

Aldona Dutkiewicz

**A KNESER-TYPE THEOREM FOR AN INTEGRAL
 EQUATION IN LOCALLY CONVEX SPACES**

Abstract. We shall give sufficient conditions for the existence of solutions of the integral equation (1) in locally convex spaces. We also prove that the set of these solutions is a continuum.

Let E be a quasicomplete locally convex topological vector space, and let P be a family of continuous seminorms generating the topology of E .

Denote by Ω the family of all open, balanced and convex neighbourhoods of 0 in E . Assume that $I = [0, a]$ and $B = \{x \in E : p_i(x) \leq b, i = 1, \dots, k\}$, where $p_1, \dots, p_k \in P$.

In this paper we investigate the existence of solutions and the structure of the solutions set of the integral equation

$$(1) \quad x(t) = \int_0^t K(t, s)f(s, x(s))ds,$$

where

1° $f : I \times B \mapsto E$ is a bounded continuous function;

2° $K(t, s) = \frac{A(t, s)}{(t-s)^r}$, $0 < r < 1$, where A is a real continuous function.

Put $M = \sup\{p_i(f(t, x)) : t \in I, x \in B, i = 1, \dots, k\}$ and $c = \max_{t, s \in I} |A(t, s)|$. Choose a positive number d such that $d \leq a$ and $M \cdot c \cdot \frac{d^{1-r}}{1-r} < b$.

Let $J = [0, d]$. Denote by $C = C(J, E)$ the space of continuous functions $J \mapsto E$ endowed with the topology of uniform convergence.

For any bounded subset D of E and $p \in P$ we denote by $\beta_p(D)$ the infimum of all $\varepsilon > 0$ for which there exists a finite subset $\{x_1, x_2, \dots, x_n\}$ of E such that $D \subset \{x_1, x_2, \dots, x_n\} + B_p(\varepsilon)$, where $B_p(\varepsilon) = \{x \in E : p(x) \leq \varepsilon\}$. The family $(\beta_p(D))_{p \in P}$ is called the measure of noncompactness of D .

It is known [6] that

- 1) X is relatively compact in $E \Leftrightarrow \beta_p(X) = 0$ for every $p \in P$;
- 2) $X \subset Y \Rightarrow \beta_p(X) \leq \beta_p(Y)$;
- 3) $\beta_p(X \cup Y) = \max\{\beta_p(X), \beta_p(Y)\}$;
- 4) $\beta_p(X + Y) \leq \beta_p(X) + \beta_p(Y)$;
- 5) $\beta_p(\lambda X) = |\lambda| \beta_p(X)$ ($\lambda \in \mathbb{R}$);
- 6) $\beta_p(\bar{X}) = \beta_p(X)$;
- 7) $\beta_p(\text{conv}X) = \beta_p(X)$;
- 8) $\beta_p\left(\bigcup_{0 \leq \lambda \leq h} \lambda X\right) = h \beta_p(X)$.

The following has been proved in [7].

LEMMA 1. *Let H be a bounded countable subset of C . For each $t \in J$ put $H(t) = \{u(t) : u \in H\}$. If the space E is separable, then for each $p \in P$ the function $t \mapsto \beta_p(H(t))$ is integrable and*

$$\beta_p\left(\left\{\int_J u(s)ds : u \in H\right\}\right) \leq \int_J \beta_p(H(s))ds.$$

In what follows we shall need the following result of W. Mydlarczyk given in [5].

THEOREM 1. *Let $\alpha > 0$ and let $g : \mathbb{R}_+ \mapsto \mathbb{R}_+$ be a nondecreasing function such that $g(0) = 0$, $g(t) > 0$ for $t > 0$. Then the equation*

$$u(t) = \int_0^t (t-s)^{\alpha-1} g(u(s))ds \quad (t \geq 0)$$

has a nontrivial continuous solution if and only if

$$\int_0^\delta \frac{1}{s} \left[\frac{s}{g(s)} \right]^{\frac{1}{\alpha}} ds < \infty \quad (\delta > 0).$$

We can now formulate our main result.

THEOREM 2. *Suppose that for each $p \in P$ there exists a continuous nondecreasing function $w_p : \mathbb{R}_+ \mapsto \mathbb{R}_+$ such that $w_p(0) = 0$, $w_p(t) > 0$ for $t > 0$ and*

$$(2) \quad \int_0^\delta \frac{1}{s} \left[\frac{s}{w_p(s)} \right]^{\frac{1}{1-r}} ds = \infty \quad (\delta > 0).$$

If 1° – 2° hold and

$$(3) \quad \beta_p(f(t, X)) \leq w_p(\beta_p(X))$$

for $p \in P$, $t \in I$ and bounded subsets X of E , then the set S of all solutions of (1) defined on J is nonempty, compact and connected in $C(J, E)$.

Proof. 1. Put

$$r(x) = \begin{cases} x & \text{for } x \in B \\ \frac{x}{K(x)} & \text{for } x \in E \setminus B \end{cases}$$

and $g(t, x) = f(t, r(x))$ for $(t, x) \in J \times E$, where K is the Minkowski functional of B . As B is a closed, balanced and convex neighbourhood of 0, from the known properties of Minkowski's functional it follows that r is a continuous function from E into B and

$$r(X) \subset \bigcup_{0 \leq \lambda \leq 1} \lambda X \text{ for any subset } X \text{ of } E.$$

Thus $\beta_p(r(X)) \leq \beta_p(X)$ for any $p \in P$ and any bounded subset X of E .

Consequently, g is a bounded continuous function from $J \times E$ into E such that

$$(3') \quad \beta_p(g(t, X)) \leq w_p(\beta_p(X))$$

for $p \in P$, $t \in J$ and bounded subsets X of E , and

$$(4) \quad p_i(g(t, x)) \leq b \text{ for } i = 1, \dots, k, \quad t \in J \text{ and } x \in E.$$

We introduce a mapping F defined by

$$F(x)(t) = \int_0^t K(t, s)g(s, x(s))ds, \quad (x \in B, t \in J).$$

Arguing similarly as in [3, p. 132-133] we can prove that the set $F(C)$ is equicontinuous and bounded. On the other hand, from the following Krasnoselskii type

LEMMA 2. *For any $u \in C$ and $U \in \Omega$ there exists a V in Ω such that*

$$f(t, x(t)) - f(t, u(t)) \in U \text{ for every } t \in J$$

whenever $x \in C$ and $x(t) - u(t) \in V$ for every $t \in J$. (cf. [8]).

It follows that F is a continuous mapping from C into itself.

It is clear from (1) and (4) that if $x = F(x)$, then

$$p_i(x(t)) \leq \int_0^t \frac{|A(t, s)|}{(t-s)^r} M ds \leq \frac{d^{1-r}}{1-r} \cdot M \cdot c < b,$$

so $x(t) \in B$ for $t \in J$. Therefore, a function $x \in C$ is a solution of (1) iff $x = F(x)$.

2. For any $n \in N$ put

$$u_n(t) = \begin{cases} 0 & \text{if } 0 \leq t \leq \frac{d}{n} \\ \int_0^{t-\frac{d}{n}} \frac{A(t, s)}{(t-s)^r} g(s, u_n(s)) ds & \text{if } \frac{d}{n} \leq t \leq d. \end{cases}$$

Then u_n is a continuous function $J \mapsto B$ and

$$(5) \quad \lim_{n \rightarrow \infty} (u_n(t) - F(u_n)(t)) = 0$$

uniformly for $t \in J$. Let $V = \{u_n : n \in N\}$. From (5) it follows that the set $\{u_n - F(u_n) : n \in N\}$ is relatively compact in C . Since

$$(6) \quad V \subset \{u_n - F(u_n) : n \in N\} + F(V)$$

and the set $F(V)$ is bounded and equicontinuous, we conclude that set V is also bounded and equicontinuous. Hence for each $p \in P$ the function $t \mapsto v(t) = \beta_p(V(t))$ is continuous on J .

Denote by H a closed separable subspace of E such that

$$g(s, u_n(s)) \in H \quad \text{for } s \in J, n \in N.$$

Let $(\beta_p^H)_{p \in P}$ be the measure of noncompactness in H . Fix $t \in J$ and $p \in P$. From (3') we have

$$\beta_p^H(g(s, V(s))) \leq 2\beta_p(g(s, V(s))) \leq 2w_p(\beta_p(V(s))) \quad \text{for } s \in [0, t].$$

By Lemma 1, we get

$$\begin{aligned} \beta_p(F(V)(t)) &= \beta_p\left(\left\{\int_0^t \frac{A(t, s)}{(t-s)^r} g(s, u_n(s)) ds : n \in N\right\}\right) \\ &\leq \beta_p^H\left(\left\{\int_0^t \frac{A(t, s)}{(t-s)^r} g(s, u_n(s)) ds : n \in N\right\}\right) \\ &\leq \int_0^t \beta_p^H\left(\left\{\frac{A(t, s)}{(t-s)^r} g(s, u_n(s)) : n \in N\right\}\right) ds \\ &= \int_0^t \frac{|A(t, s)|}{(t-s)^r} \beta_p^H(g(s, V(s))) ds \leq 2 \int_0^t \frac{|A(t, s)|}{(t-s)^r} w_p(\beta_p(V(s))) ds. \end{aligned}$$

On the other hand, from (5) and (6) we obtain

$$\beta_p(V(t)) \leq \beta_p(F(V)(t)).$$

Hence

$$\beta_p(V(t)) \leq 2 \int_0^t \frac{|A(t, s)|}{(t-s)^r} w_p(\beta_p(V(s))) ds \quad (t \in J, p \in P),$$

i.e.

$$v(t) \leq 2c \int_0^t \frac{1}{(t-s)^r} w_p(v(s)) ds \quad \text{for } t \in J.$$

Applying Theorem 1 with $\alpha = 1-r$ and theorem on integral inequalities ([2], Lemma 1) from this we deduce that $v(t) = 0$ for $t \in J$. Thus $\beta_p(V(t)) = 0$ for $t \in J$ and $p \in P$. Therefore for each $t \in J$ the set $V(t)$ is relatively

compact in E . As the set V is equicontinuous, Ascoli's theorem proves that V is relatively compact in C . Hence the sequence (u_n) has a limit point u . As F is continuous from (5) we conclude that $u = F(u)$, i.e. u is a solution of (1). This proves that the set S is nonempty.

3. Let us first remark that the set S is compact in C .

Indeed, as $(I - F)(S) = \{0\}$, in the same way as in Step 2, we can prove that S is relatively compact in C . Moreover, from the continuity of F it follows that S is closed in C .

Suppose that S is not connected. Thus there exist nonempty closed sets S_0, S_1 such that $S = S_0 \cup S_1$ and $S_0 \cap S_1 = \emptyset$. As S_0, S_1 are compact subsets of C and C is a Tichonov space, this implies ([4], §41, II, Remark 3) that there exists a continuous function $v : C \mapsto [0, 1]$ such that $v(x) = 0$ for $x \in S_0$ and $v(x) = 1$ for $x \in S_1$.

Further, for any $n \in N$ we define a mapping F_n by

$$F_n(x)(t) = F(x)(r_n(t)) \quad (x \in C, t \in J),$$

where

$$r_n(t) = \begin{cases} 0 & \text{for } 0 \leq t \leq \frac{d}{n} \\ t - \frac{d}{n} & \text{for } \frac{d}{n} \leq t \leq d. \end{cases}$$

It can be easily verified (cf. [8]) that

- (i) F_n is a continuous mapping $C \mapsto C$;
- (ii) $\lim_{n \rightarrow \infty} F_n(x) = F(x)$ uniformly for $x \in C$;
- (iii) $I - F_n$ is a homeomorphism $C \mapsto C$.

Here I denotes the identity mapping.

Fix $u_0 \in S_0$, $u_1 \in S_1$ and $n \in N$. Put

$$e_n(\lambda) = \lambda(u_1 - F_n(u_1)) + (1 - \lambda)(u_0 - F_n(u_0)) \quad (0 \leq \lambda \leq 1).$$

Let $u_{n\lambda} = (I - F_n)^{-1}(e_n(\lambda))$. As $e_n(\lambda)$ depends continuously on λ and $I - F_n$ is a homeomorphism, we see that the mapping $\lambda \mapsto v(u_{n\lambda})$ is continuous on $[0, 1]$. Moreover, $u_{n0} = u_0$ and $u_{n1} = u_1$, so that $v(u_{n0}) = 0$ and $v(u_{n1}) = 1$. Thus there exists $\lambda_n \in [0, 1]$ such that

$$(7) \quad v(u_{n\lambda_n}) = \frac{1}{2}.$$

For simplicity put $v_n = u_{n\lambda_n}$ and $V = \{v_n : n = 1, 2, \dots\}$. Since $\lim_{n \rightarrow \infty} e_n(\lambda) = 0$ uniformly for $\lambda \in [0, 1]$, we get

$$(8) \quad \lim_{n \rightarrow \infty} (v_n - F(v_n)) = \lim_{n \rightarrow \infty} (e_n(\lambda) + F_n(v_n) - F(v_n)) = 0,$$

and therefore the set $(I - F)(V)$ is relatively compact in C . Using now similar argument as in Step 2, we can prove that the set V is relatively compact in C . Consequently the sequence (v_n) has a limit point z . In view of (8) and

continuity of F , we infer that $z \in S$, so $v(z) = 0$ or $v(z) = 1$. On the other hand, from (7) it is clear that $v(z) = \frac{1}{2}$, which yields a contradiction. Thus S is connected.

References

- [1] J. Banaś, K. Goebel, *Measure of Noncompactness in Banach Spaces*, Marcel Dekker, New York-Basel, 1980.
- [2] G. Gripenberg, *On the uniqueness of solutions of Volterra equations*, J. Integral Eqns Appl. 2, no 3, Summer 1990, 421–430.
- [3] J. Januszewski, *On Volterra integral equations with weakly singular kernel in Banach spaces*, Demonstratio Math. 26 (1993), 131–136.
- [4] K. Kuratowski, *Topologie II*, New York-London-Warszawa 1968.
- [5] W. Mydlarczyk, *The existence of nontrivial solutions of Volterra equations*, Math. Scand. 68 (1991), 83–88.
- [6] B. N. Sadowskii, *Limit—compact and condensing mappings*, Russian Math. Surveys 27 (1972), 85–155.
- [7] S. Szufla, *On the equation $x' = f(t, x)$ in locally convex spaces*, Math. Nachr. 118 (1984), 179–185.
- [8] S. Szufla, *Sets of fixed points of nonlinear mappings in function spaces*, Funkcial. Ekvac. 22 (1979), 121–126.
- [9] G. Vidossich, *A fixed point theorem for function spaces*, J. Math. Anal. Appl. 36 (1971), 581–587.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
 ADAM MICKIEWICZ UNIVERSITY
 Umultowska 87
 61-614 POZNAŃ, POLAND

Received March 30, 2006; revised version July 4, 2006.