCK-join-semilattice. 

(1) If D £ T>S(A) and a G A\D then D C P and a £ P for some prime 
deductive system P of A. 

(2) Every deductive system of A is the intersection of all prime deductive 
systems containing it. 

P r o o f . (1) If a D then D fl (a] = 0 , where (a] = {x € A : x < a} is 
an ideal in (A, V), hence there exists a prime deductive system P such that 
D C P and P n (a] = 0 , i.e. a £ P. 

(2) This follows easily from (1). • 

The following technical lemma comes in useful: 

LEMMA 3.3. Let A be a pseudo BCK-join-semilattice. If x m a — 1 and 
y —>n a = 1 for m,n EN, then (x V y) —>r a = 1 for some r € N. The same 
holds also for 

P r o o f . First note that m < n entails x —>m a < x —>n a, and hence we 
may assume that m = n. 

By induction on n 6 N. For n = 1 we have x—>a = y—>a = l, so 
x,y < a whence x V y < a which is equivalent to (x V y) —> a — 1. Thus 
r = 1. Suppose that the statement holds for all k G N with k < n. Let 
x —>n+1 a — y a — 1. From y —>n+1 a = 1 we obtain y —> (y a) 
1, hence 

(3.1) y (x {y ^ n a)) = x (y (y a)) = x 1 = 1. 

From y a > a it follows x (y a) > x a = 1, so that 
x (y a) = 1 which yields 

(3.2) (y^n a)) = 1. 
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N o w , b y t h e first induc t ion s t e p and b y (3 .1) , (3 .2) , w e conc lude t h a t 

x ( y ^ n ( ( x V y) - a)) = (x V y) - ( x (y a ) ) = 1, 

and therefore 

(3.3) x ^ x - ^ 1 ( y ~ > n ( ( x V y ) ^ a ) ) ) = 1. 

Further, (x V y) —> a > a entai ls y —>n+1 ( ( x V y) —> a) > y —>n+1 a = 1, so 
t h a t y —>n+1 ( ( i V | / ) - > a ) = l w h i c h is equivalent t o y —> (y ( ( x V i / ) —> 
a ) ) = 1. Hence 

(3.4) y - ( ® - n - 1 ( y < - n ( ( x V y ) - a ) ) ) = 

= x {y - » (y ( ( x V y) a ) ) ) = x 1 = 1. 

A g a i n by t h e first induc t ion s tep, f rom (3.3) and (3.4) w e o b t a i n 

x ^ " " 1 ( y ^ n ( ( x v y ) a ) ) = 

= (x V y) - (x - v " - 1 (y -V*" ( ( x V y ) —> a ) ) ) = 1, 

w h e n c e 

(3.5) x - ( x (y ( ( x V y) a ) ) ) = 1. 

Analogous ly , (x V y) —>2 a > a impl ies y —>n+1 ( ( x V y) —>2 a) > y —>n+1 

a = 1, and consequent ly , y —> (y ( ( x V y) —>2 o ) ) = 1. T h i s y ie lds 

(3.6) y ^ ( x - > n - 2 ( y ^ n ( ( x V y ) ^ 2 a ) ) ) = 

= x (y (y ( ( x V y) a ) ) ) = x - > n ~ 2 1 = 1. 

B y (3.5) a n d (3.6) , 

x - , " - 2 ( ( x V y ) a)) = 

= (x V y) - ( x (y ( ( x V y) a ) ) ) = 1. 

B y repeat ing th i s procedure we ga in 

y ^ n ( ( x V y ) a ) = 1, 

and equivalently, 

(3.7) y ^ n ( ( ; c V y ) ^ n + l a ) : = 1 

W h e n interchanging x and y w e have 

(3.8) x ^ n ( ( x V y ) - > n + 1 a) = 1. 

N o w we c a n apply t h e induct ion hypothes i s t o (3.7) and (3.8) , so there ex i s t s 
s g N such t h a t (x V y) - > s ( ( x V y) - > n + 1 a) = 1 and hence (x V y) - > s + n + 1 

a = 1, i .e., r = s + n + 1. • 
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PROPOSITION 3 .4 . Let (A, V, — 1 ) be a pseudo BCK-join-semilattice. 
Then 

D(x)DD(y) = D{xVy) 

for every x,y E A. 

P r o o f . It is plain that D(xVy) C D(x) D D(y) since x V y E D{x)C\D(y). 
Conversely, a E D(x) CI D(y) if and only if x —>m a = 1 and y —>n a = 1 
for some m, n E N. But by the previous lemma there is r E N such that 
(x V y) a = 1, so a € D(x V y). Hence D(x) n D(y) C D ( x V y). > 

PROPOSITION 3 .5 . For any pseudo BCK-join-semilattice A, the compact 
elements ofDS(A) form a sublattice ofVS(A). 

P r o o f . Let X,Y be two compact elements of the lattice US (A), i.e., X = 
D(xi,..., xm) and Y = D(y\,..., yn) for some Xi, yj e A, m , n £ N. Due 
to the distributivity of VS(A) and using Proposition 3.4 we have 

Xn Y = D(xi,...,xn)r\D(y1,...,yn) 
= {D(xi) V • • • V D(xm)) n (D(yi) V • • • V D(yn)) 
= {D{xi) n D{yi)) V • • • V (D(xm) n D{yn)) 
= D(xx V y i ) V • • • V D{xm V yn) 
= D(xx V j / i , . . . , x m V yn) 

which is a compact element of T>S(A). Thus the finitely generated deductive 
systems of A form a sublattice of VS(A). • 

PROPOSITION 3.6 . Let A be a pseudo BCK-join-semilattice and P E 2?<S(YL). 
Then P is prime if and only i f , for all x,y E A, 

(3.9) i V j / e P implies x E P or y E P. 

P r o o f . Assume that P is a prime deductive system and let x V y E P. 
Applying Proposition 3.4 we have D{x) fl D(y) — D(x V y) C P which 
entails D(x) C P or D(y) C P, thus x E P or y E P. 

Conversely, assume that P satisfies the condition ( 3 .9 ) . If P = X N Y, 
where both X and Y are deductive systems distinct from P, then there exist 
x E X \ P and y E Y \ P. Obviously, xV y <E X C)Y = P which by (3.9) 
yields x E P or y E P, a contradiction. • 

A proper prime deductive system P of a pseudo BCK-join-semilattice A 
is called minimal prime if there is no prime deductive system Q of A such 
that Q C P. 

COROLLARY 3 .7 . Let (A, V , — 1 ) be a pseudo BCK-join-semilattice and 
let {Pi : i E 1} be any chain of prime deductive systems of A. Then P — 
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Die/ is prime. Consequently, every prime deductive system of A contains 
a minimal prime deductive system. 

Proof . Let x V y G P. Take an arbitrary i G I and suppose that x ^ Pl. 
Then necessarily y G Pi, whence we conclude y G Pj for every j G I with 
Pi Q Pj- If Pk Pi, k E I, then x Pk (as otherwise x G Pi) and hence 
y G Pk- This means that y G P. • 

The minimal prime deductive systems are related to the polars of deduc-
tive systems: 

PROPOSITION 3.8. Let A be a pseudo BCK-join-semilattice. 

(1) P G VS{A) is minimal prime if and only if 

P = \J{DS : D G T>S(A),D is compact and D <£ P } . 
vs 

(2) For any D G VS(A), 

D5 = P|{P G VS{A) : P is minimal prime and D <£ P}. 

Proof . Since T>S{A) is an algebraic distributive lattice whose compact 
elements ( = finitely generated deductive systems) form a sublattice and 
since the polar Ds is the pseudocomplement of D G VS(A), the statements 
follow directly from [17], Lemma 2.3 and Lemma 2.4. See also [14], Corollary 
2.5.1. • 

THEOREM 3.9. Let (A, V, — 1 ) be a pseudo BCK-join-semilattice satis-
fying the identities 

(x • y) V (y —> x) = 1, 
(3-10) ) Y ' 

(rc y) V [y x) = 1. 

Then for any P G VS(A), the following are equivalent: 

(i) P is prime; 
(ii) for all x,y G A, if xV y G P then x G P or y G P; 

(iii) for all x,y G A, if x V y = 1 then x G P or y G P; 
(iv) for all x,y G A, x —> y G P or y —> x G P; 
(v) for all x,y G A, x y G P or y x G P; 
(vi) the set of all deductive systems containing P is a chain (under in-

clusion). 

Proof , (i) and (ii) are equivalent by Proposition 3.6. Obviously, (ii) implies 
(iii), and (iii) along with (3.10) implies (iv). Likewise, (vi) yields (i) by 
Corollary 3.2 (2) and Corollary 3.7. It remains to show that (iv) or (v) 
implies (vi). For that purpose, let P C X and P C Y for X,Y G VS{A). 
Suppose that X, Y are incomparable, i.e., X Y and Y X. Then there 
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exist x G X \ Y and y G Y \X. But we have x-yyePCXnY or 
y -> x G P c X n y , whence it follows t/ e I n F o r i € i n Y , a 
contradiction. • 

By (iv) and (vi): 

COROLLARY 3.10. Let A be a pseudo BCK-join-semilattice that satisfies 

(1) The poset of all prime deductive systems of A forms a root-system; 
(2) A is linearly ordered if and only if so is T>S(A). 

Proo f . The assertion (1) is plain. By (iv), A is linearly ordered if and only 
if the deductive system {1 } is prime, and hence (2) easily follows from (v). • 

4. Spectral topology 
Let (A, V, — 1 ) be a pseudo BCK-join-semilattice. We denote by 

V(A) and A4(A) the set of all proper prime deductive systems of A and the 
set of all maximal deductive systems of A, respectively. We have M(A) C 
V(A). For any X C A, we put 

We write 0(a) = 0({a}) and C(a) = C ( {a } ) for a € A. It is easily seen that 
for any X C A we have 

so that we may restrict ourselves to the case when X € T>S(A). Further, 

(3.10). 

0(X) := {P € V{A) :X£P} 

and 
C{X) := {P € V(A) :XCP}. 

( A ) O(X) = Ö(D(X)) and C(X) = C(D(X)) 

( B ) O(A) = V(A) and 0(1 ) = 0; 
( C ) given any X, Y € VS(A), 0(X n 7 ) = 0(X) D 0(Y); 
(D ) for any family {Xi : i G /} of deductive systems of A, 

In particular, (C) entails 

(E) <D(a V b) = O(a) n 0(b) for every a, b G A. 

Indeed, ö{a V b) = ö(D(a V b)) = ö(D(a) n D(b)) = 0(D{a)) n 0(D(b)) = 
0(a) n 0(b). 



Pseudo BCK-semilattices 511 

PROPOSITION 4.1. Let A be a pseudo BCK-join-semilattice, X G VS{A). 
Then 

X = f]C(X) and X6 = f ] 0 ( X ) . 

P r o o f . By Corollary 3.2 (2) it holds X = f\C(X). 
For every P G O(X), since P is prime and X FL Xs = {1} C P , we have 

Xs C P, which along with Proposition 3.8 (2) yields 

Xs C p | 0{X) C p | { P G V(A) : P is minimal and X <£ P} = Xs, 

t h u s * * = n c > P o . • 
The properties (B), (C) and (D) together mean that 

MA) = {O(X) : X G VS(A)} 
is a topology on V(A) whose basis is {0{a) : a £ A}. Observe that the 
closed subsets are the sets C(X), X G T>S(A). 

THEOREM 4.2 . For every pseudo BCK-join-semilattice A, the mapping 
(p ' X i • 0(X) 

is an isomorphism of the lattice T>S{A) onto the lattice of all open subsets 
ofP(A). 
P r o o f . Clearly, <p is a surjective homomorphism. If X, Y are distinct 
deductive systems then X ^ Y or Y ^ X, say X Y, so there is x G X\Y, 
and consequently, Y C P and x <£ P for some P G V{A). Thus P G O(X) 
while P g 0(Y). • 

COROLLARY 4.3. Let A be a pseudo BCK-join-semilattice. Then V{A) is 
a compact space if and only if there exist a\,..., an G A (N G N) such that 
A = D(ai,..., an). 

P r o o f . It is obvious that V(A) = O(A) is compact iff A is a compact 
element of the lattice T>S(A), i.e., iff A is generated (as a deductive system) 
by a finite number of elements of A. • 

THEOREM 4.4. For any pseudo BCK-join-semilattice A, V{A) is a To-space. 
If M. (A) 0 then M. (A) —endowed with the relative topology—is a T\ -
space. Moreover, if M(A) ^ 0 and A satisfies the identities (3.10), then 
M.{A) is a T2-space. 

P r o o f . Let P,Q G V{A) with P ^ Q. If, e.g., P <£ Q then Q G 0{P) and 
P 4- C(-P)- Since for any two distinct P, Q G M(A) we have P £ Q and 
Q P, it follows that M{A) is a Ti-space provided M{A) ^ 0 . 

Assume now that A fulfils (3.10) and M(A) ^ 0 . Let P,Q G M(A), 
P ^ Q. Then there exist a G P \Q and b G Q \ P. One readily sees 
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that also b —> a G P\Q and a —> b G Q \ P. In addition, 0(a b) D 
0(b a) = 0((a 6) V (6 a)) = 0(1) = 0, so that 0 ( a -» 6) 
and 0(6 —> a) are disjoint neighbourhoods of P and Q, respectively. Thus 
A4(A) is a Th-space. • 

An algebraic lattice L is said to be archimedean if for each compact 
element c G L the intersection of the elements which are maximal below c 
is 0. This notion was introduced by J. Martinez [14] and is motivated by 
the fact that an abelian ¿'-group G is archimedean (i.e., for all 0 < a, b G G, 
na ^ b for some n € N) if and only if the lattice 1(G) of its ¿-ideals is 
archimedean. Further, L is called hyper-archimedean if for every x G L 
the interval [x, 1] is an archimedean lattice. Again, an abelian ¿-group G 
is hyper-archimedean (i.e., the homomorphic images of G are archimedean 
¿-groups) exactly if 1(A) is hyper-archimedean. 

THEOREM 4.5 . Let A be a pseudo BCK-join-semilattice satisfying the iden-
tities (3.10). The following statements are equivalent: 

(i) V(A) is a T2-space, 
(ii) V(A)=M(A), 

(iii) every prime deductive system is minimal prime, 
(iv) VS(A) is a hyper-archimedean lattice, 
(v) for every compact (= finitely generated) deductive system X, the po-

lar Xs is the complement of X in VS(A). 

With any of these conditions, the lattice VS(A) is isomorphic to the lattice 
2(G) of all ¿-ideals of some hyper-archimedean i-group G. 

Proo f , (i) =>• (ii). Let V(A) be a T2-space. Let P G V(A) and X G VS(A) 
with PCX. For every a G A \ X there is Q G V(A) such that I C Q and 
a £ Q. Then clearly P C X C Q. Suppose that P ^ Q. In this case there 
exist x,y e A such that P G 0(x), Q G 0(y) and <D(xVy) = 0(x)C\0(y) = 
0. The last equality entails x V y = 1, and hence y G P as P G 0(x). 
But this is also impossible since P C Q. Altogether, we have P = X = Q 
proving that P is a maximal deductive system, so V(A) = M(A). 

(ii) (i). By Theorem 4.4. 
(ii) (iii). Trivial. 
(ii) ^ (iv). By [14], Theorem 1.6, the set of all meet-irreducible el-

ements of a hyper-archimedean lattice L is trivially ordered, and if L is 
modular and its meet-irreducible elements are trivially ordered then L is 
hyper-archimedean. Since VS(A) is an algebraic distributive lattice, it fol-
lows that VS(A) is hyper-archimedean if and only if V(A) is trivially or-
dered, if and only if V(A) = M(A). 
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(ii) O (v). According to [14], Theorem 2.4, an algebraic distributive 
lattice L has the property that c V c* = 1 for every compact element c G L 
(where c* stands for the pseudocomplement of c) if and only if (a) the set 
of all compact elements of L is closed under finite meets, and (b) the set 
of all prime elements of L is trivially ordered. Therefore, in the light of 
Proposition 3.5, and since X«5 is the pseudocomplement of X G T>S(A), the 
equivalence of (ii) and (v) is clear. 

Finally, by [14], Theorem 3.2, the property cVc* = 1 for every compact 
c is sufficient for an algebraic distributive lattice L to be isomorphic to the 
lattice 1(G) for some hyper-archimedean ¿-group G. Thus if A satisfies any 
of the conditions (i)-(v) then there is a hyper-archimedean ¿-group G such 
that VS(A) 1(G). m 

PROPOSITION 4 .6 . Let A be a pseudo BCK-join-semilattice. Then for every 
S C V(A), <S = C (P| <S) is the closure of S in ¿Pp^y In particular, for every 
X G VS(A), we have 0(X) = C(XS). 

Proof . It is plain that <S C C(f)<S). Assume that S C C(X) for some 
X G VS(A). Then X C f|«S and C(f)«S) C C(X) proving that C(f|<5) is the 
smallest closed subset of V(A) that contains S. 

For the latter claim, given any X € VS(A), then 0(X) = C(f| O(X)) = 
C(XS). m 

COROLLARY 4 .7 . Let A he a pseudo BCK-join-semilattice and X G T>S(A). 
Then O(X) is clopen if and only if Xs is the complement of X in T>S(A). 

Proof . If 0(X) is a clopen subset then O(X) = (O(X)) = C(XS), hence 
0(X V Xs) = O(X) U 0(XS) = C(XS) U 0(X5) = V(A) = O(A) which 
implies X V Xs = A. 

Conversely, assume that X V Xs = A. Then V(A) = O(X) U 0(XS), 
whence it follows that O(X) = V(A) \ 0(XS) = C(X5) because O(X) n 
0(XS) = 0. • 

COROLLARY 4 .8 . Let A be a pseudo BCK-join-semilattice that satisfies 
(3.10). Then any of the conditions (i)-(v) of Theorem 4-5 is equivalent 
to the condition that O(X) is a clopen subset in V(A) for every compact 
X G VS(A). 

5. Prime deductive systems of pseudo BCK-lattices 
As we have seen, every deductive system D of any pseudo BCK-algebra 

A is an order-filter of the underlying poset, but if A is a pseudo BCK-lattice 
then D need not be a filter. Hence we consider the class of pseudo BCK-
lattices satisfying certain simple identities that force deductive systems to 
be filters. 
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PROPOSITION 5.1. Given a pseudo BCK-lattice (A, V, A, — 1 ) satisfying 

the identities 

x y = x ( x Ay ) , 
t5"1 ) ( a ^ x y = x (x Ay), 

then every D G VS{A) is a filter in the lattice (A, V, A). I f , moreover, D is 

a prime deductive system then it is also a prime filter. 

P r o o f . Let a,b e D. Then a (6 (6 A a) ) = a - » (b a) = 1 € D 

entails a A b G D. • 

A natural example of pseudo BCK-lattices satisfying (5.1) are commu-
tative pseudo BCK-lattices. 

Though the converse of Proposition 5.1 obviously fails to be true, we 
shall show below that the minimal prime filters of {A, V, A) coincide with 
the minimal prime deductive systems of (A, V, A, — 1 ) . 

PROPOSITION 5.2. Let {A, V, A, — 1 ) be a pseudo BCK-lattice and let F 

be a proper filter of (A, V, A). Denote 

2) (F,x) = {a G A : a -> x £ F } forx&A\F, 

and 

2>(F) = f| {X) (F , x ) : x € A \ F}. 

Then 2 ) (F ) is a deductive system such that 2 ) (F ) C F. Moreover, if F is a 

prime filter then 2 ) (F ) is a prime deductive system. 

P r o o f . First, note that ¡9 (F ) C F . Indeed, if a € 25(F) and a <£ F, then 
a G 2)(F, a), so 1 = a —• a ^ F , a contradiction. 

Further, we show that 2 ) (F ) G VS (A ) . Clearly, l e 2 ) ( F ) a s l - > x = 
x £ F for all x G A\F. Assume that a, a —> b G 25(F), and take an arbitrary 
x G A \ F. Then we have a x £ F, whence a b € 2)(F, a —> x) and 
(a —> 6) —> (a —> x) F. But (a —• b) —• (a —> x) > £> —> x, and 
consequently, 6 —» x ^ F . This means 6 G 2) (F) . 

Before proving that 2) ( F ) is prime whenever F is a prime filter, observe 
that the following two properties hold: 

(A ) x < y implies 2) (F,y) C 2)(F,x); 
(B) if a V b G 2)(F, x ) then a G 2)(F, x ) or b G 2)(F, x). 

Indeed, x < y yields a —» x < a —> y, so that if a —> y ^ F then a —> x ^ F , 
which is (A). I fa—>x, & —> x G F then (a V6) —> x = (a —• x ) A (6 —> x) G F 
proving (B). 

Now, assume that F is a prime filter of {A, V, A). Let a V 6 G 2) (F) . 
If neither a nor b lies in 2) (F) , then a £ T)(F,x) and b £ 2 ) (F,y ) for 
some x, y G A \ F. Since F is prime, we have x V y ^ F , s o a V & G 
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25(F,xVy). However, 25(F,xVy) C 25(F, x) D25(F, y) by (A), and therefore, 
a G 25(F,x Vy) C 25(F,x) fl 25 (F,y) or b e 25(F,x Vy) C 25(F,x) fl 25(F,y) 
which contradicts to a ^ 25(F,x) and b <£T)(F,y). Altogether, a V6 € 25(F) 
entails a G 25(F) or b G 25(F) as desired. • 

REMARK 5.3. Observe that if a given filter F is a deductive system then 
25(F) = F . Indeed, for every a G F and x G A \ F we have a —> x ^ F , so 
o G 25(F, x) yielding F C 2 5 ( F ) . 

COROLLARY 5.4. LEI (A, V, A, — 1 ) BE a pseudo BCK-lattice that fulfils 
(5 .1) . Then for any X C A, X is a minimal prime deductive system of 
(A, V, A, — i 1 ) if and only if X is a minimal prime filter of (A, V, A). 
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