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OSCILLATION CRITERIA FOR A HIGHER ORDER
FUNCTIONAL DIFFERENCE EQUATION
WITH OSCILLATING COEFFICIENT

Abstract. In this paper we are concerned with the oscillatory behaviour of solu-
tions of a certain higher order nonlinear neutral type functional difference equation with
oscillating coeflicient. We obtain two sufficient criteria for oscillatory behaviour.

1. Introduction
We consider the higher order nonlinear difference equation of the form

(11) An[yk + hkg(yk, yk—T)] + Qkf(ylm Ye—o1yYk—03s++ - yk—trn) =0

where n, k € N(natural numbers), N(a) = {a,a+1,...}, N(a,b) = {a,a+
1,...,b}, y(k) = yx and the following conditions are always assumed to hold:

i)yn>2

it) T is a positive integer and o; are nonnegative integers for j =
1,2,...,n,

ii1) hy is an oscillating function and ¢y, is a nonnegative function,

1v) g and f are continuous and monotone functions such that respectively
g(vo,v1) : R2 = R, f(ug,uy,uz,...,u,) : R*' — R. Further v;g(vg,v1) >
0 for every v; # 0,4 = 0,1 and u; f(uo, u1,us,...,un) > 0 for every u; # 0
and j =0,1,2,...,n,

By a solution of Eq.(1.1), we mean any function y; which is defined for
all k£ > gl;{)l{’y — 7,7 — 05} and satisfies Eq.(1.1) for sufficiently large k. We

consider only such solutions which are nontrivial for all large k. As it is
customary, a solution {yx} is said to be oscillatory if the terms yg of the
sequence are not eventually positive or not eventually negative. Otherwise,
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the solution is called nonoscillatory. A difference equation is called oscilla-
tory if all of its solutions oscillate. Otherwise, it is nonoscillatory. In this
paper, we restrict our attention to real valued solutions yy.

The neutral delay difference equations arise in a number of important
applications including problems in population dynamics when maturation
and gestation are included, in “cobweb” models in economics where demand
depends on current price but supply depends on the price at an earlier time,
and in electrical transmission and in loss transmission lines between circuits
in high speed computers.

Recently, much research has been done on the oscillatory and asymptotic
behaviour of solutions of higher order delay and neutral type difference equa-
tions. In all of the known results, the positive value or negative value case of
coefficient hy is considered; see, for example, [1-9], chapter 7[2] and Section
22[3] and related equations. Firstly only we consider the case of oscillating
function of coefficient hj in our manuscript [7] and in this manuscript.

The purpose of this paper is to study oscillatory behaviour of solutions
of Eq. (1.1). For the general theory of difference equations, one can refer
to [1-6]. Many references to applications of the difference equations can be
found in [4-6].

For the sake of convenience, the function zj is defined by

(1.2) 2k = Yk + heg(yr, Yk—r)-

2. Auxiliary lemma

LEMMA 1. [1] Let yi be defined for k > ko € N, and y, > 0 with A"y of
constant sign for k > ko , n € N(1) and not identically zero. Then there
ezists an integer m, 0 < m < n with (n +m) even for A"y, > 0 or (n+m)
odd for Ay, <0 such that
i) m < n-—1 implies (—1)’""‘ZAly;c >0 forallk >ky,m<I<n-—1;
i1) m > 1 implies Aly, > 0 for all large k > ko, 1 <1 <m — 1.

3. Main results

THEOREM 1. Assume that n is odd and

(Cl) limg_,o0 hx = 0;

(C2) |g(vo,v1)| < p, where p is a positive constant;

(03) :;.210 sn_lqs = +00 .

Then every bounded solution of Eq. (1.1) is either oscillatory or tends
to zero as k — +o00 .

Proof. Assume that Eq. (1.1) has a bounded nonoscillatory solution y.
Without loss of generality, assume that yi is eventually positive (the proof
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is similar when y; is eventually negative). That is, yr > 0, yg—r > O,
Yk—c, > 0, Yk—oqy- - - yYk—0n, > 0 for k > k1 > ko . Further, we assume that
yx does not tend to zero as k — oo . By (1.1), (1.2) we have for k > k;

(31) Anzk = _Qkf(yk.) Yk—0c1rYk—02s -+ - ,yk—o’n) < 0.

That is, A"z, < 0. It follows that A%z, (a = 0,1,2,...,n — 1) is strictly
monoton and eventually of constant sign. Since yx does not tend to zero as
k — oo and hy — 0 as k — oo by (C1) and 0 < g(vg,v1) < p by (iv) and
(C2), there exists a ky > k; such that for k > ko we have z; > 0. Since y
is bounded function and hkg(yk,yk—r) — 0 as k — oo, there is a k3 > ks
such that z; is bounded for k¥ > k3. Because n is odd and 2z is bounded,
by Lemma 1, since m = 0 (otherwise, z; is not bounded), there exists
k4 > k3 such that for k > k4 we have (—1)!Alz; >0 (1=0,1,2,...,n—1).
In particular, since Azr < 0 for k > k4, z is decreasing. Since zj is
bounded, we may write limg_,o 2zx = L (—00 < L < +00). Assume that
0 < L < +400. Let L > 0. Then there exists a constant ¢ > 0 and a ks with
ks > k4 such that zx > ¢ > 0 for k > ks. Since limg_, o hxg(yk, Ye—r) = 0
by (C1) and (C2), there exist a constant ¢; > 0 and a kg with kg > ks such
that yx = 2 — hxg(Yk, Yk—r) > c1 > 0 for k > kg. So, we may find k7 with
k7 > ke such that yx_s, > c1 > 0, Yk—g, > €1 > 0,..., Yk—0,, > c1 > 0 for
k > k7. From (3.1) we have

(32) Anzk < —Qkf(cla Cly.. -y Cl) (k > k7)
If we multiply (3.2) by ¥”~! and summing it from k7 to k — 1, we obtain

k-1
(33) Fk_Fk7 S _f(clacl""7cl) an_lq&
s=k7y
where
n-1
Fe=) (-1)"A% DAY 1
y=2

Since (—1)'Alz, > 0 for I = 0,1,2,...,n — 1 and k > k4, we have Fj, > 0
for k > k7. From (3.3) we have

k—1
—Fy, < —f(e1,c1,--.,¢1) Z sV 1gs.

s=kv7

By (Cs), we obtain

oo

—Fi, < —fler,c1,..h01) D 877 1gs = —o00

s=k7
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as k — oo. This is a contradiction. So, L > 0 is impossible. Therefore,
L = 0 is the only possible case. That is, limg_, 2r = 0. Hence, by virtue
of (C1) and (C2), we obtain from (1.2)

lim yx = lim 2; — lim hgg(yx,yx—r) = 0.

k—o0 k—oo k—o00
This contradicts our assumption that yx does not tend to zero as k — o0.
Now let us consider the case of y; < 0 for k > k;. By (1.1) and (1.2),

Anzk = _qkf(yk,yk—apyk—a'z’ .o ,yk—a'n) > 0 (k > kl)
That is, A"z > 0. It follows that A%z (a = 0,1,2,...,n — 1) is strictly
monotone and eventually of constant sign. Since y; does not tend to zero
as k — oo and hy — 0 as kK — oo by (C1) and —p < g(vo,v1) < 0 by (iv)
and (Cy), there exists a k2 > ki such that for k¥ > k; we have 2 < 0.
Since yy, is a bounded function and hgg(yk, yx—r) — 0 as k — oo, there is a
k3 > kg such that 2z is a bounded for k& > k3. Let us set x = —2;. Then
A"z = —A"z;. Therefore, zx > 0 and A"z, < 0 for k > k3. Since 2 is
bounded, we observe that xj is also bounded. Because n is odd and zy is
bounded, by Lemma 1, since m = 0 (otherwise, x is not bounded), there
exists a kq > k3 such that (—1)!Alzy > 0forl =0,1,2,...,n—1 and k > k4.
That is, (—1)!Alzy < 0 for I = 0,1,2,...,n — 1 and k > k4. In particular,
for k > k4 we have Az, > 0. Therefore, 2 is increasing. So, we can assume
that limg_00 2r = L (—00 < L < 0). As in the proof of y; > 0, we may
prove that L = 0. As for the rest, it is similar to the case of y; > 0. That
is, limg_, oo yx = 0. This contradicts our assumption. Hence, the proof is

completed. O
THEOREM 2. Assume that n is even and also (C1) and (C3) hold. Further,
k-1
(Cy) Jim sup Zk gs = +00

s=ko

is satisfied.
Then every bounded solution of Eq. (1.1) is oscillatory.

Proof. Assume that Eq. (1.1) has a bounded nonoscillatory solution yy .
Without loss of generality assume that yy is eventually positive (the proof
is similar when y; is eventually negative). That is, yr > 0, yx—r > 0,
Yk—01 > 0, Yk—0gy- - - Wk—o, > 0 for k > k1 > ko. By (1.1), (1.2) we have for
k>k

(34) Anzk = —Qkf(yk, Yk—01+Yk—02)- -+ yk—an) <0.

That is, A™z(k) < 0. It follows that A%z (a =0,1,2,...,n — 1) is strictly
monotone and eventually of constant sign. Since y # 0 is positive and
bounded and 0 < g(vo,v1) < p by (iv) and (Ci), there exists a ko > ki
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such that for & > k; we have z; > 0. Since yx is a bounded function and
hig(yk, yx—r) — 0 as k — oo, there is a k3 > ko such that 2 is a bounded
function for k > k3. Because n is even, by Lemma 1, since m = 1 (otherwise,
2k is not bounded), there exists k4 > k3 such that for k > kq4

(3.5) (- A >0 (1=1,2,...,n—1).

In particular, since Az, > 0 for k > ky, zi is increasing. Since y;, is bounded
and limg_, o0 hxg(yk, Yk—r) = 0 by (C1) and (C2), there exists a ks > k4 by
(1.2)

1
Yo = 2k = hig (Y, Ye—r) 2 52 > 0
for k > ks. We may find a kg > ks such that for k£ > kg we have
1 1 1
(3.6) Yk—0y 2 g %k—o1 > 0, Yk—0, = o%k—a2 > 0,0y Yb—on, 2 o5 %k—0n > 0.

From (3.4), (3.6) and the properties of f we have

1 1 1 1
(8.7) ATz < —Qkf<52k’ =Zk—0115 Zk—oge - - _Zk—an>

2 2 "2
1 1 1 1
_ _qkf(ﬁzka 52k—0115%k—021 * s §zk—0'n) 2k (k > ks),
Zk—o
where o = 11<111£ {o;}. Since z; is bounded and increasing, limg_o0 25 =
<j<n
L (0 < L < +00). By the continuity of f, we have
i f(%zka %zk—alaézk—o‘zr ) %Zk—an) f(%L: %La %L PR %L)
im = > 0.
k—o0 Zk—o L
Then there is a k7 > kg such that for £ > k7 we have
(3.8)
1 1 1 1 1y 171 1
lim f(§Zk7 5Rk—0133Rk—0g1 + + s Ezk—an) > f(ﬁLv'z-LyiLa ) §L) —a>0.
k—co Zk—0o 2L
By (3.7) and (3.8),
(3.9) A"z, < —aqy 2x—o for k > kr.
Let us set
An—l
(3.10) Gy = %k
Zk—0o

Since A" 1z, > 0 and zx_, > 0 by (3.5), we can find a kg with kg > kr
such that for £k > kg we have Gy > 0. If we apply the forward difference
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operator A to (3.10), since A" lz; and Az are decreasing and zj is in-
creasing by (3.5), we obtain
Z_aAT 2y, — Azk_,,A"_lzk
ko E2g—g
Zh—oA"2zr,  Azk_ A"z
2 - 2
Zk—0o Zk—0o
ATz Az

— Gk
Zk—-o Zk—o

Since szAk—fi— > 0, from (3.11) and (3.9) we can write

(3.11) AG) =

<

(3.12) AGL < —agqy

Summing up (3.12) from kg to k — 1 we obtain
k—1

(3.13) Gy <Gy —« Z Q-
s=kg

By (C4) we have Gy, — —oo which is contradiction to the fact that Gy > 0.

Now let us consider the case of yp < 0. We do the proof similar to
Theorem 1 as in the case of y < 0. Therefore, there is a k > k1 such that
A"z, > 0, z; < 0 and 2z is bounded and at the same time there exist an
integer m = 1 and a kg > k3 such that (—1)"*1Alz, < 0 for k > k4 and
[=1,2,...,n — 1. In particular, Az, < 0 for k > k4. Let us set z;, = —z.
The rest of proof is similar to the case of y; > 0. Hence, the proof is
completed. O

ExAMPLE 1. We consider difference equation of the form
(3.14) A3 {yk + e Fsin (k%)ykyz_l] + ky2yr_ays_o =0 for k > 3,

where n =3, gxr =k, 01 =3,00=2,03 =0, 7 =1, hy = e~ ¥ sin(k%).
Therefore, we have

lim hg = lim e * sin<kf) =0
k—oo k—oo 2
and
+o00 +00
Z " lgs = Z % = +o0.
s=ko s=ko

Then conditions (C1) and (C3) of the Theorem 1 are satisfied. Since yy is
bounded, g is also bounded and condition (C2) holds. Hence, all conditions
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of Theorem 1 are satisfied. Then every bounded solution of equation (3.16)
is oscillatory. One of such solutions is {yx} = {(—1)}.

ExAMPLE 2. Consider difference equation of the form

_ 1)k
(3.15) A? [yk+( k) ykyk—2]

k*(4k +5) + 9k +1
k3(k + 4) + k(5k + 2)

—DFk k2(4k+5)+9k
where 7 = 2, h = ( ,i v @k = 22+ ¢ (l(c+4-§+1225ki;))’ o1 =2, 09 = 1.
Therefore, we have

+2 (2 + )ykyk—2yk—1 =0,

oo kT i T & ’

k-1 k—1 2
. . s*(4s+5)+9s+1
1 _ 1 2 = .
s Y= s 3 (24 S ) < 4

Then conditions (C1) and (C4) of Theorem 2 are satisfied. Since yj is
bounded, g(vp,v1) is bounded and condition (C3) of Theorem 2 holds.
Hence, since all conditions of Theorem 2 are satisfied, every bounded so-
lution of equation (3.17) is oscillatory. In fact, equation (3.17) has an oscil-
latory solution given by {yx} = {(—1)*}.
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