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Tomonari Suzuki

FIXED POINT THEOREMS FOR MORE GENERALIZED
CONTRACTIONS IN COMPLETE METRIC SPACES

Abstract. We generalize Suzuki’s fixed point theorem for asymptotic contractions of
Meir-Keeler type in complete metric spaces.

1. Introduction

It is well known that the Banach contraction principle [1] is very useful
in nonlinear analysis. Also, this principle has many generalizations; see
[2-4, 6, 8, 11-13] and others. For example, Meir and Keeler [11] proved the
following very interesting fixed point theorem.

THEOREM 1 (Meir and Keeler [11]). Let (X, d) be a complete metric space
and let T be a Meir-Keeler contraction (MKC, for short) on X, i.e., for
every € > 0, there exists § > 0 such that

d(z,y) <e+9d implies d(Tz,Ty)<e
for all x,y € X. Then T has a unique fized point.

Theorem 1 is also a generalization of Edelstein’s fixed point theorem in
[5]. Very recently, motivated by Theorem 1 and Kirk’s fixed point theorem
for asymptotic contractions [9], Suzuki [18] proved the following fixed point
theorem.

THEOREM 2 ([18]). Let (X,d) be a complete metric space and let T be a
continuous mapping on X. Assume that T is an asymptotic contraction of
Meir-Keeler type (ACMK, for short), i.e., there ezxists a sequence {pn} of
functions from [0, 00) into itself satisfying the following:
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(A1) limsup,, pn(e) <€ for alle > 0.

(A2) For each € > 0, there exist 6 > 0 and v € N such that ¢, (t) < ¢ for
allt € [e,e + 4].

(A3) d(T™z, T™y) < pn(d(z,y)) for alln €N and z,y € X withz # y.

Then there exists a unique fized point z € X. Moreover lim, T"z = z for
alz e X.

Using Lim’s characterization (Proposition 1), we can prove that ACMK
is an asymptotic version of MKC. That is, Theorem 2 is a generalization of
Theorem 1.

In this paper, using the notion of 7-distances, we shall prove fixed point
theorems for more generalized contractions in complete metric spaces.

2. Preliminaries
Throughout this paper we denote by N the set of all positive integers.
In this section, we give some preliminaries. Lim [10] introduced the
notion of L-functions and characterized MKC. See also [19].

DEFINITION 1 (Lim [10]). A function ¢ from [0,00) into itself is called an
L-function if p(0) = 0, ¢(s) > 0 for s € (0,00), and for every s € (0,00)
there exists 6 > 0 such that o(t) < s for allt € [s,s + 4.

PropPOSITION 1 (Lim [10]). Let (X,d) be a metric space and let T be a
mapping on X. Then the following are equivalent:

(i) T is an MKC.
(ii) There exists an L-function ¢ such that

(1) r,y€ X,z £y implies d(Tz,Ty) < p(d(z,y)).
(11i) There ezists a nondecreasing, Lipschitz continuous L-function ¢ satis-
fying (1).
In 2001, Suzuki introduced the notion of 7-distances in order to gener-

alize results in Kada, Suzuki and Takahashi [7], Tataru [20], Zhong [21, 22]
and others.

DEFINITION 2 ([14]). Let (X,d) be a metric space. Then a function p from
X x X into [0,00) is called a T-distance on X if there exists a function n
from X x [0,00) into [0,00) and the following are satisfied:

(r1) p(z,2) < p(z,y) +p(y,2) for all 7,y,2 € X;

(r2) n(x,0) = 0 and n(z,t) > t for allz € X and t € [0,00), and 7 is
concave and continuous in its second variable;

(r3) lim, z, = x and lim,sup {n(zn,p(zn,:rm)) tm > n} = 0 imply
p(w, z) < liminf, p(w, z,) for all w € X;
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(14) limg, sup{p(zn,ym) : m > n} = 0 and lim, n(xn,t,) = 0 imply
lim,, U(yn, tn) =0y

(r5) limnn(zn,p(zn,xn)) =0 and limnn(zn,p(zn,yn)) = 0 imply
lim,, d(Zn, yn) = 0.

The metric d is a 7-distance on X. Many useful examples and proposi-
tions are stated in 7, 14-17] and others. The following is Lemma 2 in [14].

LEMMA 1 ([14]). Let X be a metric space with a T-distance p. Thenp(z,z) =
0 and p(z,y) =0 imply z = y.

Let (X,d) be a metric space and let p be a 7-distance on X. Then
a sequence {z,} in X is called p-Cauchy if there exist a function n from
X x [0,00) into [0, 00) satisfying (72) — (75) and a sequence {z,} in X such
that lim,, sup {n(zn,p(zn,xm)) :m > n} = 0. We know the following.

LEMMA 2 ([14]). Let X be a metric space with a T-distance p. If {z,} is a
p-Cauchy sequence, then {x,} is a Cauchy sequence in the usual sense.

LemMMmA 3 ([14]). Let (X,d) be a metric space with a T-distance p. If
a sequence {zn} in X satisfies lim, sup{p(zn,zm) : m > n} = 0, then
{xn} is a p-Cauchy sequence. Moreover if a sequence {y,} in X sat-
isfies limp, p(zn,yn) = 0, then {yn} is also a p-Cauchy sequence and
lim,, d(zn, yn) = 0.

The following is the 7-distance version of Theorem 1.

THEOREM 3 ([16]). Let X be a complete metric space with a T-distance p,
and let T be a mapping on X. Suppose that T is a Meir-Keeler contraction
with respect to p (p-MKC, for short), i.e., for any € > 0, there exists § > 0
such that for every z,y € X,

p(z,y) <e+d implies p(Tz,Ty) <e.
Then T has a unique fized point z in X. Further such z satisfies p(z,z) = 0.

We can easily modify Lim’s characterization for the 7-distance version
of it as follows.

PRrROPOSITION 2 ([19]). Let X be a metric space with a T-distance p, and
let T be a mapping on X. Then T is a p-MKC if and only if there exists a
(nondecreasing, Lipschitz continuous) L-function ¢ satisfying the following:

(i) If p(z,y) =0, then p(Tz,Ty) = 0.
(i0) If p(z,y) > 0, then p(Tz,Ty) < p(p(z,y))-

REMARK 1. We note that x = y does not necessarily imply p(x,y) = 0, and
p(z,y) = 0 does not necessarily imply x = y.



222 T. Suzuki

3. p-rACMK*
In this section, we shall introduce a notion which is a generalization of
both ACMK and p-MKC.

DEFINITION 3. Let X be a metric space with a T-distance p. Then a mapping
T on X is said to be a p-ACMK* if there exists a sequence {p,} of functions
from [0, 00) into [0, 00| satisfying the following:

(B1) %ir% lim sup ¢p(t) = 0.

n—oo

(B2) For each € > 0, there exist § > 0 and v € N such that ¢, (t) < e for all
t€le,e+ 4.
(B3) If ¢n Ep(w, y); =0, then p(T"z,T"y) = 0.
(B4) If pn(p(z,y)) > 0, then p(T"z, T™y) < ¢n(p(z,y)).
It is obvious that p-ACMK?* is a weaker notion than d-ACMK*, which
is a slightly weaker notion than ACMK.

PROPOSITION 3. Let X be a metric space with a T-distance p, and let T be
ap-MKC on X. ThenT is a p-ACMK* on X.

Proof. By Proposition 2, there exists an L-function ¢ from [0, c0) into itself
satisfying (i) and (ii) in Proposition 2. Define a sequence {¢,} of functions
by ¢n = @ for all n € N. Then we have

. o < Jimg =
Jim lim sup on(£) = lim (t) < lim¢ = 0

and hence (B1) holds. It is obvious that {¢,} satisfies (B2). We note

p(Tz,Ty) < p(z,y)
for all z,y € X because p(x,y) = 0 implies p(Tz, Ty) = 0, and p(z,y) > 0
implies
p(Tz, Ty) < o(p(z,y)) < p(z,y).
Fix z,y € X and n € N. In the case of ¢, (p(w, y)) = 0, we have p(z,y) =0
because ¢, = ¢ is an L-function. So we obtain
p(T"z,T"y) < --- < p(T?z,T) < p(Tz, Ty) < p(x,y) = 0.
That is, p(T"z, T™y) = 0. We have shown (B3). In the case of ¢, (p(z,y)) >
0, we have p(z,y) > 0. By Proposition 2 (ii), we have
p(T"z, T y) < --- < p(Tz, Ty) < ¢(p(z,y)) = en(p(z, 1))
This implies (B4). This completes the proof. d

4. Fixed Point Theorems
In this section, we prove fixed point theorems. We first prove the follow-
ing, which is a generalization of both Theorems 2 and 3.
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THEOREM 4. Let X be a complete metric space with a T-distance p. Let T
be a p-ACMK* on X with some {pn} in Definition 3. Assume that either
of the following holds:

(i) T¢ is continuous for some £ € N.

(i1) }in%goe(t) =0 for some £ € N.
Then there exists a unique fized point z € X. Moreover such z satisfies

p(z,2) = lim p(z,T"z) = lim p(T"z,2)=0 and lim T"z =2
n—oo n—oo n—0o0
forallz € X.
Proof. Define a sequence {¢,} of functions from [0, c0) into {0, co] by
¥n(t) = max {pn(t), t/2}

for n € N and t € [0,00). Then such {¢,} satisfies (B1)y ~ (B4)y and
Yn(t) > 0 for all n € N and ¢ > 0. We note

p(T"z, T"y) < ¢n(p(z,y))
for all n € N and z,y € X. We first show
(2) lim p(T"z, T"y) =0
n—o0

for all z,y € X. In the case of p(T?z,T’y) = 0 for some j € N, we have
p(T™" 2, T"Hy) < ¢ (p(T72,T7y)) = ¥n(0)
for n € N and hence
lim p(T"z, T"y) = lim p(T™ "z, T"y) < lim ,(0) =0
n—oo n—00 n—00
by (B1l)y. In the other case of p(TVz,T7y) > 0 for all j € N, we put
a = liminf, p(T"z, T"y). For i € N, since p(T 'z, Ty) > 0, there exists
v1 € N such that ¢, (p(T%z, T'y)) < p(T 'z, T"y) by (B2)y. We have
p(T g, TH1y) < 4y, (p(Tix,Tiy)) < p(T'z, T'y).
That is, for each i €N, there exists j >i such that p(T?z, TVy) <p(T'z, T'y).
This implies o < p(T7z,T7y) for all j € N. Arguing by contradiction, we
assume a > 0. By (B2),, there exist 62 > 0 and vz € N such that ¢, (t) <a
for all t € [a, « + 82]. Taking j € N with p(T7z,T?y) < a + d2, we have
p(T"Ha, T *y) < 4, (p(T?2, TPy)) <
This contradicts a < p(T*2*7z, T"2*7y). Therefore a = 0. For each £ > 0,

there exists d3 > 0 such that limsup, ¥n(t) < € for t € [0, d3]. Taking j € N
with p(T7z,T?y) < &3, we have

lim sup p(T™z, T"ty) < limsup ¥y, (p(zj, ij)) <e

n—+00 n—oo
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and hence (2) holds. Fix ¢ € X and define a sequence {z,} in X by
Zpn = T"z for n € N. We shall show that

(3) lim sup p(zn,zm) = 0.

n—oo0 m>n

Let € > 0 be fixed. Then there exist §4 € (0,¢) and v4 € N such that
Yy (t) < € for all t € [e,e + d4]. From (2), we can choose N € N such
that p(zn,Znt1) < 04/v4 for every n > N. Fix L € N with L > N. Using
induction, we shall show

(4) p(TL,TLn) <€+ 64
for all n € N. For every n € {1,2,---,v4}, we have

n—1

P(EL,TLin) < D P(@L4j TLaje1) S nba/va < s < e+ da.
3=0
For m € N with m > vy, we assume (4) holds for every n € N with n < m.
In particular, p(zr, T +m-v,) < € + 4. In the case of p(zL, Tr+m—uv,) < €,

we have
v4

P(TL, TL4m) < P(TL, TLam—va) + D P(TLim—js TLom—j+1)
j=1

<e+4v4bs /vy =€+ b4
In the other case of € < p(zL,TL+m-v,) < € + 64, we have

P(ZLs TLim) < P(TL, TLtvs) + P(TLtvs TLm)
< 54 + ¢u4 (p(l‘L, $L+m—u4)) < 54 + .
Therefore (4) holds when n = m. Thus, by induction, we obtain (4) for all
n € N, which implies (3). By Lemma 3, {z,} is p-Cauchy. So {z,} is also a
Cauchy sequence by Lemma 2. From the completeness of X, {z,} converges
to some z € X. In the case of (i), we have
2= lim T"z = lim Tz, =T lim o, ) = T%.

n—oo n—o0 n—oo

That is, z is a fixed point of T¢. By (2), we have
p(z,2) = lim p(T™z,T™z) =0
n—oo
and

p(z,Tz) = nli_)n;op(T"ez, ToT™z) =0.

By Lemma 1, we have Tz = z. We assume that y is a fixed point of T
Then

p(zy) = lim p(T"z,T"y) = 0.
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By Lemma 1 again, we have z = y. That is, the fixed point z is unique. By
(2) again, we obtain lim, p(z, T"z) = lim, p(T"z, z) = 0. In the case of (ii),
by (73), we have
lim sup p(zp, 2) < limsup liminf p(zn, Tm)
n—oo n—oo M0
< lim sup sup p(zn, Tm) = 0.
n—oco m>n
Therefore limy, p¢(p(zn, z)) = 0. Since p(z,, T¢2) < ©e(p(Tn—¢,2)) for n €
N, we obtain
lim sup p(z,, Tz) < limsup (p(zn-e,2)) = 0.

n—oo n—0o0

By Lemma 3, {z,} also converges to T*z, which implies Tz = 2. As in the
case of (i), we can obtain the desired result. a

We shall prove a generalization of Edelstein’s fixed point theorem [4].

Let X be a metric space with a 7-distance p. For 6 € (0,00), X is called
6-chainable with respect to p [4, 16] if for each (z,y) € X x X, there exists
a finite sequence {ug,u1,uz, -, ur} in X such that up = z, ux, = y and
p(ui_l,ui) <@fori=1,2,---,k.

DEFINITION 4. Let X be a metric space with a T-distance p. Then a mapping
T on X is said to be a (p,0)-ACMK* if there ezxists a sequence {pn} of
functions from [0, 0) into [0, 00| satisfying the following:

(C1) hm hm sup en(t) = 0.

(C2) For each e € (0,0), there ezxist 6 € (0,0 —€) and v € N such that
wu(t) < e forallt € [e,e+ 4]

(C3) If p(z,y) < 8 and gongp(m,y)g =0, then p(T"z,T"y) = 0.

(C4) If p(z,y) < 0 and pn(p(z,y)) > 0, then p(T™x, T™y) < on(p(z,y)).

The following is a generalization of Theorem 3.6 in [16].

THEOREM 5. Let X be a complete metric space. Suppose that X is 0-

chainable with respect to p for some 8 € (0,00) and for some T-distance p
on X. Let T be a (p,0)-ACMK* on X with {¢n} in Definition 4. Assume
that either of the following holds:

(i) T* is continuous for some £ € N.
(i) %in(l)(pg(t) =0 for some £ € N.
Then there exists a unique fized point z € X. Moreover such z satisfies
p(z,2) = lim p(2,T"z) = lim p(T"z,2) =0 and lim T"z =2
n—oo n—0oC n—o0

forallz e X.
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Proof. For z,y € X, there exist ug, uy,u2,---,ux € X such that uy = z,
uk =y and p(uj—1,u;) < @ fori=1,2,--- k. As in the proof of Theorem 4,

lim p(T™u;—1,T"u;) =0
n—00

for all 7. Hence we obtain
k

lim p(T"z,T"y) < lim Zp(T"ui_l,T"ui) =0.
Fix £ € X and define a sequence {z,} in X by z,, :== T"z for n € N.
Then we can prove that for every e € (0,6/2), there exists N € N such that
P(TL,Tr4+n) < 2€ for all L,n € N with L > N. That is, (3) holds. We can
prove the remainder as in the proof of Theorem 4. 0
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