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A NUMERICAL VIEW ON TOPOLOGICAL TRANSITIVITY 
AND MIXING FOR SYMBOLIC DYNAMICS 

Abstract . The aim of this paper is to give some algorithms detecting topological 
transitivity, mixing and other properties of subshifts of finite type. 

1. Introduction 
The symbolic dynamics plays an important role in the theory of dyna-

mical systems. It can be applied to detection of chaos in dynamical systems 
generated by differential equations [2], [3]. Symbolic dynamics has also many 
applications in modelling of processes in many fields of science (e.g. cod-
ing theory, automata theory, genetics and biotechnology [7]). In this paper 
a construction of algorithms detecting dynamical properties of subshifts of 
finite type like topological transitivity and mixing is considered. Topologi-
cally transitive subshifts are chaotic in the sense of Devaney [2]. Topological 
methods are particulary applicable in the case of chaotic dynamical systems. 
In this situation one is unable to compute true orbits, even increasing the 
precision of calculations, as the system has sensitive dependence on initial 
conditions. 

The main part of the paper is Section 5, where algorithms are effectively 
checking whether a subshift of finite type is nonempty, topologically transi-
tive or mixing. An algorithm transforming a graph to an essential graph is 
also given. Using graph theory there are constructed algorithms detecting 
properties described above with linear complexity depending on the number 
of vertices and edges. However, detecting topological mixing requires 0(n 3) 
operations, as this property is more complex than the others. 
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2. Basic definitions and properties 
Let A be a finite set, an alphabet. The (full) A-shift is the product space 

Jwith a shift map a : Az 3 (xi)ie% —> (xi+\)ie% G Az and the metric d 
on Az given by d((xi), (yi)) = 2_J, where j G N is the smallest integer such 
that Xj ^ yj or X- j ^ y-j. A compact subset X of Az invariant under a is 
called a subshift. 

Elements of the set WN(A) = AN are called n-words (n-blocks) over A. 

A word (block) over A is an element of the set W(A) = IJneN WN(A). The 
length of word, x G W(A) is N such that x G WN(A) (i.e. |x| = N). 

A word w G W(.A)is allowed for a subshift X C A^ if there exists x G X 

such that w = XiXi+i... = X[i,i+n-i] for some i G Z, where n = |u;|. 
Let Wn(X) denotes the set of all n-words allowed for X and let W(X) 

be the set of all words allowed for X. 

Each subshift may be defined by a collection of forbidden words 

7 C W(A). A subshift of finite type can be determined by a finite set of 
forbidden words. A subshift of finite type is M-step if it can be defined by 
a collection of forbidden words all of length M+L. It can be easily shown 
that every M-step subshift of finite type is also (M+l)-step. 

We call G = (V, E, i, t) a graph if V and E axe finite sets, V / 0 and i, t 

are maps from E to V. Vertex i(e) is an initial state of edge e, and t(e) is 
a terminal state. 

DEFINITION 1. Let G be a graph. The vertex shift over alphabet A = VG is 
the shift space specified by 

XG = {x = (xj)j€z : xj G VG, t(ej) = Xj, i(ej) = xj+i,ej G EG for all j G Z } 

and the edge shift over A = EG is the shift space defined by 

XG = {£ = (Cj)jez •• 6 EcMj) = HZj+1) for all j G Z } . 

A bi-infinite path in G is £ = (Ci)iez such that G EG and i ( ^ ) = 
for all i G Z. A vertex v G V is stranded if either the set {e | i(e) = v } or 
{e | t(e) = f } is empty. A graph is essential if it has no stranded vertices. If 
£ is a bi-infinite path on G then for every i G Z vertices i ( ^ ) and are 
not stranded. 

In this paper it is assumed that all graphs are essential. Transformation 
of a graph to essential form does not change presented subshift (the set of 
all bi-infinite paths is the same for both graphs). 

DEFINITION 2. Let X be a subshift over alphabet A andAW = WN(A). 

Define a higher N-block code /Jjy : X —> (A^)^ by P^(x)^ = ^[j^+Af-i]• 

The higher N-block presentation of X, denoted by X ^ l , is the image of fix. 
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R E M A R K 3. A function /3n is a topological conjugacy of a subshift X and 
its Nth higher block X ^ . 

Let X be a compact metric space. A homeomorphism / : X —> X is 
topologically transitive iff for all open nonempty sets U, V C X exists a pos-
itive integer m such that f~m(U) H V 0 and / is topologically mixing iff 
for all open nonempty sets U, V C X exists a positive integer mo such that 
f~m{U) PI V / 0 for every integer m > mo. 

A subshift X is topologically transitive (mixing) if the map a\x is topo-
logically transitive (mixing). 

REMARK 4. Topological transitivity and mixing are topological conjugacy 
invariants, so instead checking them for X it can be done for higher block 
presentation A subshift conjugate to a nonempty subshift is also 
nonempty. 

PROPOSITION 5 (see [7, Thm. 2.3.2]). Let X be an M-step subshift of finite 
type. Then there is a graph G such that = XG and = XG. 

In this article, there are given results for vertex shifts only, as the theory 
for edge shifts is equivalent. This implies that algorithms considered in 
Section 5 are the same in the case of edge shifts (i.e. the same test checks 
the same properties in the case of the edge and the vertex shift). 

Let M„ be a set of all n x n matrices with nonnegative integer entries. 

DEFINITION 6. The oriented graph G(A) (or just G) associated with a matrix 
A € Mn consists of n vertices. There are k edges in G from the i-th to the 
j-th vertex i f f aij = k, where A = J = I , . . . , T I • A cycle is a path in the 
graph having the same initial and terminal vertex. 

The matrix A is called a transition (adjacency) matrix for graph G. 

Let XA and XA denote the vertex shift and the edge shift in the graph 
associated with the matrix A. For a given oriented graph S with at most 
one edge between two vertices, there exists a unique, square matrix which is 
its transition matrix. 

Let No be a set of all nonnegative integer. Let us define: 

£n := {B = [aij]ij=i...n : a^ € N0, Vjg^...,n}3je{i,...,n} > 0}. 

T H E O R E M 7 (see for instance [4]). Let A = [ay]ij=i,...,n £ M n . Then the 
following conditions are equivalent: 
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(0 + 0; + 0; 
(ii) there exist k G {1,..., n} and pairwise distinct integers 

bi,...,bke{l,...,n} such that D = [abibj]ij=it_tk G £fc; 
(Hi) tr(A +A2 + ... +An) >0. 

Let a™ denotes i, j - th entry of m—th power of A. 

DEFINITION 8. A matrix A is irreducible i f f for every i,j € { 1 , . . . , N} there 
is a positive integer m such that a™ > 0. 

A matrix A is primitive i f f for every i,j G {1,... ,n} there is a positive 
integer mo such that a™ > 0 for every integer m > mo • 

DEFINITION 9. A graph G is irreducible (strongly connected) i f f for any two 
vertices I,J^Vg there exists a path ir = e\... em in the graph G such that 
I = i(ei) and J = t(em). An irreducible component of the graph G is every 
maximal irreducible subgraph ofG. 

REMARK 10. A matrix A is irreducible iff it is a transition matrix for an 
irreducible graph. 

T H E O R E M 11 (see [6], [8]). 
For a given transition matrix A the following properties are satisfied: 

(1) The subshift XA (XA) is topologically transitive i f f A is irreducible. 
(2) The subshift XA (XA) is topologically mixing i f f A is irreducible and 

n n 

¿=1 j=l 
where Z is the set of integers. The above condition can be stated in the 
following equivalent form: n 

3 (c^Km l , . . . ,n} C z : 1 = Y^ • j • s g n ( 4 ) -
i,i=1 

Let G C D ( m i , . . . , m^) be the greatest common divisor of positive integers 
m i , . . . , m f c . Since there exist integers t\,... ,tk such that 

G C D ( m i , . . . , mfc) = t \ m i + t2m2 + . . . + ifemfe, 

the following corollary is satisfied 

COROLLARY 12. Let A be a transition matrix. Then the subshift XA (XA) 

is topologically mixing i f f A is irreducible and there exist cycles 7Ti , . . . , -K^ of 
lengths mi,..., m^ < n in the graph 3(A) such that GCD(m\,..., m^) = 1. 

To verify whether a given subshift is mixing it is sufficient, by Co-
rollary 12, to find all numbers m^ < n representing cycles lengths (i.e. 
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tr(Amk) > 0) and then check whether GCD(mi, . . . , vrik) = 1. Unfortu-
nately, multiplication of two matrices needs 0(ra3) operations so in order to 
find all numbers m^ it is required 0(n4 ) operations. Therefore it has been 
proposed another criteria allowing to verify topological mixing faster. 

Let G be a graph with N vertices. For v G VQ it is defined 1% C 
{1, . . . ,3n} in the following way: j G 1% if there exists a cycle n starting 
in v and | tt | = j < 3n. GCD(B) means the greatest number which divides 
all elements of a finite set B C N. Obviously, if A, B are any two finite sets 
such that Ac B, then GCD(B) divides GCD(A). 

THEOREM 13. Let G be an irreducible graph. If the subshift XQ is topolo-
gically mixing, then GCD(I%) = 1 for every v G VQ. If there exists v G VQ 
such that GCD{LL) = 1, then XQ is topologically mixing. 

Proo f . Suppose that the subshift XQ is topologically mixing and take any 
v G Vq- By Corollary 12, there exist vertices vi,... v^ and cycles ir\,... ,irk 
through that vertices such that GCD(\KI\, . . . , |7Tfc|) — 1 and |7rz| < n for 
i = 1,..., A;. Graph G is irreducible, so there exist paths from v to V{ and 
from Vi to v. Furthermore, there exist such paths with length at most n. 
Thus, we have cycles & going through vertices v and Vi with length less than 
2n. Combining cycles 7r* and ^ together it is obtained a cycle going through 
v with length |7Tj| + |£j|. By the definition of the following property is 
satisfied 

(161,..., I & I . M + lexi, — , hfci + i & i K / * . 

Because GCD(TF) divides and + then GCD(I$) divides 1^]. 
Thus 

1 < GCD{LL) < GCD(TTi,... ,7rfc) = 1. 

Conversely, if there exist cycles in the graph with the greatest common 
divisor equal to 1 and the graph is irreducible, then the subshift Xq is 
topologically mixing. The proof of this statement is the same as the proof 
of Theorem 11 (see [6]). • 

3. Subshifts generated by a finite sum of matrices 
Subshifts of this type were introduced in [5]. Let n, k be positive integers 

and let A\,..., A^ G M n and let k be a nonnegative integer. Let us consider 
the subshift of finite type X c ( X c ) with 

c = [cyh = s§n ( ( + • • • + (ak)ij), 

where (a{)ij is the i,j—entry of matrix A[. 

R E M A R K 14. X A l U . . . u XAk c X c . 
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REMARK 15. Let A i , . . . , Ak be transition matrices as above. If one of the 
subshifts XAx , • • •, XAk is topologically transitive (mixing), then the subshift 
X c is topologically transitive (mixing). 

For A € 3Vtn : 
A > 0 <i=> aij > 0 for all i,j € {1 , . . . , n}. 

COROLLARY 16. If the condition 
{Ax + A\ + ... + A?) + (A2 + Al + ... + A$) + 

... + (Ak + Al + ... + A%) > 0 
is satisfied then the subshift Xc is topologically transitive. 
COROLLARY 17. If one of the transition matrices A\,...,Ak is irreducible 
and the condition tr (A\ + A<i + . . . + Ak) > 0 is satisfied, then the subshift 
Xc is topologically mixing. 
COROLLARY 18. If one of the transition matrices Ai,..., Ak is irreducible 
and for some i € {1,..., k} there exist cycles iti,... ,iTk of lengths mi,..., mk 
< n in the graph G(Ai) such that GCD(mi,... ,m,k) = 1, then the subshift 
Xc is topologically mixing. 

4. Examples 
E X A M P L E 19. Let us consider a subshift defined by a finite sum of matrices. 
Topological transitivity or mixing of the subshift generated by a finite sum 
of matrices can be tested by checking irreducibility or other properties for 
the sum of a given matrix A. As the number of matrices can be large so 
it might be better to check separately some of the properties for matrices 
Au...,Ak. 

The subshift in Figure 1 is generated by the sum of two matrices, one 
of which is irreducible and the other with a cycle of length 1. It does not 
matter how many additional matrices we will add to that sum, it will remain 
mixing. 

Fig. 1. Reducible + Irreducible = Mixing 
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E X A M P L E 20 . L e t 

A = 

0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 1 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 1 1 
0 
1 
0 0 

0 0 0 0 
0 1 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 
0 0 1 0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 0 0 0 0 

0 0 
0 

0 
0 

1 0 
0 0 

0 0 0 1 
0 0 
0 0 

The matrix A is irreducible and tr (.A5) > 0, tr (A6) > 0. Thus the subshift 
XA is topologically transitive and mixing. 

5. Algorithms 
In this section it is assumed that G is the graph with n vertices and m 

edges presented by adjacency lists. As it is possible that there is more than 
one edge between two vertices, sometimes m > ra2. When m differs slightly 
from n2 it is better to use transition (adjacency) matrix representation. In 
this case m should be changed into n2 in the complexity description, however 
to change one presentation to another, we may need 0(n + m) operations. 
In presented algorithms it is only required to know if there exists any edge 
between two vertices, so we may use boolean matrices as adjacency matrices. 
However, the number of edges between two vertices is important information 
in case we would like to calculate the entropy of shift space or check other 
dynamical properties. 

THEOREM 21. Let G be a graph with n vertices and m edges. There exists 
an algorithm checking if XQ and XG are non-empty subshifts. Furthermore, 
the algorithm complexity is equal to 0(n + m). 

P r o o f . To check if XQ and XG are non-empty it is enough to check if 
there can be constructed any bi-infinite path in G. If there is a vertex with 
self-loop, then there exists a bi-infinite path in G and the process is stopped. 
If there is no vertex with a self-loop (this can be checked in n steps), then 
the next part of the algorithm is performed. 

Let us find all connected components of the graph. It can be done, 
by the algorithm STRONGLY-CONNECTED-COMPONENTS, presented 
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in [1], with complexity 0 (n + m). This algorithm will also label the vertices 
in the same connected component of the graph with the same color, so we 
can count the number of vertices in each of the components. If there exists 
a component which consists of at least two vertices then there is a cycle in 
G and a bi-infinite path can be constructed. 

Conversely, let us suppose that each of the components contains only one 
vertex. Let us observe that there is no self-loops and every two vertices lay 
in different connected components, so there is no cycle in G. This means 
that jhere is no bi-infinite path in the graph and thus the shift spaces Xq 

and XQ are empty. • 

THEOREM 22. Let G be a graph with n vertices and m edges. There exists 
an algorithm changing G into essential graph and the algorithm complexity 
is 0(n + m). 

P roo f . Let us take the graph G and its inversion GT (graph GT can be 
produced in 0(n + m) operations). Let us also construct tables I and O, in 
the way that I(y) denotes the number of edges terminating in vertex v and 
0(v) denotes the number of edges initializing in v. The tables /, O and C 
can be filled using 0(m + n) operations. Vertex v € Vq is stranded if I(v) 
or 0(v) is equal to zero. At the beginning we set the color of each vertex as 
white. 

Stranded vertices are removed recursively in the following way: if there 
exists a vertex such that I(v) = 0 or 0(v) — 0 and its color is white then 
this vertex is grayed. Next the values in the table I are decreased by one for 
all vertices reachable from v in the graph G and do the same with the values 
of the table O for vertices reachable from v in GT (we virtually remove all 
edges going in and out of v). If one of these numbers reached 0 and a vertex 
is white then this vertex is considered in the next step, and its color is gray. 
The process is stopped if there is no vertex satisfying previous criteria (there 
is no gray vertex, which was not considered). As any vertex may be grayed 
at most one time, and numbers in the tables 7 ,0 may be changed at most 
2m times, so the complexity of this part of the algorithm is 0(n + m). 

The last part of the algorithm consists in removing all grayed vertices 
and all edges having such a vertex in one of the ends. It can be done using 
0(n + m) operations. Let us observe that if any vertex v is not grayed then 
I(v) > 0 and 0(v) > 0 (it is not stranded in the graph containing only white 
vertices). The conclusion is that it is needed at most 0 (n + m) operations to 
change s given graph to an essential graph presenting the same shift space. • 

THEOREM 23. Let G be ajjraph with n vertices and m edges. There exists 

an algorithm checking if XQ and XQ are topologically transitive subshifts. 

Furthermore it can by done in Q(n + m) operations. 
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P r o o f . First of all the graph has to be changed to an essential form. Next, 
due to previous observations, it is sufficient to check if the graph is irre-
ducible. So by Remark 10 we must check if there is a path from some chosen 
vertex v to any u € VG\{U} in the graph G and its inversion GT. It can be 
done by a slight modification of the algorithm STRONGLY-CONNECTED-
COMPONENTS having complexity 0(n + m). • 

THEOREM 24. Let G be a graph with n vertices and m edges. There ex-

ists an algorithm checking if XQ and XQ are topologically mixing subshifts. 

Furthermore it can done using 0 (n • m) operations. 

Step 1. It must be checked if XQ is topologically transitive. We can 
do it, by Theorem 23, in (3(ra + m) operations. If Xq is not topologically 
transitive, then it is also not mixing, and the process is stopped. 

Step 2. Let us take any vertex v € VG- We define the family of sets 
{-Pfc}fc=i,...,3n as follows: 

P0 = M , Pi+1 = {v£VG\3eeEG : t(e) = v , t(e) e Pi}. 

Observe that k € iff v € Pk, so it is sufficient to make recursive construc-
tion, checking if v G Pk- In every step i we must remember only the set Pi~\ 
and elements of After 3n steps we have the set Iy, and the whole process 
needs at most 3 n - m + n operations. 

Step 3. By Theorem 13 it is sufficient to check if GCD(I%) = 1. We can 
find GCD(a,b) by the well known EUCLID algorithm described e.g. in [1], 
and it can be done in <D(log(b)) operations, where a > b > 0. It is easy to 
see that to find GCD(I%) we need at most 0(3n • log(3n)) operations. If 
GCD(IY) = 1, then XQ is topologically mixing, otherwise it is not. 

The complexity of all steps is bounded by 0 (n • m) so it is also the 
complexity of the whole algorithm. • 
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