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A NUMERICAL VIEW ON TOPOLOGICAL TRANSITIVITY
AND MIXING FOR SYMBOLIC DYNAMICS

Abstract. The aim of this paper is to give some algorithms detecting topological
transitivity, mixing and other properties of subshifts of finite type.

1. Introduction

The symbolic dynamics plays an important role in the theory of dyna-
mical systems. It can be applied to detection of chaos in dynamical systems
generated by differential equations [2], [3]. Symbolic dynamics has also many
applications in modelling of processes in many fields of science (e.g. cod-
ing theory, automata theory, genetics and biotechnology [7]). In this paper
a construction of algorithms detecting dynamical properties of subshifts of
finite type like topological transitivity and mixing is considered. Topologi-
cally transitive subshifts are chaotic in the sense of Devaney [2]. Topological
methods are particulary applicable in the case of chaotic dynamical systems.
In this situation one is unable to compute true orbits, even increasing the
precision of calculations, as the system has sensitive dependence on initial
conditions.

The main part of the paper is Section 5, where algorithms are effectively
checking whether a subshift of finite type is nonempty, topologically transi-
tive or mixing. An algorithm transforming a graph to an essential graph is
also given. Using graph theory there are constructed algorithms detecting
properties described above with linear complexity depending on the number
of vertices and edges. However, detecting topological mixing requires O(n3)
operations, as this property is more complex than the others.
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2. Basic definitions and properties

Let A be a finite set, an alphabet. The (full) A-shift is the product space
A% with a shift map o : AZ 3 (z;)icz — (Zis1)iez € A% and the metric d
on AZ given by d((z;), (y;)) = 277, where j € N is the smallest integer such
that =; # y; or z_; # y_;. A compact subset X of AZ invariant under o is
called a subshift.

Elements of the set W, (A) = A™ are called n-words (n-blocks) over A.
A word (block) over A is an element of the set W(A) = {J,cy Wn(A). The
length of word, |w|, x € W(A) is N such that x € Wx(A) (i.e. |z| = N).

A word w € W(A)'is allowed for a subshift X C .AZ if there exists z € X
such that w = Z;Zi41 . . . Ti4n-1 = T[;i4n_1] for some i € Z, where n = jw.

Let Wp(X) denotes the set of all n-words allowed for X and let W(X)
be the set of all words allowed for X.

Each subshift may be defined by a collection of forbidden words
FC W(A). A subshift of finite type can be determined by a finite set of
forbidden words. A subshift of finite type is M-step if it can be defined by
a collection of forbidden words all of length M+1. It can be easily shown
that every M-step subshift of finite type is also (M+1)-step.

We call G = (V, E,i,t) a graph if V and E are finite sets, V # § and i,
are maps from FE to V. Vertex i(e) is an initial state of edge e, and t(e) is
a terminal state.

DEFINITION 1. Let G be a graph. The vertex shift over alphabet A = Vg is
the shift space specified by

X = {.’E = (l'j)jeZ 1x; € Vg,t(ej) = xj,i(ej) =ZTjt+1,€5; € E¢ for all JE Z}
and the edge shift over A = Eg is the shift space defined by
Xc = {6 = (&)iez : & € Ea,t(&) = i(¢41) for all j € Z}.

A bi-infinite path in G is £ = (§;)icz such that §; € Eg and t(&) = i(&+1)
for all i € Z. A vertex v € V is stranded if either the set {e | i(e) = v} or
{e | t(e) = v} is empty. A graph is essential if it has no stranded vertices. If
€ is a bi-infinite path on G then for every i € Z vertices i(§;) and t(¢;) are
not stranded.

In this paper it is assumed that all graphs are essential. Transformation
of a graph to essential form does not change presented subshift (the set of
all bi-infinite paths is the same for both graphs).

DEFINITION 2. Let X be a subshift over alphabet A and ANl = Wy (A).
Define a higher N-block code By : X — (AIN)Z by BN(T)ji) = TpsieN—1]-
The higher N-block presentation of X, denoted by XV 1 is the image of BN
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REMARK 3. A function 8y is a topological conjugacy of a subshift X and
its Nth higher block X1,

Let X be a compact metric space. A homeomorphism f: X — X is
topologically transitive iff for all open nonempty sets U,V C X exists a pos-
itive integer m such that f~™(U) N V # @ and f is topologically mixing iff
for all open nonempty sets U,V C X exists a positive integer mg such that
FT™U)NV £0 for every integer m > my.

A subshift X is topologically transitive (mixing) if the map o|x is topo-
logically transitive (mixing).

REMARK 4. Topological transitivity and mixing are topological conjugacy
invariants, so instead checking them for X it can be done for higher block
presentation X[V, A subshift conjugate to a nonempty subshift is also
nonempty.

PROPOSITION 5 (see [7, Thm. 2.3.2]). Let X be an M-step subshift of finite
type. Then there is a graph G such that XM = X¢ and XM+ = X,

In this article, there are given results for vertex shifts only, as the theory
for edge shifts is equivalent. This implies that algorithms considered in
Section 5 are the same in the case of edge shifts (i.e. the same test checks
the same properties in the case of the edge and the vertex shift).

Let M,, be a set of all n x n matrices with nonnegative integer entries.

DEFINITION 6. The oriented graph G(A) (or just G) associated with a matriz
A € M, consists of n vertices. There are k edges in G from the i-th to the
j-th vertex iff a;; = k, where A = [ayj]ij=1,.n- A cycle is a path in the
graph having the same initial and terminal vertex.

The matriz A is called a transition (adjacency) matrix for graph G.

Let X4 and 3(: denote the vertex shift and the edge shift in the graph
associated with the matrix A. For a given oriented graph G with at most
one edge between two vertices, there exists a unique, square matrix which is
its transition matrix.

Let Ny be a set of all nonnegative integer. Let us define:
&n == {B = [aij]ij=1..n : aij € No,Vieq1,...n}3jeq1,..n} Gij > 0}.

THEOREM 7 (see for instance [4]). Let A = [a;;]ij=1,..n € Mn. Then the
following conditions are equivalent:
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() Xa#0; X4 #0;

(i)  there ezist k € {1,...,n} and pairwise distinct integers
bi,...,bx € {1,...,n} such that D = [app,]i j=1,..k € Ek;

(i5) tr(A+AZ+...+A") >0.

Let a7} denotes ¢, j-th entry of m—th power of A.

DEFINITION 8. A matriz A is irreducible iff for everyi,j € {1,...,n} there
is a positive integer m such that ai} > 0.
A matriz A is primitive iff for every i,5 € {1,...,n} there is a positive

integer mo such that aj} >0 for every integer m > my.

DEFINITION 9. A graph G is irreductble (strongly connected) iff for any two
vertices I,J € Vg there exists a path m = ey ... ey in the graph G such that
I =1i(e1) and J = t(en). An irreducible component of the graph G is every
maximal irreducible subgraph of G.

REMARK 10. A matrix A is irreducible iff it is a transition matrix for an
irreducible graph.

THEOREM 11 (see [6], [8])-
For a given transition matriz A the following properties are satisfied:
(1) The subshift X 4 (X’; ) is topologically transitive iff A is irreducible.
(2) The subshift X 4 (5(: ) is topologically mizing iff A is irreducible and

n n

IEZZZ-j-sgn(agi),

i=1 j=1
where Z 1is the set of integers. The above condition can be stated in the
following equivalent form:

n
3 {Cij}i,je{l,...,n} CZ : 1= Z Cij " J- sgn(a{i).

,j=1
Let GCD(my, ..., my) be the greatest common divisor of positive integers
mi,..., M. Since there exist integers ¢, ..., ¢ such that

GCD(ml, . ,mk) =tim1 +tamo + ... + tmy,
the following corollary is satisfied

COROLLARY 12. Let A be a transition matriz. Then the subshift X 4 (5(: )
is topologically mizing iff A is irreducible and there exist cycles 71, ..., n; of
lengths my, ..., my < n in the graph G(A) such that GCD(my,...,my) = 1.

To verify whether a given subshift is mixing it is sufficient, by Co-
rollary 12, to find all numbers m; < n representing cycles lengths (i.e.
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tr(A™¢) > 0) and then check whether GCD(m;y,...,m;) = 1. Unfortu-
nately, multiplication of two matrices needs O(n®) operations so in order to
find all numbers my, it is required O(n*) operations. Therefore it has been
proposed another criteria allowing to verify topological mixing faster.

Let G be a graph with n vertices. For v € Vg it is defined I3 C
{1,...,3n} in the following way: j € I3 if there exists a cycle m starting
in v and |7] = j < 3n. GCD(B) means the greatest number which divides
all elements of a finite set B C N. Obviously, if A, B are any two finite sets
such that A C B, then GCD(B) divides GCD(A).

THEOREM 13. Let G be an irreducible graph. If the subshift Xg is topolo-
gically mizing, then GCD(I3) = 1 for every v € Vig. If there ezists v € Vg
such that GCD(I3) = 1, then Xg is topologically mizing.

Proof. Suppose that the subshift X is topologically mixing and take any
v € V. By Corollary 12, there exist vertices vy, ...v; and cycles m,..., 7
through that vertices such that GCD(|m}|,...,|mk|) = 1 and |m| < n for
i =1,...,k. Graph G is irreducible, so there exist paths from v to v; and
from v; to v. Furthermore, there exist such paths with length at most n.
Thus, we have cycles §; going through vertices v and v; with length less than
2n. Combining cycles m; and &; together it is obtained a cycle going through
v with length |m;| + |&;]. By the definition of I3, the following property is
satisfied
{1, s &kl Imal + L, il + JEkl} C I3
Because GCD(I?) divides || and |m;| + |&], then GCD(I3) divides |m;|.
Thus
1< GCD(I?) < GCD(my,...,m) = 1.

Conversely, if there exist cycles in the graph with the greatest common

divisor equal to 1 and the graph is irreducible, then the subshift X is

topologically mixing. The proof of this statement is the same as the proof
of Theorem 11 (see [6]). a

3. Subshifts generated by a finite sum of matrices

Subshifts of this type were introduced in [5]. Let n, k be positive integers
and let Aq,...,4; € M, and let _k be a nonnegative integer. Let us consider
the subshift of finite type X¢ ( X¢) with

C = [e;j], cij =sgn((a1)ij + - .. + (ak)is),
where (a;);; is the ¢, j—entry of matrix A;.

REMARK 14. X4, U...U Xy, C Xc.
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REMARK 15. Let Aj,..., A; be transition matrices as above. If one of the
subshifts X 4,,..., X4, is topologically transitive (mixing), then the subshift
X is topologically transitive (mixing).

For Ae M, :
A>0&a; >0 forall 4,5 € {1,...,n}.
COROLLARY 16. If the condition
(Ai+ AT+ .+ AY) + (Ao + A5+ ...+ AD) +
o+ (A AR+ .+ AR) >0
is satisfied then the subshift X¢ is topologically transitive.
COROLLARY 17. If one of the transition matrices Ay, ..., Ax s irreducible

and the condition tr (A1 + Az + ...+ Ax) > 0 is satisfied, then the subshift
X 1s topologically mizing.
COROLLARY 18. If one of the transition matrices Az, ..., Ax is irreducible
and for somei€{1,...,k} there exist cycles 71, ..., 7 of lengths my, ..., mg
< n in the graph G(A;) such that GCD(my,...,mg) = 1, then the subshift
X is topologically mizing.

4. Examples

EXAMPLE 19. Let us consider a subshift defined by a finite sum of matrices.
Topological transitivity or mixing of the subshift generated by a finite sum
of matrices can be tested by checking irreducibility or other properties for
the sum of a given matrix A. As the number of matrices can be large so
it might be better to check separately some of the properties for matrices
Ary ..., Ag.

The subshift in Figure 1 is generated by the sum of two matrices, one
of which is irreducible and the other with a cycle of length 1. It does not
matter how many additional matrices we will add to that sum, it will remain
mixing.

ST CYRRGED

Fig. 1. Reducible + Irreducible = Mixing
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ExXAMPLE 20. Let

0 001 00 ¢ O 0 000
0 0000 0 0 O0O0CTO01
010 001 0 0 0O00O0
0 000 011 06 000
0 01000 0 OO0OTW1O
A=|10 1 0 0 0 0 0 0 0 0 O
0 0 00 0 0 01 0 O0O0
6 0 0000 0 0 01O
0 0 001 0 0 00 O00O0
1 0 0 000 0 0 0 0O
00000 0O0O0T1O0 O]
The matrix A is irreducible and tr (4%) > 0, tr (4%) > 0. Thus the subshift

X 4 is topologically transitive and mixing.

5. Algorithms

In this section it is assumed that G is the graph with n vertices and m
edges presented by adjacency lists. As it is possible that there is more than
one edge between two vertices, sometimes m > n?. When m differs slightly
from n? it is better to use transition (adjacency) matrix representation. In
this case m should be changed into n? in the complexity description, however
to change one presentation to another, we may need O(n + m) operations.
In presented algorithms it is only required to know if there exists any edge
between two vertices, so we may use boolean matrices as adjacency matrices.
However, the number of edges between two vertices is important information
in case we would like to calculate the entropy of shift space or check other
dynamical properties.

THEOREM 21. Let G be a graph with n vertices and m edges. There exists
an algorithm checking if Xg and X are non-empty subshifts. Furthermore,
the algorithm complezity is equal to O(n + m).

Proof. To check if X¢ and 5(; are non-empty it is enough to check if
there can be constructed any bi-infinite path in G. If there is a vertex with
self-loop, then there exists a bi-infinite path in G and the process is stopped.
If there is no vertex with a self-loop (this can be checked in n steps), then
the next part of the algorithm is performed.

Let us find all connected components of the graph. It can be done,
by the algorithm STRONGLY-CONNECTED-COMPONENTS, presented
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in [1], with complexity O(n +m). This algorithm will also label the vertices
in the same connected component of the graph with the same color, so we
can count the number of vertices in each of the components. If there exists
a component which consists of at least two vertices then there is a cycle in
G and a bi-infinite path can be constructed.

Conversely, let us suppose that each of the components contains only one
vertex. Let us observe that there is no self-loops and every two vertices lay
in different connected components, so there is no cycle in G. This means
that there is no bi-infinite path in the graph and thus the shift spaces Xg
and X are empty. g

THEOREM 22. Let G be a graph with n vertices and m edges. There exists
an algorithm changing G into essential graph and the algorithm complezity
is O(n +m).

Proof. Let us take the graph G and its inversion GT (graph GT can be
produced in O(n + m) operations). Let us also construct tables I and O, in
the way that I(v) denotes the number of edges terminating in vertex v and
O(v) denotes the number of edges initializing in v. The tables I,O and C
can be filled using O(m + n) operations. Vertex v € Vg is stranded if I(v)
or O(v) is equal to zero. At the beginning we set the color of each vertex as
white.

Stranded vertices are removed recursively in the following way: if there
exists a vertex such that I(v) = 0 or O(v) = 0 and its color is white then
this vertex is grayed. Next the values in the table I are decreased by one for
all vertices reachable from v in the graph G and do the same with the values
of the table O for vertices reachable from v in GT (we virtually remove all
edges going in and out of v). If one of these numbers reached 0 and a vertex
is white then this vertex is considered in the next step, and its color is gray.
The process is stopped if there is no vertex satisfying previous criteria (there
is no gray vertex, which was not considered). As any vertex may be grayed
at most one time, and numbers in the tables I, O may be changed at most
2m times, so the complexity of this part of the algorithm is O(n + m).

The last part of the algorithm consists in removing all grayed vertices
and all edges having such a vertex in one of the ends. It can be done using
O(n + m) operations. Let us observe that if any vertex v is not grayed then
I(v) > 0 and O(v) > 0 (it is not stranded in the graph containing only white
vertices). The conclusion is that it is needed at most O(n+m) operations to
change § given graph to an essential graph presenting the same shift space. [J

THEOREM 23. Let G be a_graph with n vertices and m edges. There ezists
an algorithm checking if X and X are topologically transitive subshifts.
Furthermore it can by done in O(n + m) operations.
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Proof. First of all the graph has to be changed to an essential form. Next,
due to previous observations, it is sufficient to check if the graph is irre-
ducible. So by Remark 10 we must check if there is a path from some chosen
vertex v to any u € Vg\{u} in the graph G and its inversion G7. It can be
done by a slight modification of the algorithm STRONGLY-CONNECTED-
COMPONENTS having complexity O(n + m). O

THEOREM 24. Let G be a graph with n vertices and m edges. There ez-
ists an algorithm checking if X¢ and X are topologically mizing subshifts.
Furthermore it can done using O(n - m) operations.

Step 1. It must be checked if X is topologically transitive. We can
do it, by Theorem 23, in O(n + m) operations. If X¢ is not topologically
transitive, then it is also not mixing, and the process is stopped.

Step 2. Let us take any vertex v € V. We define the family of sets
{Pr}k=1,..3n as follows:

Po={v} , Pp={veVg|Ie€Es : tle)=v,i(e) € A}

Observe that k € I3 iff v € Py, so it is sufficient to make recursive construc-
tion, checking if v € Py. In every step ¢ we must remember only the set P;_;
and elements of I3. After 3n steps we have the set I3, and the whole process
needs at most 3n - m + n operations.

Step 3. By Theorem 13 it is sufficient to check if GCD(I3) = 1. We can
find GCD(a,b) by the well known EUCLID algorithm described e.g. in [1],
and it can be done in O(log(b)) operations, where a > b > 0. It is easy to
see that to find GCD(I3) we need at most O(3n - log(3n)) operations. If
GCD(I3) = 1, then X is topologically mixing, otherwise it is not.

The complexity of all steps is bounded by O(n - m) so it is also the
complexity of the whole algorithm. |
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