

Arif Rafiq

STRONG CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR A FINITE FAMILY OF QUASI-CONTRACTIVE OPERATORS

Abstract. The purpose of this paper is to establish a strong convergence of an implicit iteration process to a common fixed point for a finite family of quasi-contractive operators. Our theorems give an affirmative response to a question raised by [Xu and Ori, Numer. Funct. Anal. Optim. 22 (2001) 767-773].

1. Introduction and Preliminaries

We recall the following definitions in a metric space (X, d) . A mapping $T : X \rightarrow X$ is called an a -contraction if

$$(1.1) \quad d(Tx, Ty) \leq ad(x, y) \text{ for all } x, y \in X,$$

where $a \in (0, 1)$.

The map T is called Kannan mapping [9] if there exists $b \in (0, \frac{1}{2})$ such that

$$(1.2) \quad d(Tx, Ty) \leq b[d(x, Tx) + d(y, Ty)] \text{ for all } x, y \in X.$$

A similar definition is due to Chatterjea [5]: there exists a $c \in (0, \frac{1}{2})$ such that

$$(1.3) \quad d(Tx, Ty) \leq c[d(x, Ty) + d(y, Tx)] \text{ for all } x, y \in X.$$

Combining these three definitions, Zamfirescu [16] proved the following important result.

THEOREM 1. *Let (X, d) be a complete metric space and $T : X \rightarrow X$ a mapping for which there exists the real numbers a, b and c satisfying $a \in (0, 1)$, $b, c \in (0, \frac{1}{2})$ such that for each pair $x, y \in X$, at least one of the following conditions holds:*

1991 *Mathematics Subject Classification:* Primary 47H10, 47H17; Secondary 54H25.

Key words and phrases: Implicit iteration process, strong convergence, common fixed point.

- (z₁) $d(Tx, Ty) \leq ad(x, y),$
- (z₂) $d(Tx, Ty) \leq b[d(x, Tx) + d(y, Ty)],$
- (z₃) $d(Tx, Ty) \leq c[d(x, Ty) + d(y, Tx)],$

Then T has a unique fixed point p and the Picard iteration $\{x_n\}_{n=0}^{\infty}$ defined by

$$x_{n+1} = Tx_n, \quad n \in \mathbb{N}$$

converges to p for any arbitrary but fixed $x_1 \in X$.

One of the most general contraction condition for which the unique fixed point can be approximated by means of Picard iteration, has been obtained by Cirić [7] in 1974: there exists $0 < h < 1$ such that

$$(QC) \quad d(Tx, Ty) \leq h\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\},$$

$$\forall x, y \in X.$$

Remarks. 1. A mapping satisfying (QC) is commonly called quasi contraction. It is obvious that each of the conditions (1.1 – 1.3) and (z₁ – z₃) implies (QC).

2. An operator T satisfying the contractive conditions (z₁ – z₃) in the above theorem is called Z –operator.

Let C be a nonempty closed convex subset of a normed space E_1 .

In 2001, Xu and Ori [15] introduced the following implicit iteration process for a finite family of nonexpansive mappings $\{T_i : i \in I\}$ (here $I = \{1, 2, \dots, N\}$), with $\{\alpha_n\}$ a real sequence in $(0, 1)$, and an initial point $x_0 \in C$:

$$x_1 = \alpha_1 x_0 + (1 - \alpha_1)T_1 x_1,$$

$$x_2 = \alpha_2 x_1 + (1 - \alpha_2)T_2 x_2,$$

.

$$x_N = \alpha_N x_{N-1} + (1 - \alpha_N)T_N x_N,$$

$$x_{N+1} = \alpha_{N+1} x_N + (1 - \alpha_{N+1})T_1 x_{N+1},$$

.

which can be written in the following compact form:

$$(1.4) \quad x_n = \alpha_n x_{n-1} + (1 - \alpha_n)T_n x_n, \quad \forall n \geq 1,$$

where $T_n = T_{n(\bmod N)}$ (here the $\bmod N$ function takes values in I). Xu and Ori proved the weak convergence of this process to a common fixed point of

the finite family defined in a Hilbert space. They further remarked that it is yet unclear what assumptions on the mappings and/or the parameters $\{\alpha_n\}$ are sufficient to guarantee the strong convergence of the sequence $\{x_n\}$.

In [17], Zhou and Chang studied the weak and strong convergence of this implicit process to a common fixed point for a finite family of nonexpansive mappings. More precisely, they proved the following result.

THEOREM 2. ([17, Theorem 3]) *Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E . Let $\{T_i : i \in I\}$ be N*

semi-compact nonexpansive self-mappings of K with $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$

(here $F(T_i)$ denotes the set of fixed points of T_i). Suppose that $x_0 \in K$ and $\{\alpha_n\} \subset (b, c)$ for some $b, c \in (0, 1)$. Then the sequence $\{x_n\}$ defined by the implicit iteration process (1.4) converges strongly to a common fixed point in F .

In [6], Chidume and Shahzad studied the strong convergence of the implicit process (1.4) to a common fixed point for a finite family of nonexpansive mappings. They proved the following result.

THEOREM 3. ([6, Theorem 3.3]) *Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E . Let $\{T_i : i \in I\}$ be N*

nonexpansive self-mappings of K with $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Suppose that one

of the mappings in $\{T_i : i \in I\}$ is semi-compact. Let $\{\alpha_n\}_{n \geq 1} \subset [\delta, 1 - \delta]$ for some $\delta \in (0, 1)$. From arbitrary $x_0 \in K$, define the sequence $\{x_n\}$ by the implicit iteration process (1.4). Then $\{x_n\}$ converges strongly to a common fixed point of the mappings $\{T_i : i \in I\}$.

Remark. It is worth mentioning here that, the theorem 1 of Zhou and Chang in [17] is “for convergence of modified implicit iteration process for a finite family of asymptotically nonexpansive mappings in uniformly convex Banach spaces”.

The purpose of this paper is to study the strong convergence of implicit iteration process (1.4) to a common fixed point for a finite family of quasi contractive operators in normed spaces. The results presented in this paper extend and improve among others the corresponding results of Refs. [1-3, 15, 17].

2. Main results

THEOREM 4. *Let C be a nonempty closed convex subset of a normed space E_1 . Let $\{T_1, T_2, \dots, T_N\} : C \rightarrow C$ be N operators satisfying conditions*

$(z_1 - z_3)$ with $F = \bigcap_{i=1}^N F(T_i) \neq \phi$. From arbitrary $x_0 \in C$, define the sequence $\{x_n\}$ by the implicit iteration process (1.4) satisfying $\sum_{n=1}^{\infty} (1 - \alpha_n) = \infty$. Then $\{x_n\}$ converges strongly to a common fixed point of $\{T_1, T_2, \dots, T_N\}$.

Proof. By Theorem 1, we know that any of the operators $\{T_1, T_2, \dots, T_N\}$ have a unique fixed point, i.e., $F(T_i) \neq \phi$, $\forall i = 1, 2, \dots, N$ and hence, in view $F = \bigcap_{i=1}^N F(T_i) \neq \phi$, the operators $\{T_1, T_2, \dots, T_N\}$ have a (unique) common fixed point say w . Consider $x, y \in C$. Since each $T_i : i \in I$ is a Z -operator, at least one of the conditions (z_1) , (z_2) and (z_3) is satisfied. Following Berinde [1-3], if (z_2) holds, then

$$\begin{aligned} \|T_i x - T_i y\| &\leq b [\|x - T_i x\| + \|y - T_i y\|] \\ &\leq b [\|x - T_i x\| + \|y - x\| + \|x - T_i x\| + \|T_i x - T_i y\|], \end{aligned}$$

implies

$$(1 - b) \|T_i x - T_i y\| \leq b \|x - y\| + 2b \|x - T_i x\|,$$

which yields (using the fact that $0 \leq b < \frac{1}{2}$)

$$(2.1) \quad \|T_i x - T_i y\| \leq \frac{b}{1 - b} \|x - y\| + \frac{2b}{1 - b} \|x - T_i x\|.$$

If (z_3) holds, then similarly we obtain

$$(2.2) \quad \|T_i x - T_i y\| \leq \frac{c}{1 - c} \|x - y\| + \frac{2c}{1 - c} \|x - T_i x\|.$$

Denote

$$(2.3) \quad \delta = \max \left\{ a, \frac{b}{1 - b}, \frac{c}{1 - c} \right\}.$$

Then we have $0 \leq \delta < 1$ and, in view of (z_1) , (2.1-2.3) it results that the inequality

$$(AR) \quad \|T_i x - T_i y\| \leq \delta \|x - y\| + 2\delta \|x - T_i x\|$$

holds for all $x, y \in C$.

Using (1.4), we have

$$\begin{aligned} (2.4) \quad \|x_n - w\| &= \|\alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n - w\| \\ &= \|\alpha_n (x_{n-1} - w) + (1 - \alpha_n) (T_n x_n - w)\| \\ &\leq \alpha_n \|x_{n-1} - w\| + (1 - \alpha_n) \|T_n x_n - w\|. \end{aligned}$$

Now for $y = x_n$ and $x = w$, (AR) gives

$$(2.5) \quad \|T_n x_n - w\| \leq \delta \|x_n - w\|,$$

and hence, by (2.4-2.5) we obtain

$$(2.6) \quad \|x_n - w\| \leq \frac{\alpha_n}{1 - \delta(1 - \alpha_n)} \|x_{n-1} - w\|.$$

Let $A_n = \alpha_n$, $B_n = 1 - \delta(1 - \alpha_n)$ and consider

$$\begin{aligned} \beta_n &= 1 - \frac{A_n}{B_n} = 1 - \frac{\alpha_n}{1 - \delta(1 - \alpha_n)} \\ &= \frac{(1 - \delta)(1 - \alpha_n)}{1 - \delta(1 - \alpha_n)} \geq (1 - \delta)(1 - \alpha_n). \end{aligned}$$

Indeed

$$1 - \delta \leq 1 - \delta(1 - \alpha_n) \leq 1,$$

implies

$$\frac{A_n}{B_n} \leq 1 - (1 - \delta)(1 - \alpha_n).$$

Thus from (2.6), we get

$$(2.7) \quad \|x_n - w\| \leq [1 - (1 - \delta)(1 - \alpha_n)] \|x_{n-1} - w\|, \quad n = 1, 2, \dots.$$

By (2.7) we inductively obtain

$$(2.8) \quad \|x_n - w\| \leq \prod_{k=1}^n [1 - (1 - \delta)(1 - \alpha_k)] \|x_0 - w\|, \quad n = 1, 2, \dots.$$

Using the fact that $0 \leq \delta < 1$, $0 < \alpha_n < 1$, and $\sum_{n=1}^{\infty} (1 - \alpha_n) = \infty$, it results that

$$\lim_{n \rightarrow \infty} \prod_{k=1}^n [1 - (1 - \delta)(1 - \alpha_k)] = 0,$$

which by (2.8) implies

$$\lim_{n \rightarrow \infty} \|x_n - w\| = 0.$$

Consequently $x_n \rightarrow w \in F$ and this completes the proof. \square

Remarks. 1. The Chatterjea's and the Kannan's contractive conditions (1.3) and (1.2) are both included in the class of Zamfirescu operators.

2. Recently concerning the convergence problems of an implicit (or non-implicit) iterative process to a common fixed point of finite family of nonexpansive mappings in Hilbert spaces have been considered by several authors (see for example [4, 8, 12–15, 17]).

References

- [1] V. Berinde, *On the convergence of Mann iteration for a class of quasi-contractive operators*, Preprint, 2003.
- [2] V. Berinde, *On the convergence of the Ishikawa iteration in the class of quasi contractive operators*, Acta Math Univ. Comenianae, LXXIII 1 (2004), 119–126.
- [3] V. Berinde, *A convergence theorem for some mean value fixed point iteration procedures*, Demonstratio Math. 38 (1) (2005), 177–184.
- [4] H. H. Bauschke, *The approximation of fixed points of compositions of nonexpansive mappings in Hilbert spaces*, J. Math. Anal. Appl. 202 (1996), 150–159.
- [5] S. K. Chatterjea, *Fixed point theorems*, C. R. Acad. Bulgare Sci. 25 (1972), 727–730.
- [6] C. E. Chidume and N. Shahzad, *Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings*, Nonlinear Analysis (TMA) 62 (2005) 1149–1156.
- [7] L. B. Ciric, *A generalization of Banach principle*, Proc. Amer. Math. Soc. 45 (1974), 727–730.
- [8] B. Halpern, *Fixed points of nonexpansive maps*, Bull. Amer. Math. Soc. 73 (1967), 957–961.
- [9] R. Kannan, *Some results on fixed points*, Bull. Calcutta Math. Soc. 10 (1968), 71–76.
- [10] R. Kannan, *Some results on fixed points III*, Fund. Math. 70 (1971), 169–177.
- [11] R. Kannan, *Construction of fixed points of class of nonlinear mappings*, J. Math. Anal. Appl. 41 (1973), 430–438.
- [12] P. L. Lions, *Approximations de points fixes de contractions*, C. R. Acad. Sci. Paris, Ser. A, 284 (1977), 1357–1359.
- [13] S. Reich, *Strong convergence theorems for resolvents of accretive operators in Banach spaces*, J. Math. Anal. Appl. 75 (1980), 287–292.
- [14] R. Wittmann, *Approximation of fixed points of nonexpansive mappings*, Arch. Math. 58 (1992), 399–404.
- [15] H. K. Xu, R. Ori, *An implicit iterative process for nonexpansive mappings*, Numer. Funct. Anal. Optim. 22 (2001) 767–773.
- [16] T. Zamfirescu, *Fixed point theorems in metric spaces*, Arch. Math. (Basel) 23 (1972), 292–298.
- [17] Y. Zhou and S. S. Chang, *Convergence of implicit iteration process for a finite family of asymptotically nonexpansive mappings in Banach spaces*, Numer. Funct. Anal. Appl. 23 (2002) 911–921.

DEPARTMENT OF MATHEMATICS
 COMSATS INSTITUTE OF INFORMATION TECHNOLOGY
 ISLAMABAD, PAKISTAN
 30, H-8/1
 e-mail: arafiq@comsats.edu.pk

Received March 30, 2006; revised version July 4, 2006.