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A KNESER-TYPE THEOREM FOR AN INTEGRAL
EQUATION IN LOCALLY CONVEX SPACES

Abstract. We shall give sufficient conditions for the existence of solutions of the
integral equation (1) in locally convex spaces. We also prove that the set of these solutions
is a continuum.

Let E be a quasicomplete locally convex topological vector space, and
let P be a family of continuous seminorms generating the topology of E.

Denote by Q2 the family of all open, balanced and convex neighbourhoods
of 0 in E. Assume that I = [0,a] and B={z € F : p;(z) < b,i=1,...,k},
where p1,...,p; € P.

In this paper we investigate the existence of solutions and the structure
of the solutions set of the integral equation
t
(1) z(t) = | K(t,5)f (s, 2(s))ds,
0
where
1° f: I x B E is a bounded continuous function;
2° K(t,s) = %_%, 0 < r <1, where A is a real continuous function.
Put M = sup{pi(f(t,z)) :t € I, € B,i = 1,...,k} and ¢ =

max |A(t, s)]. Choose a positive number d such that d < a and M-c- ‘f__rr <b.
,8€

Let J = [0,d]. Denote by C = C(J, E) the space of continuous functions
J — E endowed with the topology of uniform convergence.

For any bounded subset D of E and p € P we denote by 3,(D) the
infimum of all ¢ > 0 for which there exists a finite subset {z1,z2,...,zn} of
E such that D C {z1,%2,...,2n} + Bp(e), where By(e) = {z € E: p(z) <
e}. The family (8,(D))pep is called the measure of noncompactness of D.
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It is known [6] that
1) X is relatively compact in E < (,(X) = 0 for every p € P;
2)XCY = Bp(X) < Bp(Y);
3) Bp(X UY) = max{B,(X), Bp(Y)};
4) 'BP(X +Y) < ﬁp( )+ /BP(Y);
5) Bp(AX) = |A|Bp(X) (A€ R);
6) Bp(X) = Bp(X);
7) Bp(convX) = B,(X);
8) Bp( U AX) = hBp(X).
0<A<h
The following has been proved in [7].

LEMMA 1. Let H be a bounded countable subset of C. For eacht € J put
H(t) = {u(t) : ue H}. If the space E is separable, then for each p € P the
function t — Bp(H(t)) is integrable and

BP({S u(s)ds: u € H}) ﬂp(H(s))ds

J

In what follows we shall need the following result of W. Mydlarczyk given
in [5].

THEOREM 1. Let a > 0 and let g : Ry — R, be a nondecreasing function
such that g(0) =0, g(t) > 0 for t > 0. Then the equation

u(t) = §(t - 5)*g(u(s))ds (t>0)

0
has a nontrivial continuous solution if and only if
54 L
S— [i] ds<oo (6>0).
o8 La(s)

We can now formulate our main result.

THEOREM 2. Suppose that for each p € P there exists a continuous nonde-
creasing function wy : Ry — Ry such that wy(0) =0, wp(t) >0 fort >0
and

8 1 s =
2 ~|——= ds = 0o 46 >0).
@ Hbsol @>0)
If 1° — 2° hold and
(3) Bp(f(t, X)) < wp(Bp(X))

forp € P, t €I and bounded subsets X of E, then the set S of all solutions
of (1) defined on J is nonempty, compact and connected in C(J, E).
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Proof. 1. Put
T forre B
T(I)z{m”a forz € E\ B
and g(t,z) = f(t,r(z)) for (t,z) € J x E, where K is the Minkowski func-
tional of B. As B is a closed, balanced and convex neighbourhood of 0,
from the known properties of Minkowski’s functional it follows that r is
a continuous function from E into B and

r(X) C U AX for any subset X of E.
0<A<1

Thus Bp(r(X)) < Bp(X) for any p € P and any bounded subset X of E.
Consequently, ¢ is a bounded continuous function from J X FE into E
such that

3) Bp(g(t, X)) < wp(Bp(X))
for p € P, t € J and bounded subsets X of F, and
(4) pi(g(t,x)) <b for i=1,...,k, t€J and z € E.

We introduce a mapping F' defined by
t
F(z)(t) = SK(t,s)g(s,a:(s))ds, (zeB,tel).
0
Arguing similarly as in [3, p. 132-133] we can prove that the set F(C)
is equicontinuous and bounded. On the other hand, from the following
Krasnoselskii type

LEMMA 2. For any u € C and U € QQ there exists a V in Q such that
ft,z(t) — ft,u(t)) €U for everyt e J
whenever ¢ € C and x(t) — u(t) € V for every t € J. (cf. [8]).

It follows that F' is a continuous mapping from C into itself.
It is clear from (1) and (4) that if £ = F(z), then

L 1—r
|A(E, 5)| d
ilz(t)) < Mds <
pia(0) < | (G2 Mds <
so z(t) € B for t € J. Therefore, a function z € C is a solution of (1) iff
x = F(x).

2. For any n € N put

-M-c<b,

un(t) t-

i
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Then u,, is a continuous function J — B and
(5) lim (un(t) — Flun)(t)) = 0
uniformly for ¢t € J. Let V = {u, : n € N}. From (5) it follows that the
set {un, — F(u,) : n € N} is relatively compact in C. Since
(6) VC{un—F(u,): ne N}+ F(V
and the set F(V) is bounded and equicontinuous, we conclude that set V
is also bounded and equicontinuous. Hence for each p € P the function
t — v(t) = Bp(V(t)) is continuous on J.

Denote by H a closed separable subspace of E such that

g9(s,un(s)) € H for s€ J, n€ N.

Let (,81{{ )pep be the measure of noncompactness in H. Fixt € J and p € P.
From (3') we have

By (9(s,V(s))) < 26,(9(s, V(5))) < 2wp(Bp(V (s))) for s € [0,¢].
By Lemma 1, we get

BoF(V)E) = Bl oo, un(e))ds s me )
0
< B0} 1L (s, (o) e )
0
gﬂ (f(f’;))rg(s,un(s)) : n € N})ds
= Lo alo, Vs <21 G BV (9)ds
On the other hand, from (5) and (6) we obtain

Bp(V (1)) < Bp(F(V)(2)).

Hence
Bo(V(2)) < 21 ‘(‘3(_t SS))I wy(Bp(V(s))ds (t€ J,pe P),
0
v(t) < 2c§ #wp(v(s))ds for te J.
o (t—9)

Applying Theorem 1 with @ = 1 —r and theorem on integral inequalities
([2], Lemma 1) from this we deduce that v(t) = 0 for t € J. Thus F,(V (t)) =
0 for t € J and p € P. Therefore for each t € J the set V(t) is relatively
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compact in E. As the set V is equicontinuous, Ascoli’s theorem proves that
V is relatively compact in C. Hence the sequence (uy,) has a limit point u.
As F is continuous from (5) we conclude that u = F(u), i.e. u is a solution
of (1). This proves that the set S is nonempty.

3. Let us first remark that the set S is compact in C.

Indeed, as (I — F)(S) = {0}, in the same way as in Step 2, we can prove
that S is relatively compact in C. Moreover, from the continuity of F it
follows that S is closed in C.

Suppose that S is not connected. Thus there exist nonempty closed sets
So, S1 such that S = SyU S} and SyNS; = @. As Sy, S; are compact subsets
of C and C is a Tichonov space, this implies ([4],841, II, Remark 3) that
there exists a continuous function v : C — [0,1] such that v(z) = 0 for
x € So and v(z) =1 for x € ;.

Further, for any n € N we define a mapping F;, by

Fo(z)(t) = F(z)(ra(t)) (z€C,teJ),

) 0 for0<t <
T. =
" t—2 ford<t<

where

It can be easily verified ( cf. [8]) that
(7) F, ia a continuous mapping C — C;
(4) 7}1}1& F.(z) = F(z) uniformly for z € C;
(t3t) I — F, is a homeomorphism C +— C.
Here I denotes the identity mapping.

Fix ug € So, u1 € Sy and n € N. Put

en(N) = A(u1 — Fo(u)) + (1 — M) (uo — Fr(ug)) (0 <A< 1).

Let uny = (I — F,)"1(en())). As e,()\) depends continuosly on A and I — F},
is a homeomorphism, we see that the mapping A — v(u,)) is continuous on
[0, 1]. Moreover, upg = up and un; = u1, 80 that v(un) = 0 and v(ug;) = 1.
Thus there exists A, € [0,1] such that

(7) v(Una,) =

For simplicity put v, = uny, and V = {v, : n = 1,2,...}. Since
lim e,()\) = 0 uniformly for A € [0, 1], we get
—00

(8) Jim (vn, — F(vn)) = lim (en(X) + Fa(vn) — F(va)) =0,

and therefore the set (I—F)(V) is relatively compact in C. Using now similar
argument as in Step 2, we can prove that the set V is relatively compact in
C. Consequently the sequence (vy,) has a limit point 2. In view of (8) and

|w|i—'
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continuity of F', we infer that z € S, so v(z) = 0 or v(z) = 1. On the other
hand, from (7) it is clear that v(z) = , which yields a contradiction. Thus
S is connected.
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