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OSCILLATION CRITERIA FOR A HIGHER ORDER 
FUNCTIONAL DIFFERENCE EQUATION 

WITH OSCILLATING COEFFICIENT 

Abstract. In this paper we are concerned with the oscillatory behaviour of solu-
tions of a certain higher order nonlinear neutral type functional difference equation with 
oscillating coefficient. We obtain two sufficient criteria for oscillatory behaviour. 

1. Introduction 

We consider the higher order nonlinear difference equation of the form 

( 1 . 1 ) A n [ y k + hkg(yk,yk_T)] + qkf(yk,Vk-<n,yk-<r2, • • • >yk-*n) = 0 

where n,k € iV(natural numbers), N(a) = {a, a +1,... }, N(a, b) = {a, a + 
1 , . . . , 6}, y(k) = yk and the following conditions are always assumed to hold: 

i) n > 2 
ii) T is a positive integer and AJ are nonnegative integers for j = 

1 , 2 , . . . , n , 

Hi) hk is an oscillating function and qk is a nonnegative function, 
iv) g and / are continuous and monotone functions such that respectively 

g{v0,vi) : R2 R , f(uo, U\,U2, ...,un): Rn+1 -* R. F u r t h e r vig(v 0 , v i ) > 

0 for every Vi ^ 0, i = 0,1 and Ujf(uo, U\,U2, • . . , un) > 0 for every Uj 0 
and j = 0 , 1 , 2 , . . . , n, 

By a solution of Eq.(l. l), we mean any function yk which is defined for 
all k > min{7 — r , 7 — <r,} and satisfies Eq.(l . l) for sufficiently large k. We 

7 > 0 
consider only such solutions which are nontrivial for all large k. As it is 
customary, a solution {yk} is said to be oscillatory if the terms ykoi the 
sequence are not eventually positive or not eventually negative. Otherwise, 
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the solution is called nonoscillatory. A difference equation is called oscilla-
tory if all of its solutions oscillate. Otherwise, it is nonoscillatory. In this 
paper, we restrict our attention to real valued solutions yk. 

The neutral delay difference equations arise in a number of important 
applications including problems in population dynamics when maturation 
and gestation are included, in "cobweb" models in economics where demand 
depends on current price but supply depends on the price at an earlier time, 
and in electrical transmission and in loss transmission lines between circuits 
in high speed computers. 

Recently, much research has been done on the oscillatory and asymptotic 
behaviour of solutions of higher order delay and neutral type difference equa-
tions. In all of the known results, the positive value or negative value case of 
coefficient hk is considered; see, for example, [1-9], chapter 7[2] and Section 
22[3] and related equations. Firstly only we consider the case of oscillating 
function of coefficient hk in our manuscript [7] and in this manuscript. 

The purpose of this paper is to study oscillatory behaviour of solutions 
of Eq. (1.1). For the general theory of difference equations, one can refer 
to [1-6]. Many references to applications of the difference equations can be 
found in [4-6]. 

For the sake of convenience, the function zk is defined by 

(1-2) zk = yk + hkg(yk,yk-T). 

2. Auxiliary lemma 

LEMMA 1. [1] Let yk be defined for k > ko G N, and yk > 0 with Anyk of 
constant sign for k > ko , n € N(l) and not identically zero. Then there 
exists an integer m, 0 < m < n with (n + m) even for Anyk > 0 or (n + m) 
odd for Anyk < 0 such that 

i) m < n — 1 implies (—l)m+lAlyk > 0 for all k > ko, m < I < n—1; 
ii) m > 1 implies Alyk > 0 for all large k > ko, 1 < Z < m — 1. 

3. Main results 

T H E O R E M 1. Assume that n is odd and 
(Ci) limfc^oo hk = 0; 
(C2) \g(vo, vi)| < p, where p is a positive constant; 
( c 3 ) e x = + 0 0 . 
Then every bounded solution of Eq. (1.1) is either oscillatory or tends 

to zero as k —> +00 . 

P r o o f . Assume that Eq. (1.1) has a bounded nonoscillatory solution yk. 
Without loss of generality, assume that yk is eventually positive (the proof 



Oscillation criteria 163 

is similar when yk is eventually negative). That is, yk > 0, yk-r > 0, 
yk -ai > 0) Dk-o2i - • • illk-an > 0 for k > ki > ko . F u r t h e r , we a s s u m e t h a t 
yk does not tend to zero as A; —> oo . By (1.1), (1-2) we have for k>k\ 

(3.1) A n z k = -%/(yfc,yfc-C T 1 ,yfc-CT2 , . . . ,yfc-<rn) < 0. 

That is, A n z k < 0. It follows that A a z k (a = 0 , 1 , 2 , . . . , n - 1) is strictly 
monoton and eventually of constant sign. Since yk does not tend to zero as 
k —> oo and hk —y 0 as k —> oo by (C\) and 0 < g{vo, ui) < p by ( i v ) and 
(C2), there exists a k2 > k\ such that for k > k2 we have zk > 0. Since yk 

is bounded function and hkg(yk, yk-T) —> 0 as A: —>• 00, there is a £3 > 
such that zk is bounded for k > k^. Because n is odd and zk is bounded, 
by Lemma 1, since m = 0 (otherwise, zk is not bounded), there exists 
ki > such that for k > £4 we have (—1)ZAlzk > 0 (I = 0 , 1 , 2 , . . . , n — 1). 
In particular, since A z k < 0 for A: > £4, zk is decreasing. Since zk is 
bounded, we may write l im^oo zk = L (—00 < L < +00). Assume that 
0 < L < +00. Let L > 0. Then there exists a constant c > 0 and a with 

> ki such that zk > c > 0 for k > k$. Since l i m ^ o o hkg(yk,yk-T) = 0 
by (Ci) and (C2), there exist a constant c\ > 0 and a k§ with > k$ such 
that yk = zk — hkg(yk,yk-T) > c\ > 0 for k > So, we may find kj with 
k7 > ke such t h a t yk-ai > ci > 0, yk-cr2 > ci > 0 , . . . , yk-an > ci > 0 for 
k > k-j. From (3.1) we have 

(3.2) Anzk < - < 7 f c / ( c i , c i , . . . , c i ) (k>k7). 

If we multiply (3.2) by kn~l and summing it from k7 to k — 1, we obtain 
fc-i 

(3.3) Fk - Fk7 < - / ( c i , C l , . . . , < * ) £ sn~lqs, 
s=k 7 

where 
n—1 

Fk = ^(-l)7A7fc^_1)An_7_1zfc+7. 
7=2 

Since ( - l ) ' A l z k > 0 for I = 0 , 1 , 2 , . . . , n - 1 and k > ki, we have Fk > 0 
for k > kj. From (3.3) we have 

fc-i 
~Fk7 < - / ( c i , c i , . . . , c i ) sn-\B. 

s=ki 

By (C3), we obtain 
00 

-Fk7 < - / ( c i , c i , . . . , c i ) ^ sn~lqs = - 0 0 
s=ki 
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as k —> oo. This is a contradiction. So, L > 0 is impossible. Therefore, 
L = 0 is the only possible case. That is, lim^oo zk = 0. Hence, by virtue 
of (Ci) and (C2), we obtain from (1.2) 

lim yk = lim zk - lim hkg(yk,yk-T) = 0. 
fc—>oo k—>00 fc—• 00 

This contradicts our assumption that yk does not tend to zero as k —> 00. 
Now let us consider the case of yk < 0 for k > k\. By (1.1) and (1.2), 

Anzk = -qkf{yk,yk-a^Vk-c2^-^yk-cTn) > o (k> ki). 

That is, Anzk > 0. It follows that Aazk (a = 0,1,2,... ,n - 1) is strictly 
monotone and eventually of constant sign. Since yk does not tend to zero 
as k —> 00 and hk —> 0 as k —» 00 by (C\) and — p < g(vo,fi) < 0 by ( iv) 
and (C2), there exists a &2 > fci such that for k > we have zk < 0. 
Since yk is a bounded function and hkg(yk, Vk-r) —* 0 as k —> 00, there is a 

> k2 such that zk is a bounded for k > Let us set xk = —zk. Then 
Anxk = —Anzk. Therefore, xk > 0 and Anxk < 0 for k > k^. Since zk is 
bounded, we observe that xk is also bounded. Because n is odd and xk is 
bounded, by Lemma 1, since m = 0 (otherwise, xk is not bounded), there 
exists a > £3 such that (—l)lAlxk > 0 for / = 0,1,2,..., n — 1 and k > k±. 
That is, ( — < 0 for I = 0,1,2,... ,n — 1 and k > k±. In particular, 
for k > ki we have Azk > 0. Therefore, zk is increasing. So, we can assume 
that limfc-KXjZfc = L (—00 < L < 0). As in the proof of yk > 0, we may 
prove that L — 0. As for the rest, it is similar to the case of yk > 0. That 
is, limfc-xx, yk — 0. This contradicts our assumption. Hence, the proof is 
completed. • 

THEOREM 2. Assume that n is even and also (C\) and (C2) hold. Further, 

Jfc-i 
(C4) lim sup ) qs = +00 

fc—• 00 L—' 
S=fco 

is satisfied. 
Then every bounded solution of Eq. (1.1) is oscillatory. 

Proo f . Assume that Eq. (1.1) has a bounded nonoscillatory solution yk . 
Without loss of generality assume that yk is eventually positive (the proof 
is similar when yk is eventually negative). That is, yk > 0, yk-T > 0, 
Vk—ax > 0, yk —(7*2'* • • iVk—cTn > 0 f° r k > > ko. By (1.1), (1-2) we have for 
k> k\ 

(3.4) Anzk = -qkf{yk,Vk-cT1,yk-<T2T--iyk-<Tn) < 

That is, Anz{k) < 0. It follows that Aazk {a = 0,1,2,..., n - 1) is strictly 
monotone and eventually of constant sign. Since yk / 0 is positive and 
bounded and 0 < g(vo,fi) < p by (iv) and (Ci), there exists a k2 > ki 
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such that for A; > we have zk > 0. Since yk is a bounded function and 
hkg(yk,yk-T) —> 0 as fc —> oo, there is a > such that zk is a bounded 
function for k > Because n is even, by Lemma 1, since m = 1 (otherwise, 
zk is not bounded), there exists k^ > such that for k > 

(3.5) (—l)l+1Alzk > 0 (/ = 1 , 2 , . . . , n — 1). 

In particular, since A zk > 0 for A; > £4, zk is increasing. Since yk is bounded 
and lim^oo hkg(yk,yk-T) = 0 by (C\) and (C2), there exists a k5 > by 
(1.2) 

yk = zk- hkg(yk, yk-T) > -zk > 0 

for k > We may find a k^ > such that for k > k^ we have 

(3.6) yk-a\ > ^fc-ai > 0, yk-a2 > \zk-c2 > 0 , . . . , yk—an > > 0. 

From (3.4), (3.6) and the properties of / we have 

(3.7) A n z k < -qkf^-zk, -zk-ai,-zk-a2,..., -zk-Un 

= ~Qk Zk-o (k > h), 

where a = min { o , } . Since zk is bounded and increasing, lim^oo zk = 
1 <j<n 

L (0 < L < +oo). By the continuity of /, we have 

/(^fc' 2Zk~cri>2Zk-c'2>' • • ' 2Zk~an) _ / ( ' • • • ' 2^) ^ Q 

fc-»oo Zk-a L 

Then there is a k-j > such that for k > k-j we have 

(3-8) i i i i i 

k—>oo Zk—cr 2 L 

By (3.7) and (3.8), 

(3.9) A n z k < -aqk zk-a for k > k7. 

Let us set 
An~lzk (3.10) Gk = 

Zk-o 

Since A n 1zk > 0 and zk~a > 0 by (3.5), we can find a kg with k$ > k7 

such that for k > kg we have Gk > 0. If wc apply the forward difference 
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operator A to (3.10), since A n 1zk and Az k are decreasing and zk is in-
creasing by (3.5), we obtain 

. . A ^ zk^Anzk - Azk_aAn~lzk (3.11) A Gk = — 

< zk-aAnzk _ Azk-aAn~xzk 

Z2 Z2 Zk-<j k—cr 
< Anzk Azk 

Zk—a Zk- •a 

Since G k j ^ - > 0, from (3.11) and (3.9) we can write 

(3.12) AG k < —aqk 

Summing up (3.12) from ks to k — 1 we obtain 
fc-i 

(3.13) Gk<Gks-aY, Qk• 
s=kg 

By (C4) we have Gk —> —00 which is contradiction to the fact that Gk > 0. 
Now let us consider the case of yk < 0 . We do the proof similar to 

Theorem 1 as in the case of yk < 0. Therefore, there is a k > k\ such that 
A n z k > 0, zk < 0 and zk is bounded and at the same time there exist an 
integer m = 1 and a ^ > ¿3 such that (—l)l+lAlzk < 0 for k > and 
I = 1 , 2 , . . . , n — 1. In particular, Az k < 0 for k > Let us set xk = — zk. 
The rest of proof is similar to the case of yk > 0. Hence, the proof is 
completed. • 

EXAMPLE 1 . We consider difference equation of the form 

(3.14) A3 yk + e fcsin(k^jykyl-i + kykyk-3yk_2 = 0 for A; > 3, 

where n = 3, qk = k, o\ = 3, 02 = 2, <73 = 0, r = 1, hk = e fesin(fc|). 
Therefore, we have 

lim hk = lim e sin I k— I = 0 
k—>oo k—too y 2 J 

and 
+00 +00 

sU~1(is = = +o°-
s=ko s=ko 

Then conditions (Ci) and (C3) of the Theorem 1 are satisfied. Since yk is 
bounded, g is also bounded and condition (C2) holds. Hence, all conditions 
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of Theorem 1 are satisfied. Then every bounded solution of equation (3 .16) 
is oscillatory. One of such solutions is {¡jk} = {(— 

EXAMPLE 2. Consider difference equation of the form 

(3 .15) A 2 
( - l ) f c 

Vk H ;—VkVk-2 k 

where r = 2, hk = 
Therefore, we have 

( - 0 * 

/ fc2(4A: + 5 ) + 9fc + l \ 
+ 2 ( 2 + fc3(fc + 4) + k(5k + 2) ) = 0 ' 

S* = 2 ( 2 + fc3(fc+4)+fc(5fc+2))> = 2, (J2 = 1. 

( - l ) f c 

lim hk = lim — - — = 0, 
k—>oo k—>oo fc 

fc-1 fc-1 • 
lim sup V ^ <7S = lim sup I 2 + 

fc—>oo ^—4 fc—»00 ^ ' V 
s=fco s=fco 

s 2 ( 4 S + 5) + 9s + 1 

s 3 ( s + 4 ) + s ( 5 s + 2) 
= + o o . 

Then conditions {C\) and (C4) of Theorem 2 are satisfied. Since y^ is 
bounded, g(vo,^i) is bounded and condition (C2) of Theorem 2 holds. 
Hence, since all conditions of Theorem 2 are satisfied, every bounded so-
lution of equation (3 .17) is oscillatory. In fact, equation (3 .17) has an oscil-
latory solution given by {yk} = { ( — l ) f c } . 
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