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HOMOGENEOUS NON-SYMMETRIC MEANS
OF TWO VARIABLES

Abstract. Let f,g : I — R be given continuous functions on the interval I such
that g # 0, and h := i is strictly monotonic (thus invertible) on I. Taking an increasing

nonconstant function y on [0, 1]

[ £tz + (1 - )y)du(?)

Mfyg,ﬂ(z7 y) = Rt 2 (z,y€l)

§g(tz + (1 — t)y)du(t)

is a mean value of =,y € I. Here we solve the homogeneity equation
My g u(tz, ty) = tMyqu(z,y) (v,y€lt€ ;NI

assuming that I C]0,00[ is open, 1 € I, f,g are three times continuously differentiable
functions with &’ # 0 and the moments of u satisfy two conditions (which do not hold for
symmetric means).

1. Introduction
Let I be an interval f,g : I — R be given continuous functions such

that g(z) # 0 for z € I and h(z) := fz) (z € I) is strictly monotonic

9(z)

(thus invertible) on I. Let further p be an increasing nonconstant function
on [0,1] and

§f(t + (1 - )y)du()

My gu(z,y) == ht (; (z,yel)

é g(tz + (1 - t)y)du(t)
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where the integrals are Riemann-Stieltjes ones. From the mean value theo-
rem it follows that

mln{w’y} S Mf,g,p.(x,y) S max{m,y}

ie. My, is a two-variable mean on I. As My, .(z,y) = My, (z,y) for
any positive ¢ we may assume without restricting the generality that

1
(1) fau@) =1.
0

We remark that My, could be defined not just for two, but for several
variables analogously (see [3]).

Péles [6] noticed that with suitable choice of x both the quasi-arithmetic
means weighted with a weight function and the Cauchy (and also several
other) mean can be obtained. Taking namely

0 ift=0

A H0<t<%
p(t) = m(t) = 1
A+ B if§§t<1

A+B+C ift=1

where A,C > 0, B > 0. Condition (1) holds for yu; if and only if A+ B+ C
=1, thus we get that

r+y
2

Cola) + (1~ 4 C)g (T2 ) + Agt)

crw+a-a-0 (552 + s

Mg (z,y) =™ (z,yel)

where A,C > 0,A+C < 1.If A= C = 1/2 then this mean is the quasi-
arithmetic mean with mapping function h = f/g weighted with the weight
function g. Concerning these means, and the homogeneity of their multi-
variable version see Aczél-Daré6czy [1].

Let
p(t) = pa(t) =t

and for continuous functions f denote the integral {7 f(s)ds (zo,z € I)
by f(z). Then
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(i
=N\ 1| §f(tx + (1 —t)y)dt
f ) 0

Mg, (z,y) = (T,
I \§ §(te + (1 — t)y)dt

= -1 ~ _
= (f_,) {(x)—{(y)> (x,yEI)a
g g g

is the Cauchy or difference mean. The homogeneity problem for the n > 3
variable version of these means has been solved in [3].

Several other means, among others some non-symmetric ones, can be
obtained by suitable choices of u. The aim of this paper is to determine the
homogeneous non-symmetric My, , means for a large class of p.

2. Some remarks on homogeneous functions

In the sequel I CJ]0, 00 will be an open interval containing the point 1.
The mean My, is called homogeneous (in the generalized sense) if the
equation (called homogeneity equation)

(2) Mg u(tx,ty) = tMsg . (z,y) (z,yel,tel,NIy)
holds, where, for any x € I, I, := {t e R: tx € I}.

Concerning (2) we can pose two problems:

(i) find all functions f, g satisfying the functional equation (2);
(ii) find all means My 4 , which satisfy (2).

Clearly from the solution of (i) one can get the solutions of (ii). We shall
see that problem (i) has more solutions than (ii) as the same mean can be
built up from several pairs f,g (see [2], [4] for the equality problem of two
variable means).

In each class of means the homogeneous ones form a very important
subclass.

In the sequel we shall use the next two lemmas.
LEMMA 1. If f : I — R satisfies
(3) fltx)y=t"f(z) (zel,tel,={seR:szxel})
then f(z) = f(1)z™.

To prove this substitute z = 1 in (3) and observe that I; = I.
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LEMMA 2. Let F : I? — R be a k + l-times continuously differentiable
homogeneous function of degree m i.e

F(tz,ty) =t"F(z,y) (z,y € L,t € ; NIy).

Then the derivative
I HF(z,y)
Ozkoyt

is homogeneous of degree m — (k + 1).

To justify this differentiate the homogeneity equation, first with respect
to y l-times and after that with respect to z k-times.

To determine the unknown functions f,g in the homogeneity equation
(2) we need two independent equations. For this purpose we use the par-
tial derivatives of My, , taken at the point (x,z). The second and third
derivatives

32Mf,y,”(.’13,:1:) 83Mf1yyu($’m)
—= =~ and ————-
Ozdy 0x20y
are by Lemma 2 homogeneous functions of degree —1 and —2 respectively
thus by Lemma 1 these derivatives are equal to constant/z and constant/x?

respectively. For non-symmetric means under some additional conditions
these derivatives supply the two equations needed in the solution.

3. Differential equations for A, f, g

Suppose now that f, g : I — R are three times continuously differentiable
functions g(z) # 0(z € I), h(z) = f(z)/g(z) (x € I) has non-vanishing
derivative on I and Mj g4, is homogeneous.

Differentiating My g ,(x,y) and substituting y = = we obtain that

82Mftgrll'(x’ 1:)

4 = 2 —_ 2G H y
@ L0888 _ (o~ ma) (26 + H)
SM
(5) 9 —f’gvl‘(m’ z) = (—2m3 + 3mym2 — m3)(3G* + 3GH + H?)
0z20y
+(m} —m? + mg — ma)H’
+ (—2m? + 3mimy + 2mg — 3m3) G,
where

G = Glz) = gg'(;f) He=H@z) =28 gen,
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and
1
my = Stkdu(t) (k=0,1...)
0
are the kth moments of p and by (1) mg = 1.
In finding the third derivative and also in some other elementary but
tedious calculations (substituting long expressions into others etc.) the soft-

ware package Maple V was used.

The above equations can be used for our purpose only if
m% — my 75 0
—2m113 + 3mimg — mg # 0.

(6)

The negation of the first condition means that

1 1 1
tdu(t) = m1 = yimz = ([2du(t))’
0 0

which holds, if and only if, the measure given by u is concentrated on a
single point of the interval [0, 1], i.e. the increasing function y has one single
jump. Thus, the first condition of (6) holds, if and only if, the measure
given by p is not concentrated on a single point.

The left hand side of the second condition in (6) can be rewritten as

—2m3 + 3mimg — m3 = m3 — m3 + 3my(mg — m?).

Since /m2 > my, Ym3z > my (as the nth power integral mean {/m, is
an increasing function of n) the first term here is nonpositive the second
is nonnegative (moreover positive, if the first condition of (6) holds). This
shows that non-symmetry of the mean, in general, does not guarantee the
second condition. At the same time, for symmetric means (like the Cauchy
mean and the quasi arithmetic mean weighted by a weight function) the
second condition of (6) does not hold. For this (two particular symmetric)
means the solution of the homogeneity problem is much more complicated,
one has to use in addition to (4) the fourth and sixth derivatives of the mean
at the point (z,x) see [5].

Unfortunately we cannot characterize the functions p that satisfy the
second condition of (6). Calculating other third order derivatives than (5)
leads to the same equations/conditions. Using the fourth derivative (simi-
larly to [5]) leads to Riccati equations whose solutions cannot be obtained
by help of quadratures. Thus the only possibilities are the use of the fifth or
sixth derivatives. These however depend on the moments m,,. .., mg which
makes the system of differential equations unmanageable (at least for the
time being). On the other hand the (nonsymmetric) examples of the last
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section show, that equality in the second condition of (6) in the class of
non-symmetric means is rather exceptional.

REMARK (added in proof). Péles [6] noticed that

1 1

S(t —my)3du(t) = S(t3 — 3t>my + 3tm? — m3)du(t) = mz — 3momy + 2m3.
0 0

Thus the second condition of (6) means that the integral on the left hand

side is non-zero, or that the measure generated by the function p has non-
vanishing third central moment.

Suppose now that (6) holds. Then from (4) we get that
2
(7 2G + H = ;c

1/2 1 2
where ¢ is a constant. Substituting G = 3 (;c — H) ,G' = 2 (__c — H')

into (5) we obtain
BM;4,u(z, ) 3 3 1 1., 622
W = <m1 — 5mma + §m3) (H' - -H* - —)
(2m? — 3mymg — 2ma + 3m3)c

72
and hence
1 2d
8 H - -H?==
( ) ) :L‘2’

where d is a constant.
Integrating (7) we get that

(9) K (z)g(z)? = B,

where (3 is an arbitrary constant.
The Riccati equation (8) transforms to the Euler differential equation

(10) 2"+ a%z =0
with
—18 H(z)dz d
(11) z(z)=e 2 (> 0), H(z) = —2— (Inz(z)).

dzr
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The nonzero solutions of (10) are

z=Ryzcos(lnz®+ D), if —(2a)2=1-4d<0

2z = Ry/zcosh(Inz®+ D), if (2a)2=1-4d>0

(1) z = Ry/zsinh(Inz® + D), if (2a)2=1-4d >0
z = Ry/zexp (+1nz?%), if (20)2=1-4d>0
2= RyZ, if1—4d=0

z = Ry/z(Inz + D), if 1-4d =0,

where R # 0,a # 0,D are constants (which should be chosen such that
z(z) > 0).

From (11)
(In|r'))" = f;; =H-= —2%/ = (Inz7?)’,
hence, by integrating, we obtain
(13) B =K 272 h=Ki{z?+L,
and by (9), (13)
(14) g=Kyzz, f=gh,

where K # 0, Ko # 0, L are arbitrary constants.
Performing the integrations with the solutions z given by (12) and in-

troducing some new constants if necessary we get the following solutions for
h,g and f

h 9 f

Ktan(lnz® + D)+ L Mz°cos(Inz® + D) Mz°[Ksin(Inz® + D) + Lcos(lnz® + D)]

Ktanh(lnz®* + D) + L Mz°cosh (Inz* + D) Mz®[K sinh(lnz® + D) + L cosh(ln z* + D)]
(15) Kcoth(lnz® + D)+ L Mz°sinh (lnz® + D) Mz°[K cosh(lnz® + D) + Lsinh(Inz® + D))

KzF2e 4 L MzCgt2e Mz® [KzF2e + inza]
K(nz+ D) '+ L Mz®/z(lnz + D)  Mz°/z[K + L(lnz + D)]
Klnz+ L Mz Mz°/z[KInz + L],

where a,c, D, K,L,M € R are arbitrary constants apart from the restric-
tions a KM # 0.

4. Homogeneous non-symmetric means

THEOREM 1. Let I CJ]0,00[ be an open interval containing the point 1,
fig : I — R be three times continuously differentiable functions, g(x) #
0(z € I), W(z) = (f(z)/g(x)) # 0 (z € I) and suppose that p : I — R
is an increasing nonconstant function whose moments satisfy (6). If My,
is homogeneous i.e. the equation (2) is satisfied, then for all x € I the
functions g, f are given by (15), where a,c,D,K,L,M € R are constants



176 L. Losonczi

such that aKM # 0. Further, (in order that h be defined and g(x) # 0 on
I) we have to assume that

(16) 1nx“+De](2k;1)”,(2k;1)”[ (zel)

holds with some k € Z if the first line of (15) is valid,
(17) Inz®+D>00r nz®*+D<0 (zel)
holds if the third line of (15) is valid,

(18) Inz+D>0o0rlnz+D<0 (z€l)
holds if the fifth line of (15) is valid.

Proof. One can easily see that g(z) # 0 (z € I) if and only if (16) or
(17) or (18) holds (depending on which line of (15) is taken into consid-
eration). Calculating the derivatives h’ it turns out that for each line of
(15) the conditions g(z) # 0 (z € I) and h'(z) # 0 (z € I) are satisfied
simultaneously. a

It is easy to check that

Mfl,yl,u(x’ y) = Mfz,gz,u($>y) (xr,y €1)

if
fa(z) = pfi(z) + qg1(x) (z €1)
g2(z) =rfi(z) + sg1(z) (z€]),
where p, ¢, 7, s € R are constants for which ps — gr # 0 (where it is assumed
that fi,g1, f2,92: I = R, g1,92 # 0, h1 = f1/g1, h2 = fa/g2 are continuous
and strictly monotonic on I). Let us call the pairs (f1,91) and (f2,g2)
equivalent (with respect to the mean My g ,,) if (19) holds. Equivalent pairs
generate the same mean.

By the addition formulae of sin, cos, sinh, cosh the pairs (f, g) listed below
are equivalent to the pairs given in (15).

(19)

g f condition

z€cos(lnz®) z¢sin(lnz?) (16) with D =0
(20) z€cosh(Inz?) z°sinh(lnz®)  none

z¢sinh(lnz®) z°cosh(lnz®) (17) with D =0

geta ze e none

x° z°Inz (18) with D =0,

where a # 0, ¢, d # ¢ are arbitrary constants (for the uniform appearance of
the constants in (20) we replaced 2a by a in the fourth line of (15) and we
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replaced c + % by ¢ in lines five and six).
Next we find the means corresponding to the functions (15) or (20).

THEOREM 2. Let I C]0,00[ be an open interval containing the point 1,
fig : I — R be three times continuously differentiable functions, g(x) #
0(z € I), W(z) = (f(x)/g9(z)) # 0 (z € I) and suppose that pu: I — R is
an increasing nonconstant function whose moments satisfy (6). The mean
M; 4., is homogeneous, i.e. (2) holds, if and only if it has one of the forms

(21) Mf,g,u(m, y)

§(tw + (1 = t)y)°sin(aln(tz + (1 — t)y))du(t)
= exp | —arctan 2 - R
g(tx + (1 —t)y)ccos(aln(tz + (1 — t)y))du(t)

(tz + (1 - )g)eredp(t) |

(22) Mjgu(z,y) =
(tz + (1 — t)y)e2du(t)

O oy b= | O ey =

(§)(t$ + (1 —t)y)¢In(tz + (1 — t)y)du(t)

(23) Mygu(z,y) = exp 1
(S)(tw + (1 = t)y)odu(t)

where x,y € I, and a # 0,c € R are constants. In case of the first mean the
magimal interval is (exp (—%), exp (L)), in case of the last two means
the mazimal interval is (0, 00).

Proof. The first pair (f,g) of (20) gives the mean (21), and the maximal
interval I as stated.

The second, third, fourth pairs (f, g) of (20) build up the same mean, as
they are linear combinations of z°expalnz = z°t* and z¢exp(—alnz) =
z°~®. From them we get the mean (22), the maximal interval being I =
(0, 00).

Finally the last pair (f,g) of (20) builds up the mean (23), with the
maximal interval again I = (0, o).

It is easy to check that the means (21), (22), (23) satisfy the homogeneity
equation (2). O
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5. Examples for families of non-symmetric homogeneous means

As our first example consider the mean

Tty

cfw+a-4-0 (52) + artw

Mfyg)ll'l (:D’ y):h_l (z’y € I))

Caa) + (1~ 4= C)g (T32) + 49(0)

where A;C > 0,A+ C <1 and the interval I and the functions f, g satisfy
the assumptions of Theorem 2.

We have m; = (1- A—C)/2* +C (i = 1,2,3) and

_om3 + 3mamg — mg = _1‘%9(2,42 —4AC - 3A+1+2C? - 3C)

(1-0-3)" (o))

This shows that condition (6) is not satisfied if A = C' (when My, ,, is
obviously symmetric), if A # C it holds if and only if

A-C

4

A#C+3/4++/3C +1/16.

This holds if we take the positive sign in front of the square root, since then
the right hand side is greater or equal to 1. It also holds if C > 1/2 (and for
symmetry reasons if A > 1/2) since then the right hand side (with negative
sign in front of the root) is less than or equal to 0.

Summarizing, (6) holds if and only if A # C and

0<A<1/2<C<1—-A, o 0<C<1l/2<A<1-C,or

(24)
0<AC<1/2 and A#C+3/4—+/3C+1/16.

Taking for example A = 1/4,C = 1/2 by Theorem 2 the homogeneous
M; 4 ., means are of the form
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C
2z¢sin(alnz)+ (;BT_W) sin (a In mzﬂ) +y°sin(alny)

exp | —arctan )
a

[+
2z¢cos(alnz)+ (H:T-I—y) cos (a In %) +yccos(alny)

1

+ 2a

oty (ZH2) e
2

o x+y c—a ~ ’
2z~ + 2 +y e

+4°Ilny

C
2z¢Ilnz + (:E-i—y) ln$+y

2 2

c
2z¢ + (_x;—y) +y°

where z,y € I, and a # 0,c € R are constants.

exp

As second ezample take the mean My, ,, where us(t) = t2. It is easy to
check that the moments of u3 satisfy (6). Assume that f,g and the interval
I satisfy the conditions of Theorem 2. By Theorem 2 (transforming the
integrals to Riemann integrals) we get that the homogeneous My g ,, means
are the following

t(tz + (1 — t)y)°sin(aln(tz + (1 — t)y))dt

exp | —arctan
a

O e b | (D) ey

t(tz + (1 — t)y)ccos(aln(tz + (1 — t)y))dt

2a

§t(tm + (1 — t)y)etedt
0

[(tz + (1 — t)y)e-adt
0

t(tz + (1 — t)y)°In(tz + (1 — t)y)dt

(=T

exp ]
{t(tz + (1 - t)yy)cdt
0

where z,y € I, and a # 0,c € R are constants.



180 L. Losonczi

References

[1] J. Aczél and Z. Daréczy, Uber verallgemetnerte quasilineare Mittelwerte, die mait
Gewichtsfunktionen gebildet sind, Publ. Math. Debrecen 10 (1963), 171-190.

[2] L. Losonczi, Equality of two variable weighted means: reduction to differential equa-
tions, Aequationes Math. 58 (1999), 223-241.

[3] L. Losonczi, Homogeneous Cauchy means, in: Functional Equations - Results, Ad-
vances ed. by Z. Daréczy and Zs. Péles, Kluwer Academic Publ., Dordrecht-Boston-
London (2002), 209-218.

[4] L. Losonczi, Equality of two variable means revisited, Aequationes Math.71 (2006),
228-245.

[5] L. Losonczi, Homogeneous symmetric means of two variables, Aequationes Math. (to
appear).

[6] Zs. Pales, Oral communication.

INSTITUTE OF MATHEMATICS
DEBRECEN UNIVERSITY

4010 DEBRECEN, PF.12, HUNGARY
e-mail: losi@math.klte.hu

Received January 24, 2006; revised version July 7, 2006.



