

Tomonari Suzuki

FIXED POINT THEOREMS FOR MORE GENERALIZED CONTRACTIONS IN COMPLETE METRIC SPACES

Abstract. We generalize Suzuki's fixed point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces.

1. Introduction

It is well known that the Banach contraction principle [1] is very useful in nonlinear analysis. Also, this principle has many generalizations; see [2–4, 6, 8, 11–13] and others. For example, Meir and Keeler [11] proved the following very interesting fixed point theorem.

THEOREM 1 (Meir and Keeler [11]). *Let (X, d) be a complete metric space and let T be a Meir-Keeler contraction (MKC, for short) on X , i.e., for every $\varepsilon > 0$, there exists $\delta > 0$ such that*

$$d(x, y) < \varepsilon + \delta \quad \text{implies} \quad d(Tx, Ty) < \varepsilon$$

for all $x, y \in X$. Then T has a unique fixed point.

Theorem 1 is also a generalization of Edelstein's fixed point theorem in [5]. Very recently, motivated by Theorem 1 and Kirk's fixed point theorem for asymptotic contractions [9], Suzuki [18] proved the following fixed point theorem.

THEOREM 2 ([18]). *Let (X, d) be a complete metric space and let T be a continuous mapping on X . Assume that T is an asymptotic contraction of Meir-Keeler type (ACMK, for short), i.e., there exists a sequence $\{\varphi_n\}$ of functions from $[0, \infty)$ into itself satisfying the following:*

2000 *Mathematics Subject Classification:* Primary 54H25, Secondary 54E50.

Key words and phrases: Meir-Keeler contraction, L-function, asymptotic contraction, fixed point, τ -distance, complete metric space.

The author is supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

- (A1) $\limsup_n \varphi_n(\varepsilon) \leq \varepsilon$ for all $\varepsilon \geq 0$.
- (A2) For each $\varepsilon > 0$, there exist $\delta > 0$ and $\nu \in \mathbb{N}$ such that $\varphi_\nu(t) \leq \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta]$.
- (A3) $d(T^n x, T^n y) < \varphi_n(d(x, y))$ for all $n \in \mathbb{N}$ and $x, y \in X$ with $x \neq y$.

Then there exists a unique fixed point $z \in X$. Moreover $\lim_n T^n x = z$ for all $x \in X$.

Using Lim's characterization (Proposition 1), we can prove that ACMK is an asymptotic version of MKC. That is, Theorem 2 is a generalization of Theorem 1.

In this paper, using the notion of τ -distances, we shall prove fixed point theorems for more generalized contractions in complete metric spaces.

2. Preliminaries

Throughout this paper we denote by \mathbb{N} the set of all positive integers.

In this section, we give some preliminaries. Lim [10] introduced the notion of L-functions and characterized MKC. See also [19].

DEFINITION 1 (Lim [10]). *A function φ from $[0, \infty)$ into itself is called an L-function if $\varphi(0) = 0$, $\varphi(s) > 0$ for $s \in (0, \infty)$, and for every $s \in (0, \infty)$ there exists $\delta > 0$ such that $\varphi(t) \leq s$ for all $t \in [s, s + \delta]$.*

PROPOSITION 1 (Lim [10]). *Let (X, d) be a metric space and let T be a mapping on X . Then the following are equivalent:*

- (i) T is an MKC.
- (ii) There exists an L-function φ such that

(1) $x, y \in X, x \neq y \implies d(Tx, Ty) < \varphi(d(x, y))$.

- (iii) There exists a nondecreasing, Lipschitz continuous L-function φ satisfying (1).

In 2001, Suzuki introduced the notion of τ -distances in order to generalize results in Kada, Suzuki and Takahashi [7], Tataru [20], Zhong [21, 22] and others.

DEFINITION 2 ([14]). *Let (X, d) be a metric space. Then a function p from $X \times X$ into $[0, \infty)$ is called a τ -distance on X if there exists a function η from $X \times [0, \infty)$ into $[0, \infty)$ and the following are satisfied:*

- (τ 1) $p(x, z) \leq p(x, y) + p(y, z)$ for all $x, y, z \in X$;
- (τ 2) $\eta(x, 0) = 0$ and $\eta(x, t) \geq t$ for all $x \in X$ and $t \in [0, \infty)$, and η is concave and continuous in its second variable;
- (τ 3) $\lim_n x_n = x$ and $\lim_n \sup \{\eta(z_n, p(z_n, x_m)) : m \geq n\} = 0$ imply $p(w, x) \leq \liminf_n p(w, x_n)$ for all $w \in X$;

($\tau 4$) $\lim_n \sup\{p(x_n, y_m) : m \geq n\} = 0$ and $\lim_n \eta(x_n, t_n) = 0$ imply $\lim_n \eta(y_n, t_n) = 0$;

($\tau 5$) $\lim_n \eta(z_n, p(z_n, x_n)) = 0$ and $\lim_n \eta(z_n, p(z_n, y_n)) = 0$ imply $\lim_n d(x_n, y_n) = 0$.

The metric d is a τ -distance on X . Many useful examples and propositions are stated in [7, 14–17] and others. The following is Lemma 2 in [14].

LEMMA 1 ([14]). *Let X be a metric space with a τ -distance p . Then $p(z, x) = 0$ and $p(z, y) = 0$ imply $x = y$.*

Let (X, d) be a metric space and let p be a τ -distance on X . Then a sequence $\{x_n\}$ in X is called p -Cauchy if there exist a function η from $X \times [0, \infty)$ into $[0, \infty)$ satisfying $(\tau 2) \sim (\tau 5)$ and a sequence $\{z_n\}$ in X such that $\lim_n \sup\{\eta(z_n, p(z_n, x_m)) : m \geq n\} = 0$. We know the following.

LEMMA 2 ([14]). *Let X be a metric space with a τ -distance p . If $\{x_n\}$ is a p -Cauchy sequence, then $\{x_n\}$ is a Cauchy sequence in the usual sense.*

LEMMA 3 ([14]). *Let (X, d) be a metric space with a τ -distance p . If a sequence $\{x_n\}$ in X satisfies $\lim_n \sup\{p(x_n, x_m) : m > n\} = 0$, then $\{x_n\}$ is a p -Cauchy sequence. Moreover if a sequence $\{y_n\}$ in X satisfies $\lim_n p(x_n, y_n) = 0$, then $\{y_n\}$ is also a p -Cauchy sequence and $\lim_n d(x_n, y_n) = 0$.*

The following is the τ -distance version of Theorem 1.

THEOREM 3 ([16]). *Let X be a complete metric space with a τ -distance p , and let T be a mapping on X . Suppose that T is a Meir-Keeler contraction with respect to p (p -MKC, for short), i.e., for any $\varepsilon > 0$, there exists $\delta > 0$ such that for every $x, y \in X$,*

$$p(x, y) < \varepsilon + \delta \quad \text{implies} \quad p(Tx, Ty) < \varepsilon.$$

Then T has a unique fixed point z in X . Further such z satisfies $p(z, z) = 0$.

We can easily modify Lim's characterization for the τ -distance version of it as follows.

PROPOSITION 2 ([19]). *Let X be a metric space with a τ -distance p , and let T be a mapping on X . Then T is a p -MKC if and only if there exists a (nondecreasing, Lipschitz continuous) L -function φ satisfying the following:*

- (i) *If $p(x, y) = 0$, then $p(Tx, Ty) = 0$.*
- (ii) *If $p(x, y) > 0$, then $p(Tx, Ty) < \varphi(p(x, y))$.*

REMARK 1. *We note that $x = y$ does not necessarily imply $p(x, y) = 0$, and $p(x, y) = 0$ does not necessarily imply $x = y$.*

3. p -ACMK*

In this section, we shall introduce a notion which is a generalization of both ACMK and p -MKC.

DEFINITION 3. *Let X be a metric space with a τ -distance p . Then a mapping T on X is said to be a p -ACMK* if there exists a sequence $\{\varphi_n\}$ of functions from $[0, \infty)$ into $[0, \infty]$ satisfying the following:*

- (B1) $\lim_{t \rightarrow 0} \limsup_{n \rightarrow \infty} \varphi_n(t) = 0$.
- (B2) For each $\varepsilon > 0$, there exist $\delta > 0$ and $\nu \in \mathbb{N}$ such that $\varphi_\nu(t) \leq \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta]$.
- (B3) If $\varphi_n(p(x, y)) = 0$, then $p(T^n x, T^n y) = 0$.
- (B4) If $\varphi_n(p(x, y)) > 0$, then $p(T^n x, T^n y) < \varphi_n(p(x, y))$.

It is obvious that p -ACMK* is a weaker notion than d -ACMK*, which is a slightly weaker notion than ACMK.

PROPOSITION 3. *Let X be a metric space with a τ -distance p , and let T be a p -MKC on X . Then T is a p -ACMK* on X .*

P r o o f. By Proposition 2, there exists an L-function φ from $[0, \infty)$ into itself satisfying (i) and (ii) in Proposition 2. Define a sequence $\{\varphi_n\}$ of functions by $\varphi_n = \varphi$ for all $n \in \mathbb{N}$. Then we have

$$\lim_{t \rightarrow 0} \limsup_{n \rightarrow \infty} \varphi_n(t) = \lim_{t \rightarrow 0} \varphi(t) \leq \lim_{t \rightarrow 0} t = 0$$

and hence (B1) holds. It is obvious that $\{\varphi_n\}$ satisfies (B2). We note

$$p(Tx, Ty) \leq p(x, y)$$

for all $x, y \in X$ because $p(x, y) = 0$ implies $p(Tx, Ty) = 0$, and $p(x, y) > 0$ implies

$$p(Tx, Ty) < \varphi(p(x, y)) \leq p(x, y).$$

Fix $x, y \in X$ and $n \in \mathbb{N}$. In the case of $\varphi_n(p(x, y)) = 0$, we have $p(x, y) = 0$ because $\varphi_n = \varphi$ is an L-function. So we obtain

$$p(T^n x, T^n y) \leq \dots \leq p(T^2 x, T^2 y) \leq p(Tx, Ty) \leq p(x, y) = 0.$$

That is, $p(T^n x, T^n y) = 0$. We have shown (B3). In the case of $\varphi_n(p(x, y)) > 0$, we have $p(x, y) > 0$. By Proposition 2 (ii), we have

$$p(T^n x, T^n y) \leq \dots \leq p(Tx, Ty) < \varphi(p(x, y)) = \varphi_n(p(x, y)).$$

This implies (B4). This completes the proof. \square

4. Fixed Point Theorems

In this section, we prove fixed point theorems. We first prove the following, which is a generalization of both Theorems 2 and 3.

THEOREM 4. *Let X be a complete metric space with a τ -distance p . Let T be a p -ACMK* on X with some $\{\varphi_n\}$ in Definition 3. Assume that either of the following holds:*

- (i) T^ℓ is continuous for some $\ell \in \mathbb{N}$.
- (ii) $\lim_{t \rightarrow 0} \varphi_\ell(t) = 0$ for some $\ell \in \mathbb{N}$.

Then there exists a unique fixed point $z \in X$. Moreover such z satisfies

$$p(z, z) = \lim_{n \rightarrow \infty} p(z, T^n x) = \lim_{n \rightarrow \infty} p(T^n x, z) = 0 \quad \text{and} \quad \lim_{n \rightarrow \infty} T^n x = z$$

for all $x \in X$.

Proof. Define a sequence $\{\psi_n\}$ of functions from $[0, \infty)$ into $[0, \infty]$ by

$$\psi_n(t) = \max \{\varphi_n(t), t/2\}$$

for $n \in \mathbb{N}$ and $t \in [0, \infty)$. Then such $\{\psi_n\}$ satisfies (B1) $_\psi$ – (B4) $_\psi$ and $\psi_n(t) > 0$ for all $n \in \mathbb{N}$ and $t > 0$. We note

$$p(T^n x, T^n y) \leq \psi_n(p(x, y))$$

for all $n \in \mathbb{N}$ and $x, y \in X$. We first show

$$(2) \quad \lim_{n \rightarrow \infty} p(T^n x, T^n y) = 0$$

for all $x, y \in X$. In the case of $p(T^j x, T^j y) = 0$ for some $j \in \mathbb{N}$, we have

$$p(T^{n+j} x, T^{n+j} y) \leq \psi_n(p(T^j x, T^j y)) = \psi_n(0)$$

for $n \in \mathbb{N}$ and hence

$$\lim_{n \rightarrow \infty} p(T^n x, T^n y) = \lim_{n \rightarrow \infty} p(T^{n+j} x, T^{n+j} y) \leq \lim_{n \rightarrow \infty} \psi_n(0) = 0$$

by (B1) $_\psi$. In the other case of $p(T^j x, T^j y) > 0$ for all $j \in \mathbb{N}$, we put $\alpha := \liminf_n p(T^n x, T^n y)$. For $i \in \mathbb{N}$, since $p(T^i x, T^i y) > 0$, there exists $\nu_1 \in \mathbb{N}$ such that $\psi_{\nu_1}(p(T^i x, T^i y)) \leq p(T^i x, T^i y)$ by (B2) $_\psi$. We have

$$p(T^{i+\nu_1} x, T^{i+\nu_1} y) < \psi_{\nu_1}(p(T^i x, T^i y)) \leq p(T^i x, T^i y).$$

That is, for each $i \in \mathbb{N}$, there exists $j > i$ such that $p(T^j x, T^j y) < p(T^i x, T^i y)$. This implies $\alpha < p(T^j x, T^j y)$ for all $j \in \mathbb{N}$. Arguing by contradiction, we assume $\alpha > 0$. By (B2) $_\psi$, there exist $\delta_2 > 0$ and $\nu_2 \in \mathbb{N}$ such that $\psi_{\nu_2}(t) \leq \alpha$ for all $t \in [\alpha, \alpha + \delta_2]$. Taking $j \in \mathbb{N}$ with $p(T^j x, T^j y) < \alpha + \delta_2$, we have

$$p(T^{\nu_2+j} x, T^{\nu_2+j} y) < \psi_{\nu_2}(p(T^j x, T^j y)) \leq \alpha.$$

This contradicts $\alpha < p(T^{\nu_2+j} x, T^{\nu_2+j} y)$. Therefore $\alpha = 0$. For each $\varepsilon > 0$, there exists $\delta_3 > 0$ such that $\limsup_n \psi_n(t) < \varepsilon$ for $t \in [0, \delta_3]$. Taking $j \in \mathbb{N}$ with $p(T^j x, T^j y) < \delta_3$, we have

$$\limsup_{n \rightarrow \infty} p(T^{n+j} x, T^{n+j} y) \leq \limsup_{n \rightarrow \infty} \psi_n(p(T^j x, T^j y)) < \varepsilon$$

and hence (2) holds. Fix $x \in X$ and define a sequence $\{x_n\}$ in X by $x_n := T^n x$ for $n \in \mathbb{N}$. We shall show that

$$(3) \quad \lim_{n \rightarrow \infty} \sup_{m > n} p(x_n, x_m) = 0.$$

Let $\varepsilon > 0$ be fixed. Then there exist $\delta_4 \in (0, \varepsilon)$ and $\nu_4 \in \mathbb{N}$ such that $\psi_{\nu_4}(t) \leq \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta_4]$. From (2), we can choose $N \in \mathbb{N}$ such that $p(x_n, x_{n+1}) < \delta_4 / \nu_4$ for every $n \geq N$. Fix $L \in \mathbb{N}$ with $L \geq N$. Using induction, we shall show

$$(4) \quad p(x_L, x_{L+n}) \leq \varepsilon + \delta_4$$

for all $n \in \mathbb{N}$. For every $n \in \{1, 2, \dots, \nu_4\}$, we have

$$p(x_L, x_{L+n}) \leq \sum_{j=0}^{n-1} p(x_{L+j}, x_{L+j+1}) \leq n \delta_4 / \nu_4 \leq \delta_4 < \varepsilon + \delta_4.$$

For $m \in \mathbb{N}$ with $m > \nu_4$, we assume (4) holds for every $n \in \mathbb{N}$ with $n < m$. In particular, $p(x_L, x_{L+m-\nu_4}) \leq \varepsilon + \delta_4$. In the case of $p(x_L, x_{L+m-\nu_4}) \leq \varepsilon$, we have

$$\begin{aligned} p(x_L, x_{L+m}) &\leq p(x_L, x_{L+m-\nu_4}) + \sum_{j=1}^{\nu_4} p(x_{L+m-j}, x_{L+m-j+1}) \\ &\leq \varepsilon + \nu_4 \delta_4 / \nu_4 = \varepsilon + \delta_4. \end{aligned}$$

In the other case of $\varepsilon < p(x_L, x_{L+m-\nu_4}) \leq \varepsilon + \delta_4$, we have

$$\begin{aligned} p(x_L, x_{L+m}) &\leq p(x_L, x_{L+\nu_4}) + p(x_{L+\nu_4}, x_{L+m}) \\ &\leq \delta_4 + \psi_{\nu_4}(p(x_L, x_{L+m-\nu_4})) \leq \delta_4 + \varepsilon. \end{aligned}$$

Therefore (4) holds when $n = m$. Thus, by induction, we obtain (4) for all $n \in \mathbb{N}$, which implies (3). By Lemma 3, $\{x_n\}$ is p -Cauchy. So $\{x_n\}$ is also a Cauchy sequence by Lemma 2. From the completeness of X , $\{x_n\}$ converges to some $z \in X$. In the case of (i), we have

$$z = \lim_{n \rightarrow \infty} T^{\ell+n} x = \lim_{n \rightarrow \infty} T^\ell x_n = T^\ell \left(\lim_{n \rightarrow \infty} x_n \right) = T^\ell z.$$

That is, z is a fixed point of T^ℓ . By (2), we have

$$p(z, z) = \lim_{n \rightarrow \infty} p(T^{n\ell} z, T^{n\ell} z) = 0$$

and

$$p(z, Tz) = \lim_{n \rightarrow \infty} p(T^{n\ell} z, T \circ T^{n\ell} z) = 0.$$

By Lemma 1, we have $Tz = z$. We assume that y is a fixed point of T . Then

$$p(z, y) = \lim_{n \rightarrow \infty} p(T^n z, T^n y) = 0.$$

By Lemma 1 again, we have $z = y$. That is, the fixed point z is unique. By (2) again, we obtain $\lim_n p(z, T^n x) = \lim_n p(T^n x, z) = 0$. In the case of (ii), by (τ3), we have

$$\begin{aligned} \limsup_{n \rightarrow \infty} p(x_n, z) &\leq \limsup_{n \rightarrow \infty} \liminf_{m \rightarrow \infty} p(x_n, x_m) \\ &\leq \limsup_{n \rightarrow \infty} \sup_{m > n} p(x_n, x_m) = 0. \end{aligned}$$

Therefore $\lim_n \varphi_\ell(p(x_n, z)) = 0$. Since $p(x_n, T^\ell z) \leq \varphi_\ell(p(x_{n-\ell}, z))$ for $n \in \mathbb{N}$, we obtain

$$\limsup_{n \rightarrow \infty} p(x_n, T^\ell z) \leq \limsup_{n \rightarrow \infty} \varphi_\ell(p(x_{n-\ell}, z)) = 0.$$

By Lemma 3, $\{x_n\}$ also converges to $T^\ell z$, which implies $T^\ell z = z$. As in the case of (i), we can obtain the desired result. \square

We shall prove a generalization of Edelstein's fixed point theorem [4].

Let X be a metric space with a τ -distance p . For $\theta \in (0, \infty)$, X is called θ -chainable with respect to p [4, 16] if for each $(x, y) \in X \times X$, there exists a finite sequence $\{u_0, u_1, u_2, \dots, u_k\}$ in X such that $u_0 = x$, $u_k = y$ and $p(u_{i-1}, u_i) < \theta$ for $i = 1, 2, \dots, k$.

DEFINITION 4. Let X be a metric space with a τ -distance p . Then a mapping T on X is said to be a (p, θ) -ACMK* if there exists a sequence $\{\varphi_n\}$ of functions from $[0, \theta)$ into $[0, \infty]$ satisfying the following:

- (C1) $\lim_{t \rightarrow 0} \limsup_{n \rightarrow \infty} \varphi_n(t) = 0$.
- (C2) For each $\varepsilon \in (0, \theta)$, there exist $\delta \in (0, \theta - \varepsilon)$ and $\nu \in \mathbb{N}$ such that $\varphi_\nu(t) \leq \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta]$.
- (C3) If $p(x, y) < \theta$ and $\varphi_n(p(x, y)) = 0$, then $p(T^n x, T^n y) = 0$.
- (C4) If $p(x, y) < \theta$ and $\varphi_n(p(x, y)) > 0$, then $p(T^n x, T^n y) < \varphi_n(p(x, y))$.

The following is a generalization of Theorem 3.6 in [16].

THEOREM 5. Let X be a complete metric space. Suppose that X is θ -chainable with respect to p for some $\theta \in (0, \infty)$ and for some τ -distance p on X . Let T be a (p, θ) -ACMK* on X with $\{\varphi_n\}$ in Definition 4. Assume that either of the following holds:

- (i) T^ℓ is continuous for some $\ell \in \mathbb{N}$.
- (ii) $\lim_{t \rightarrow 0} \varphi_\ell(t) = 0$ for some $\ell \in \mathbb{N}$.

Then there exists a unique fixed point $z \in X$. Moreover such z satisfies

$$p(z, z) = \lim_{n \rightarrow \infty} p(z, T^n x) = \lim_{n \rightarrow \infty} p(T^n x, z) = 0 \quad \text{and} \quad \lim_{n \rightarrow \infty} T^n x = z$$

for all $x \in X$.

Proof. For $x, y \in X$, there exist $u_0, u_1, u_2, \dots, u_k \in X$ such that $u_0 = x$, $u_k = y$ and $p(u_{i-1}, u_i) < \theta$ for $i = 1, 2, \dots, k$. As in the proof of Theorem 4,

$$\lim_{n \rightarrow \infty} p(T^n u_{i-1}, T^n u_i) = 0$$

for all i . Hence we obtain

$$\lim_{n \rightarrow \infty} p(T^n x, T^n y) \leq \lim_{n \rightarrow \infty} \sum_{i=1}^k p(T^n u_{i-1}, T^n u_i) = 0.$$

Fix $x \in X$ and define a sequence $\{x_n\}$ in X by $x_n := T^n x$ for $n \in \mathbb{N}$. Then we can prove that for every $\varepsilon \in (0, \theta/2)$, there exists $N \in \mathbb{N}$ such that $p(x_L, x_{L+n}) < 2\varepsilon$ for all $L, n \in \mathbb{N}$ with $L \geq N$. That is, (3) holds. We can prove the remainder as in the proof of Theorem 4. \square

References

- [1] S. Banach, *Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales*, Fund. Math. 3 (1922), 133–181.
- [2] J. Caristi and W. A. Kirk, *Geometric fixed point theory and inwardness conditions*, Lecture Notes in Math., Vol. 490, pp. 74–83, Springer, Berlin, 1975.
- [3] Lj. B. Čirić, *A generalization of Banach's contraction principle*, Proc. Amer. Math. Soc. 45 (1974), 267–273.
- [4] M. Edelstein, *An extension of Banach's contraction principle*, Proc. Amer. Math. Soc. 12 (1961), 7–10.
- [5] M. Edelstein, *On fixed and periodic points under contractive mappings*, J. London Math. Soc. 37 (1962), 74–79.
- [6] I. Ekeland, *Nonconvex minimization problems*, Bull. Amer. Math. Soc. 1 (1979), 443–474.
- [7] O. Kada, T. Suzuki and W. Takahashi, *Nonconvex minimization theorems and fixed point theorems in complete metric spaces*, Math. Japon. 44 (1996), 381–391.
- [8] W. A. Kirk, *Contraction mappings and extensions* in Handbook of metric fixed point theory (W. A. Kirk and B. Sims Eds.), 2001, pp. 1–34, Kluwer Academic Publishers, Dordrecht.
- [9] W. A. Kirk, *Fixed points of asymptotic contractions*, J. Math. Anal. Appl. 277 (2003), 645–650.
- [10] T. C. Lim, *On characterizations of Meir-Keeler contractive maps*, Nonlinear Anal. 46 (2001), 113–120.
- [11] A. Meir and E. Keeler, *A theorem on contraction mappings*, J. Math. Anal. Appl. 28 (1969), 326–329.
- [12] S. B. Nadler, *Multi-valued contraction mappings*, Pacific J. Math. 30 (1969), 475–488.
- [13] P. V. Subrahmanyam, *Remarks on some fixed point theorems related to Banach's contraction principle*, J. Math. Phys. Sci. 8 (1974), 445–457.
- [14] T. Suzuki, *Generalized distance and existence theorems in complete metric spaces*, J. Math. Anal. Appl. 253 (2001), 440–458.
- [15] T. Suzuki, *On Downing-Kirk's theorem*, J. Math. Anal. Appl. 286 (2003), 453–458.

- [16] T. Suzuki, *Several fixed point theorems concerning τ -distance*, Fixed Point Theory Appl. 2004 (2004), 195–209.
- [17] T. Suzuki, *Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense*, Comment. Math. Prace Mat. 45 (2005), 45–58.
- [18] T. Suzuki, *Fixed point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces*, Nonlinear Anal. 64 (2006), 971–978.
- [19] T. Suzuki, *Some notes on Meir-Keeler contractions and L-functions*, Bull. Kyushu Inst. Technol. 53 (2006), 1–13.
- [20] D. Tataru, *Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms*, J. Math. Anal. Appl. 163 (1992), 345–392.
- [21] C.-K. Zhong, *On Ekeland's variational principle and a minimax theorem*, J. Math. Anal. Appl. 205 (1997), 239–250.
- [22] C.-K. Zhong, *A generalization of Ekeland's variational principle and application to the study of the relation between the weak P.S. condition and coercivity*, Nonlinear Anal. 29 (1997), 1421–1431.

DEPARTMENT OF MATHEMATICS
KYUSHU INSTITUTE OF TECHNOLOGY
SENSUICHO, TOBATA, KITAKYUSHU 804-8550, JAPAN
e-mail:suzuki-t@mns.kyutech.ac.jp

Received February 28, 2006.

