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A K N E S E R - T Y P E THEOREM FOR A N INTEGRAL 
EQUATION IN LOCALLY C O N V E X SPACES 

Abstract . We shall give sufficient conditions for the existence of solutions of the 
integral equation (1) in locally convex spaces. We also prove that the set of these solutions 
is a continuum. 

Let E be a quasicomplete locally convex topological vector space, and 
let P be a family of continuous seminorms generating the topology of E. 

Denote by Q. the family of all open, balanced and convex neighbourhoods 
of 0 in E. Assume that I — [0, a] and B = {x € E : Pi(x) < b, i = 1 , . . . , 
where p i , . . . ,pk € P. 

In this paper we investigate the existence of solutions and the structure 
of the solutions set of the integral equation 

t 

(1) x(t) = \K(t,s)f(s,x(s))ds, 
o 

where 
1° f : I x B y-* E is a, bounded continuous function; 
2° K(t, s) = 0 < r < 1, where A is a real continuous function. 

Put M = s u p { p i ( f ( t , x ) ) : t G I,x € B,i = l , . . . , f c} and c = 
— r 

max \A(t, s)|. Choose a positive number d such that d < a and M-c-^^r < b. 

Let J = [0, d]. Denote by C = C(J, E) the space of continuous functions 
J I—> E endowed with the topology of uniform convergence. 

For any bounded subset D of E and p G P we denote by /3P(D) the 
infimum of all e > 0 for which there exists a finite subset {x\, X2,..., xn} of 
E such that D C {x\,x2, •.., xn} + Bp(e), where Bp(e) = {x E E : p(x) < 
e}. The family (fip(D))pep is called the measure of noncompactness of D. 
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It is known [6] that 
1) X is relatively compact in E O Pp(X) = 0 for every p G P; 
2)XC Y f3p(X) < (3P(Y)-, 
3) fax U Y) = max{/?p(X), /3p(y)}; 
4)/3p(X + Y)<(3p(X) + l3p(Yy, 
5) (3P(\X) = \X\PP(X) (A G R); 
6) Pp(X) = fipixy, 
7)/3p(convX)=/3p(X); 
8) (3P( U \ X ) = hpp(X). 

0<\<h 
The following has been proved in [7]. 

Lemma 1. Let H be a bounded countable subset of C. For each t G J put 
H(t) = {«(£) : u G H}. If the space E is separable, then for each p G P the 
function 11—¥ [3p(H(t)) is integrable and 

/ ? p ({ j t i ( s )ds : u G < \(3p(H(s))ds. 

In what follows we shall need the following result of W. Mydlarczyk given 
in [5], 

THEOREM 1. Let a > 0 and let g : i—> R+ be a nondecreasing function 
such that <7(0) = 0, g(t) > 0 for t > 0. Then the equation 

t 
u(t) = \(t - s)a"1p(?x(s))cZs (t > 0) 

has a nontrivial continuous solution if and only if 

1 

0 l9(s)\ 
ds < 00 (6 > 0) . 

We can now formulate our main result. 

THEOREM 2. Suppose that for each p G P there exists a continuous nonde-
creasing function wp : M+ •—> R+ such that wp(0) = 0, wp(t) > 0 for t > 0 
and 

6 1 r ¡ 1 s 

J S I w P ( S ) 
(2) ds = 00 (6 > 0). 

If 1° - 2° hold and 
(3) f3p(f(t,X))<wp((3p(X)) 

for p G P, t G I and bounded subsets X of E, then the set S of all solutions 
o / ( l ) defined on J is nonempty, compact and connected in C(J,E). 
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Proo f . 1. Put 

{ x for x G B 

^ f o r x C E \ B 

and g(t,x) = f ( t , r ( x ) ) for (t, x) G J x E, where K is the Minkowski func-
tional of B. As B is a closed, balanced and convex neighbourhood of 0, 
from the known properties of Minkowski's functional it follows that r is 
a continuous function from E into B and 

r ( X ) C ( J XX f o r any subset X o f E. 

0<A<1 

Thus ¡3p(r(X)) < (3P{X) for any p G P and any bounded subset X of E. 

Consequently, g is a bounded continuous function from J x E into E 
such that 

( 3 ' ) f3p{g{t,X))<wp{l3p(X)) 

for p G P, t G J and bounded subsets X of E, and 

( 4 ) Pi(g(t, x ) ) < b f o r i = 1 , . . . , k, t € J a n d x G E. 

We introduce a mapping F defined by 
t 

F ( x ) ( t ) = \ K(t, s)g(s, x(s))ds, ( x € B , t € J ) . 

o 
Arguing similarly as in [3, p. 132-133] we can prove that the set F(C) 

is equicontinuous and bounded. On the other hand, from the following 
Krasnoselskii type 

L E M M A 2 . For any u € C and U G I ) there exists a V in Q such that 

f ( t , x(t)) - f ( t , u(t)) G U for every t G J 

whenever x G C and x(t) — u(t) G V for every t G J. ( c f . [ 8 ] ) . 

It follows that F is a continuous mapping from C into itself. 
It is clear from (1) and (4) that if x — F(x), then 

P i ( x ( t ) ) < L ^ - ^ M d s < M - c < b , 
5 - S ) 1 - R 

so x(t) G B for t G J. Therefore, a function x G C is a solution of (1) iff 
x = F ( x ) . 

2. For any n G N put 

0 if 0 < t < ^ — — n 

\ - ^ ^ g ( s , M s ) ) d s i f i < t < d . 
un(t) = < 
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Then un is a continuous function J i—> B and 
(5) lim (un(t) - F(un)(t)) = 0 

n—>oo 

uniformly for t G J. Let V = {un : n G N}. From (5) it follows that the 
set {un — F{un) : n G N} is relatively compact in C. Since 
(6) V C {un - F(un) : neN} + F(V) 
and the set F(V) is bounded and equicontinuous, we conclude that set V 
is also bounded and equicontinuous. Hence for each p G P the function 
11—>• v(t) = ¡3p(V(t)) is continuous on J. 

Denote by H a closed separable subspace of E such that 
g(s,un(s)) G H for s G J, n G N. 

Let (/3p)pep be the measure of noncompactness in H. Fix t G J and p G P. 
From (3') we have 

P?(g(s,V(8))) < 2f3p{g{s,V(s))) < 2wM(V(s))) for a G [0,t]. 
By Lemma 1, we get 

(3p(F(V)(t)) = /%,({$ £M-g(s,un(s))ds : n G N}) 
0 vr 

<tf({\f^9(s,un(s))ds: neN}) 

^ ^ 9 ( s , n n ( s ) ) : n G iV})ds 

= i ]f^(?(9(',V(s))d8 < 2\J-£^wp((3p(V(s))ds. 

On the other hand, from (5) and (6) we obtain 
PP(V(t)) < (3p(F(V)(t)). 

Hence 

Pp(V(t)) < 2\\£MiWp((3p(V(s))ds (t G J,p G P), 
0 ^ S> 

i.e. 
i 1 

v(t) < 2c \ ^-wp(v(s))ds for t G J. 
o ^ ~ 

Applying Theorem 1 with a = 1 — r and theorem on integral inequalities 
([2], Lemma 1) from this we deduce that v(t) = 0 for t G J. Thus Pp(V(t)) = 
0 for t G J and p G P. Therefore for each t G J the set V(t) is relatively 
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compact in E. As the set V is equicontinuous, Ascoli's theorem proves that 
V is relatively compact in C. Hence the sequence (un) has a limit point u. 
As F is continuous from (5) we conclude that u = F(u), i.e. u is a solution 
of (1). This proves that the set S is nonempty. 

3. Let us first remark that the set S is compact in C. 
Indeed, as (I — F)(S) = {0} , in the same way as in Step 2, we can prove 

that S is relatively compact in C. Moreover, from the continuity of F it 
follows that S is closed in C. 

Suppose that S is not connected. Thus there exist nonempty closed sets 
So, Si such that S — So U S\ and Son Si = 0. As So, Si are compact subsets 
of C and C is a Tichonov space, this implies ([4], §41, II, Remark 3) that 
there exists a continuous function v : C i—> [0,1] such that v(x) = 0 for 
x G So and v(x) = 1 for x G Si. 

Further, for any n G N we define a mapping Fn by 
Fn (:r) (t) = F(x) (r„ (t)) (x € C, t € J ) , 

where 
J o for 0 < t < £ 

I. n n — — 
It can be easily verified ( cf. [8]) that 
(i) Fn ia a continuous mapping C i—> C; 
(ii) lim Fn(x) = F(x) uniformly for x € C; 71—• OO 
(in) I — Fn is a homeomorphism C C. 
Here I denotes the identity mapping. 

Fix uo G So, ui G and n G N. Put 
e n (A) = A(ui - Fn{ui)) + (1 - A)(uo - Fn(u0)) (0 < A < 1). 

Let un\ — (I — Fn)~l(en(A)). As en(A) depends continuosly on A and I — Fn 

is a homeomorphism, we see that the mapping A i-> v(un\) is continuous on 
[0,1]. Moreover, uno = uq and un\ = ui, so that v(uno) = 0 and v(un\) = 1. 
Thus there exists \n G [0,1] such that 

(7) = 
For simplicity put vn = un\n and V = {vn : n = 1 , 2 , . . . } . Since 
lim en(A) = 0 uniformly for A G [0,1], we get 71—»OO 

(8) lim (vn - F(vn)) = lim (en(A) + Fn(vn) - F(vn)) = 0, 7i—+oo n—too 
and therefore the set (I—F)(V) is relatively compact in C. Using now similar 
argument as in Step 2, we can prove that the set V is relatively compact in 
C. Consequently the sequence (vn) has a limit point In view of (8) and 
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continuity of F, we infer that z e S, so v(z) = 0 or v(z) = 1. On the other 
hand, from (7) it is clear that v(z) = 5, which yields a contradiction. Thus 
S is connected. 
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