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FIXED P O I N T THEOREMS FOR M O R E GENERALIZED 
CONTRACTIONS IN COMPLETE METRIC SPACES 

Abstract. We generalize Suzuki's fixed point theorem for asymptotic contractions of 
Meir-Keeler type in complete metric spaces. 

1. Introduction 
It is well known that the Banach contraction principle [1] is very useful 

in nonlinear analysis. Also, this principle has many generalizations; see 
[2-4, 6, 8, 11-13] and others. For example, Meir and Keeler [11] proved the 
following very interesting fixed point theorem. 

THEOREM 1 (Meir and Keeler [11]). Let (X,d) be a complete metric space 
and let T be a Meir-Keeler contraction (MKC, for short) on X, i.e., for 
every e > 0, there exists 5 > 0 such that 

d(x,y) < e + 5 implies d(Tx,Ty) < e 

for all x,y G X. Then T has a unique fixed point. 

Theorem 1 is also a generalization of Edelstein's fixed point theorem in 
[5]. Very recently, motivated by Theorem 1 and Kirk's fixed point theorem 
for asymptotic contractions [9], Suzuki [18] proved the following fixed point 
theorem. 

THEOREM 2 ([18]). Let (X,d) be a complete metric space and let T be a 
continuous mapping on X. Assume that T is an asymptotic contraction of 
Meir-Keeler type (ACMK, for short), i.e., there exists a sequence {tpn} of 
functions from [0, oo) into itself satisfying the following: 
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(Al) limsupn ipnie) < £ for all £ > 0. 
(A2) For each e > 0, there exist 8 > 0 and i/gN such that (pu(t) < e for 

all t G [e, e + 
(A3) d(Tnx,Tny) < <pn(d(x,y)) for aline N and x,y G X with x^y. 

Then there exists a unique fixed point z G X. Moreover l im n T n x = z for 
all x € X. 

Using Lim's characterization (Proposition 1), we can prove that ACMK 
is an asymptotic version of MKC. That is, Theorem 2 is a generalization of 
Theorem 1. 

In this paper, using the notion of r-distances, we shall prove fixed point 
theorems for more generalized contractions in complete metric spaces. 

2. Preliminaries 
Throughout this paper we denote by N the set of all positive integers. 
In this section, we give some preliminaries. Lim [10] introduced the 

notion of L-functions and characterized MKC. See also [19]. 
DEFINITION 1 (Lim [10]). A function ip from [0, oo) into itself is called an 
L-function if ip(0) = 0, tp(s) > 0 for s G (0, oo), and for every s G (0, oo) 
there exists 6 > 0 such that (p(t) < s for all t G [s, s + <5]. 

PROPOSITION 1 (Lim [10]). Let (X,d) be a metric space and let T be a 
mapping on X. Then the following are equivalent: 

(i) T is an MKC. 
(ii) There exists an L-function ip such that 

(1) x,y£X,x^y implies d(Tx,Ty) < tp(d(x,y)). 

(Hi) There exists a nondecreasing, Lipschitz continuous L-function ip satis-
fying (1). 

In 2001, Suzuki introduced the notion of T-distances in order to gener-
alize results in Kada, Suzuki and Takahashi [7], Tataru [20], Zhong [21, 22] 
and others. 

DEFINITION 2 ( [14]) . Let (X,d) be a metric space. Then a function p from 
X x X into [0, oo) is called a r-distance on X if there exists a function rf 
from X x [0, oo) into [0, oo) and the following are satisfied: 

(T1) p(x, Z) < p(x, y) + p(y, z) for all x,y,z£ X; 
(T2) r](x, 0) = 0 and 7](x,t) > t for all x G X and t G [0, oo), and r) is 

concave and continuous in its second variable; 
(T3) lim n — % and limn sup {r](z 

niP(,znixmS) '• m — — 0 imply 
p(w,x) < liminfnp(u;, xn) for all w G X; 
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(T4) limnsup {p{xn,ym) :m>n} = 0 and limnr](xn,tn) = 0 imply 
limn rj(yn, tn) = 0; 

(T5) \IMNR](zn,p(zn,xn)) =0 and \\Mnr](zn,p(zn,yn)) =0 imply 
limn d(xn, yn) = 0. 

The metric d is a r-distance on X. Many useful examples and proposi-
tions are stated in [7, 14-17] and others. The following is Lemma 2 in [14]. 

LEMMA 1 ([14]). LetX be a metric space with ar-distancep. Thenp(z,x) = 
0 and p(z, y) = 0 imply x = y. 

Let (X, d) be a metric space and let p be a r-distance on X. Then 
a sequence {xn} in X is called p-Cauchy if there exist a function 77 from 
X x [0, 00) into [0, 00) satisfying (r2) - (r5) and a sequence {zn} in X such 
that limn sup {r](z ni p{.zni Xm,)) '• m — n} — 0- We know the following. 

LEMMA 2 ([14]). Let X be a metric space with a r-distance p. If {xn} is a 
p-Cauchy sequence, then {xn} is a Cauchy sequence in the usual sense. 

LEMMA 3 ([14]). Let (X,d) be a metric space with a r-distance p. If 
a sequence { x n } in X satisfies limn sup{p(xn, x m ) : m > n} — 0, then 
{xn} is a p-Cauchy sequence. Moreover if a sequence {yn} in X sat-
isfies l im n p{x n , y n ) = 0, then {yn} is also a p-Cauchy sequence and 
lim„ d(xn, yn) = 0. 

The following is the r-distance version of Theorem 1. 

THEOREM 3 ([16]). Let X be a complete metric space with a r-distance p, 
and let T be a mapping on X. Suppose that T is a Meir-Keeler contraction 
with respect to p (p-MKC, for short), i.e., for any £ > 0, there exists S > 0 
such that for every x, y G X, 

p(x, y) < e + S implies p(Tx, Ty) < e. 

Then T has a unique fixed point z in X. Further such z satisfies p(z, z) = 0. 

We can easily modify Lim's characterization for the r-distance version 
of it as follows. 

PROPOSITION 2 ([19]). Let X be a metric space with a r-distance p, and 
let T be a mapping on X. Then T is a p-MKC if and only if there exists a 
(nondecreasing, Lipschitz continuous) L-function <p satisfying the following: 

(i) If p(x, y) = 0, then p(Tx, Ty) = 0. 
(ii) If p(x, y) > 0, then p(Tx,Ty) < ip(p(x,y)). 

REMARK 1. We note that x = y does not necessarily imply p(x, y) = 0, and 
p(x,y) — 0 does not necessarily imply x = y. 



222 T. Suzuki 

3. p - A C M K * 
In this section, we shall introduce a notion which is a generalization of 

both ACMK and p-MKC. 

DEFINITION 3. Let X be a metric space with a R-distance p. Then a mapping 
T on X is said to be a p-ACMK* if there exists a sequence {(pn} of functions 
from [0, oo) into [0, oo] satisfying the following: 

(Bl) limlimsup<£>n(i) = 0. 
t-*0 n—• oo 

(B2) For each e > 0, there exist 6 > 0 and I / £ N such that <pu(t) < e for all 
te[e,£ + ¿]. 

(B3) If <pn (p(x,y)) = 0, then p(Tnx,Tny) = 0. 
(B4) If<pn(p{x,y)) > 0, then p(Tnx,Tny) < <pn(p(x,y)). 

It is obvious that p-ACMK* is a weaker notion than (¿-ACMK*, which 
is a slightly weaker notion than ACMK. 

PROPOSITION 3. Let X be a metric space with a r-distance p, and let T be 
a p-MKC on X. Then T is a p-ACMK* on X. 

P r o o f . By Proposition 2, there exists an L-function tp from [0, oo) into itself 
satisfying (i) and (ii) in Proposition 2. Define a sequence {<pn} of functions 
by (pn = ip for all n G N. Then we have 

limlimsup</?n(i) = lim <£>(£) < l imi = 0 
t—>0 fi *oo t—•() t—•() 

and hence (Bl) holds. It is obvious that {</?n} satisfies (B2). We note 

p(Tx, Ty) < p(x, y) 

for all x,y £ X because p(x,y) = 0 implies p(Tx,Ty) = 0, and p(x,y) > 0 
implies 

p(Tx,Ty) < <p(p(x,y)) <p(x,y). 

Fix x, y G X and n G N. In the case of ipn(p(x, y)) = 0, we have p(x, y) = 0 
because <pn = ip is an L-function. So we obtain 

p(Tnx, Tny) < • • • < p(T2x,T2y) < p(Tx,Ty) < p(x,y) = 0. 

That is, p(Tnx, Tny) = 0 . We have shown (B3). In the case of <pn(p(x, y)) > 
0, we have p(x,y) > 0. By Proposition 2 (ii), we have 

p(Tnx, Tny) <---<p{Tx,Ty)<<p(p{x,y))=Vn(p{x,y)). 

This implies (B4). This completes the proof. • 

4. Fixed Point Theorems 
In this section, we prove fixed point theorems. We first prove the follow-

ing, which is a generalization of both Theorems 2 and 3. 
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T H E O R E M 4 . Let X be a complete metric space with a r-distance p. Let T 
be a p-ACMK* on X with some {<£>n} in Definition 3. Assume that either 
of the following holds: 

(i) Te is continuous for some i G N. 
(ii) l i m ^ ( i ) = 0 for some i G N. 

Then there exists a unique fixed point z G X. Moreover such z satisfies 

p(z, z) = lim p(z, Tnx) = lim p{Tnx, z) = 0 and lim Tnx = z 
n—HX n—>oo n—>oo 

for all x £ X. 

P r o o f . Define a sequence {ipn} of functions from [0, oo) into [0, oo] by 

ipn(t) = max {<pn(£), t/2} 
for n G N and t G [0, oo). Then such {ipn} satisfies (Bl)^ - (B4)^ and 
ipn(t) > 0 for all n G N and t > 0. We note 

for all n G N and x, y G X. We first show 
(2) lim p(Tnx, T^y) = 0 

n—> oo 

for all x, y G X. In the case of p(Thv, T^y) = 0 for some j G N, we have 

p i T + l x ^ + i y ) < ^n(p{Tlx,Tjy)) = ^„(0) 

for n G N and hence 

lim p(Tnx,Tny) = lim piT^+'x, T n + J y) < lim ^„(0) = 0 
n—>oo n—> oo n—>00 

by (Bl)^. In the other case of p(Tjx,Tjy) > 0 for all j G N, we put 
a := lim minp(Tnx, Tny). For i G N, since p{Tlx,Tly) > 0, there exists 
ui G N such that (p(Tlx,Tly)) < p(Tlx,Tly) by (B2)^. We have 

pCT+^T+^y) < ^{piTxXy)) KpiTxXy). 

That is, for each i G N, there exists j > i such that p(Tjx, Tjy) <p(Tlx, Tly). 
This implies a < p(TJx, T^y) for all j G N. Arguing by contradiction, we 
assume a > 0. By (B2)^, there exist ¿2 > 0 and v2 G N such that tpW2 (t) < a 
for all t G [a, a + 62]- Taking j G N with p(Tjx, Tjy) < a + 62, we have 

p(TW2+jx, TU2+jy) < V>„2 {p(Tjx, Tjy)) < a . 

This contradicts a < p{TV2+jx, TW2+jy). Therefore a = 0. For each e > 0, 
there exists ¿3 > 0 such that limsupn ipn(t) < e for t G [0, ¿3]. Taking j G N 
with p{T^x,T^y) < ¿3, we have 

limsuvp(Tn+jx,Tn+jy) < lim sup ipn(p(Tjx, Tjy)) < e 
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and hence (2) holds. Fix x £ X and define a sequence {xn} in X by 
xn := Tnx for n G N. We shall show that 

(3) lim supp(x„,a;m) = 0. 
n—>°° m>n 

Let e > 0 be fixed. Then there exist ¿4 € (0, s) and 1/4 € N such that 
i/v4 (t) < e for all t E [e, e + ¿4]. From (2), we can choose Ne N such 
that p(xn,xn+1) < ¿4/^4 for every n> N. Fix L E N with L > N. Using 
induction, we shall show 
(4) p{xL,XL+n) < S + S4 

for all n € N. For every n € {1, 2, • • •, 1/4}, we have 
71—1 

p(xL,xL+n) < Y^P(xL+j,xL+j+1) < nó4/ u4 < ¿4 < £ + 54. 
3=0 

For m 6 N with m > 1/4, we assume (4) holds for every n G N with n < m. 
In particular, p(xL,XL+m-V4) < e + ¿4. In the case of p(xl, XL+m_„4) < 
we have 

1/4 
p(xL,xL+m) <p(xL > xL+m—1/4 j+1) 

3=1 
< £ + V4 64 / V4 = £ + 84. 

In the other case of e < p{xl, X£,+m_„4) < e + ¿4, we have 

p(xL,XL+m) < P(XL,XL+V4) +p{xL+vi,XL+m) 

< ¿4 + (P(®L> ®L+m-i/4)) < ¿4 + 
Therefore (4) holds when n = m. Thus, by induction, we obtain (4) for all 
n € N, which implies (3). By Lemma 3, {xn} is p-Cauchy. So {xn} is also a 
Cauchy sequence by Lemma 2. From the completeness of X, {xn} converges 
to some z E X. In the case of (i), we have 

z = lim Te+nx = lim = Te ( lim xn) = Tez. n—* 00 n—>00 \n—»00 / 

That is, z is a fixed point of Te. By (2), we have 

p(z, z) = lim p(Tnez, Tniz) = 0 
n—• 00 

and 
p(z,Tz) = lim p(Tnez,T oTnez) = 0. 71—• OO 

By Lemma 1, we have Tz = z. We assume that y is a fixed point of T. 
Then 

p(z,y)= lim p(Tnz,Tny) = 0. n—y oo 
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By Lemma 1 again, we have z = y. That is, the fixed point z is unique. By 
(2) again, we obtain limnp(z, Tnx) = \\mnp(Tnx, z) = 0. In the case of (ii), 
by (T3), we have 

limsupp(xn, z) < lim sup lim inf p(xn, xm) 
n—»oo n—>00 m—>oo 

< lim sup sup p(xn, xm) = 0. 
n—»oo m>n 

Therefore limn <pe(p{xn, z)) = 0. Since p(xn,Tez) < ipg(p(xn-e, z)) for n € 
N, we obtain 

limsup p(xn,T£z) < lim sup tpe (p(xn-e, z)) = 0. 
n—»oo n—• 00 

By Lemma 3, {xn} also converges to Tez, which implies Tez = z. As in the 
case of (i), we can obtain the desired result. • 

We shall prove a generalization of Edelstein's fixed point theorem [4]. 
Let X be a metric space with a r-distance p. For 9 € (0, 00), X is called 

0-chainable with respect to p [4, 16] if for each (x, y) G X x X, there exists 
a finite sequence {u0,u\,u2, • • • ,itfc} in X such that uq = x, u^ = y and 
p(ui-\,ui) < 0 for i = 1,2, • • •, k. 

DEFINITION 4. Let X be a metric space with a T-distance p. Then a mapping 
T on X is said to be a (p,9)-ACMK* if there exists a sequence {<pn} of 
functions from [0,9) into [0, oo] satisfying the following: 

(CI) lim limsup (pn(t) = 0 . 
t—>0 n—»oo 

(C2) For each e G (0,0), there exist 8 E (0,9 — e) and v € N such that 
<Pv(t) < e for all t € [e, e + i ] . 

(C3) If p(x, y) < 9 and <pn(p(x,y)) = 0, then p^x^y) = 0. 
(C4) Ifp(x,y) < 9 and <pn{p(x,y)) > 0, then p(Tnx,Tny) < (pn{p(x,y)). 

The following is a generalization of Theorem 3.6 in [16]. 

THEOREM 5. Let X be a complete metric space. Suppose that X is 9-
chainable with respect to p for some 9 € (0, oo) and for some r-distance p 
on X. Let T be a (p,9)-ACMK* on X with {<pn} in Definition 4• Assume 
that either of the following holds: 

(i) Tf~ is continuous for some I € N. 
(ii) lim</?f(i) = 0 for some i G N. 

Then there exists a unique fixed point z G X. Moreover such z satisfies 

p(z, z) = lim p(z, Tnx) = lim p{Tnx, z) = 0 and lim Tnx = z 
n—»oo re—»oo - — 

for all x G X. 
n—»oo 
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Proof . For x,y € X , there exist UQ,iii,U2,---,Uk € X such that UQ = x, 
Uk = y and p{ui-\,ui) < 6 for i = 1,2, • • •, k. As in the proof of Theorem 4, 

lim p(TnUj_i>Tntii) = 0 
n—>oo 

for all i. Hence we obtain 
k 

lim p(Tnx,Tny) < lim V p ( T n u i _ i , T n t i i ) = 0. 
n—> oo n—»oo ' 

i=l 
Fix x £ X and define a sequence {xra} in X by for n G N. 
Then we can prove that for every e € (0,0/2), there exists JVeN such that 
p(xi,XL+n) < 2e for all L,n € N with L> N. That is, (3) holds. We can 
prove the remainder as in the proof of Theorem 4. • 
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