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ON T H E U N B O U N D E D SOLUTIONS F O R P A R A B O L I C 
D I F F E R E N T I A L - F U N C T I O N A L C A U C H Y P R O B L E M 

Abstract. We consider the initial value problem for second order differential-func-
tional equation. Functional dependence on an unknown function is of the Hale type. We 
prove the existence theorem for unbounded classical solution. Our formulation admits a 
large group of nonlocal problems. We put particular stress on "retarded and deviated" 
argument as it seems to be the most difficult. 

1. Introduction 
In this paper we consider the Cauchy problem for nonlinear differential -

functional heat equation. We extend the result obtained in [5] for bounded 
solution and apply it to the case of unbounded solution. 

Let E = ©o U © where ©0 = [—a0,0] x R m , © = (0, T) x R m and T > 0, 
aQ > 0. Set D = [ - a o , 0 ] x B(r), where B(r) = {x € R m : |x| < r } , r > 0 
and | • | denotes the norm in R m . For every z : E —> R and (t,x) € © we 
define a function Z(ttX) : D —» R by 2(t)X)(s, y) = z{t + s, x + y). We call 
the operator z —> Hale's operator and functional dependence in the 
equation "of the Hale type" (see [1] for an ordinary differential equations). 

Let Y C M1 + m . Throughout the paper C(Y) stands for the space of all 
continuous functions w : Y —> R with the finite supremum norm = 
supper \w(t,x)\. 

Assume that / : © x C(D) x R m —* R and ^ : ©o —> R are continuous 
functions. We investigate the problem 

where e > 0. In the above A u = Y11L\ D^.iXiu and Du is a gradient of u, 
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equation. 

(1) 
(2) 

Dtu - eAu = f(t, x, it(t)X), Du) in ©, 
u = $ in ©0 . 
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both with respect to space variable x. In (1) we write Dtu, Au , Du, u for 
the values at point (£, x) and u^t,x) f° r the Hale operator. 

The above problem contains as a particular case a large group of diffe-
rential - functional equation. The most important are : equations with a 
retarded and deviated argument, differential-integral equations and of course 
equation without functional dependence (i.e. with component u). This can 
be derived from (1), (2) by specializing the function / (see [5]). The main 
problem that arise here is, how to formulate assumptions on / in order to 
obtain theorems for well known types of differential—functional equations. 
We will focus on "retarded and deviated argument" as it is more difficult. 

We based on the result obtained in [5] for bounded solution. The result 
for unbounded solutions is obtained after transformation of our problem. 
To do this, we first need to weaken assumption in [5]. All the differences 
between the theory of bounded and unbounded solutions, significant only for 
functional dependence, are contain in our transformation. Our result can 
be extended to weakly coupled systems without assuming quasimonotone 
conditions. With the method presented in the paper we can treat any strictly 
parabolic equation of constant coefficients. 

For a deep discussion of the related literature we refer the reader to [5]. 
We write CLS(f,ib) for the set of all classical solution of (1), (2) i.e. 

u G CLS(f, if u : E I—> R and Dtu, D2u, Du exist, are continuous in © 
and (1), (2) are satisfied. 

Let K(R) = {z G C{D) : | |z||,d < R}- For G C R 1 + m we write Gt = 
{ ( s , x ) G G : —OQ < s <t}. 

We call UJ : R+ i—» R+ a modulus if u is nondecreasing and limtl_^0+ 
= 0. 

Let as above Y C R1 + m . We will write u G BUCt(Y) if u : Y h-» R 
is bounded, continuous and \u(t, x) — u(t,x)\ < cu(\t — i|) in Y for some 
modulus u. 

From now we will always assume that \ir G BUCt(Qo)- Note, if ao = 
0, Go = {0} x Rm, it means that ^ is bounded and continuous. In this case 
we have no delay in the equation but it can be still interesting functional 
dependence. 

Set CLS*(f, 30 = CLS(f, tf) n BUCt(E). 
Let a G (0,1), I = a, 2 + a . We will denote by Cl/2'l(Y) the space of 

all function u : Y —> R of the variable (t, x) such that Dr
xu (for r = 0 , . . . [/]) 

and D^u (for k = 0 , 1 . . . [1/2]) exist and are continuous and bounded in Y, 
D$u satisfies Holder condition with exponent I — [/] with respect to x and 
Dm 

u satisfies Holder condition with exponent 1/2 —[1/2] with respect to t. 
It is well known that (Cl/2<l(Y), || • ||,) is a Banach space. For the definition 
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of the norm || • ||; and for the properties of CL/2'L(Y) we refer the reader to 
[2]. We will only define here the symbols that we use in the paper. 

Let a G (0,1] and 1 > p > 0. Define 

H?[u] = sup { W ' g j f ' « * 1 : (t,x), (i,x) € «}, 

H?[u] = sup { : *), (t,x) G Y,x * x, \x - x\ < p}. 

We write Lx[u\ = Hx[u], Lt[u] = H}[u] for the Lipschitz constant in x 
and t for u. We write 2 € C 2 + A ( R M ) if z defined by z(t,x) = z(x) belongs 
to C 1 + Q / 2 ' 2 + a ( 0 ) . 

We will also use the following spaces: 

CL'A{Y) = {u G C{Y) : Lt[z) < oo, H£[z] < oo} , 

CLFI(Y) = { u £ C{Y) : Lt[z] < oo} , 

C°'L{Y) = {U G C(Y) : Lx[z] < o o , } , 

C°'A(Y) = {«£ C(Y) : H£[z] < oo} . 

CL'L{Y) = {U£ C(Y) : Lt[z] < oo, Lx[z] < o o , } . 

2. The existence theorem 
In the paper [5] we proved theorem on the existence of unique bounded 

solutions for (1), (2) under the following assumption on / . 

ASSUMPTION 1. Suppose that 

1. There exists 7 > 0 such that ||/(-, •, 0, 0)||q < 7 . 

2. There exists H > 0 such that 

| f ( t , x, w,p) - f { t , x, w,p)| < H(\\w - w\\D + 1 p - p \ ) i n Q x C(D) x R m 

3. There exist Hi > 0, 0 < po < 1, a G ( 0 , 1 ) such that for \x — x\ < po 

\f(t,x,w,p)-f(t,x,w,p)\ < H^l+H^w^x-x^ i n O x C 0 , a ( i ) ) x R m . 

4- There exists H2 > 0 such that 

|f(t,x,w,p) - f{t,x,w,p)\ < H2(l + Lt[w] + HZ[w])\t-i\ 

i n 0 x CL'a(D) x Rm. 

(In 1. symbol "0" stands both for the null function and for the null 
vector.) 

A quite general form of 3), 4) allows us to apply the results to equations 
with a retarded and deviated argument (see [5] for more precise explanation). 

The theorem proved in [5] states as follows 
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THEOREM 1. Suppose that f satisfies Assumption 1, ^ G C L ' Q ( © o ) and 
^ ( 0 , •) G C 2 + Q ( M M ) . Then the initial value problem (1), (2) has exactly one 
solution u G CL'a(E) n C 1 + ° / 2 ' 2 + a (0 ) . 

R E M A R K 1. Following the proof given in [5] we can put a = 1 in Assump-
tion 1, and G CL'L(G0). Together with C 2 + A ( K M ) we get an 
existence of a solution u € CL>L(E) n C1+a/2<2+a(G). 

In this section we generalize Theorem 1 (for ^ € CL'L(@o) and Assump-
tion 1 with a = 1). We will give a sufficient condition to have x-derivative 
of the solution of (1), (2) uniformly bounded. 

In the following we assume that M > 0. 

DEFINITION 1. We write a e OM if & '• [ 0 ,T] x M+ h-> M+ is continuous, 
nondecreasing in both variable, and if a maximal solution of the problem 
(3) z'(t) = *(t,z(t)), z(0) = M. 
exists in [0, T]. We will write M) for this solution. 
DEFINITION 2. Let a € OM- We write f e X<,,M if 

(i) f{t, x, w, 0)sgnu;(0,0) < a{t, M b ) in © x C(D); 
(ii) For every R > 0 there exists modulus UIR such that, 

\f(t,x,w,p)-f(t,x,w,0)\<uR(\p\) in 6 x K(R) x 
Put fia(T,M) = R(a, M). 
Though in [4] we consider the space BUC(E) (bounded uniformly con-

tinuous) it is immediate that all the results are valid also in BUCt(E). Thus 
in view of Theorem 2 [4] we can write, 

PROPOSITION 1 . I f f G ||VF||e0 <M and ue CLS*(f,V) then 

(4) IMIJ* < /v(t , M) < R(a, M) for t G [0,T], 
R E M A R K 2. Let a(t,z) = 7 + Cz for 7 , C > 0. If | |^| |e0 = M, f £ Xa>M 
and u G CLS*(f, 1IR). Then 

(5) \\u\\Et<eCt(\meo+^) for t G [0,T}. 
In the following we will use 

DEFINITION 3. Let (X, || • ||) be any normed space, R > 0 any constant. 
Define IR : X 1—> X by 

T , x f ®> ^ IMI <R; 
Of course 

(7) | | / f l (x) | |= min(||x||,ii), \\IR(x) - IR(y)\\ <2\\x - y\\ in X. 
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For a given / : © x C(D) x Rm —> R we define fR:Ox C{D) x Rm -»• R 
by 
(8) fR{t,x,w,p) = f(t,x,IR(w),p). 
Let R > R(a, M). It is easy to verify that 
REMARK 3. Let \\y\\e0 < M, a e 0M- If f € then, fR G and 
CLS*(f,V) = CLS*(fR,V). 

Since conditions 1), 2) of the Assumption 1 gives (see Remark 2) esti-
mation by R = eHT(M + 7 T ) for any solution of (1), (2) we can assume 
that 2), 3), 4) are satisfied for w G K(R). 

ASSUMPTION 2. Suppose that 

1. f G XCT)M for some a G O m ; 

2. there exists C > 0 such that 
\f(t,x,w,p) - f{t,x,w,p)\ <C\\w-w\\D in © x K(R) x Rm; 

3. there exists C > 0 such that 
\f(t,x,w,p) - f(t,x,w,p)\ < C(l + \p\+Lx[w])\x-x\ 

in © x K(R) n C°'L(D) x Rm; 
4- for every L > 0 there exists modulus ui^ such that 

| f(t,x,w,p) - f(t,x,w,p)| < uL(\p-p\) in © x K{R) x B(L), 
where R = R(cr, M). 
REMARK 4. Let ||\l>||o < M, a G 0M, R = R(<r,M). If / satisfies Assump-
tion 2 with cr, M, C, C then fR satisfies it with a, M, 2C, C. 

Define CL£%(f,V) = {u G CLS*(f,V) : Du is bounded in ©} and 
BUCt(e0,L0) = {*e BUCt(e0) : - < L0\x-y\ in ©0}. 
LEMMA 1. Suppose that f satisfies Assumption 2 with cr,M,C,C, 
||®||eo <M and V G BUCt(e0, L0), for L0 > 0. If u € CLS;(f,V) then 
there exists L> 0 depending on C,C,Lo such that ||Du||© < L. 

P r o o f . By Remarks 3 and 4 we can assume that Assumption 2 is satis-
fied globally in w. Put LT = max(||Z)u||©t, LQ). Let £ G Rm and u^(t,x) = 
u(i,x + 0 . = *(t,x + 0, f((t,x,w,p) = f(t,x + £,w,p). Clearly 
U£ G and satisfies assumptions with the same param-
eters. Define 

g(t,x,w,p) = fz(t,x,w + U(ttX),p + Du(t,x)) - f(t,x,u^x), Du{t,x)). 
Notice that, u^ — u G — 'J/) and g G where a(s,z) = 
2C(1 + Lt)\£\ + Cz, M = L0|£| for s < t. In view of Remark 2 (in the 
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set Et) we get 

11« - « { I k < eCtl\\* ~ *lle„ + 2Ci(l + LtM], 

which yields Lt < eCt[L0 + 2Ct(l + Lt)} for t e [0, T], 
Let k EN such that 1 - 2 Chech > 0 for h = T/k. Put Li = Lih for 

i = 0,1,2,... k. Repeating argument leads to 

Li<eCh[Li-i + 2hC(l + Li)] for ¿ = 1,2,...*. 

and by a standard procedure to 
pCh 

(9) L = Lfc < [a(/i)]*(Lo + 2CT) where a(h) = i _ > 1. 

Since [a(/i)]fc -> E(C+2C)T while /i 0 we get 

(10) ||£ta||e = L < e^c+2^T(L0 + 2CT) = L = L{C, C, L0), 

which proves the lemma. 

Let R > 0 and L > 0. For every function / : 0 x C{D) x Mm —> R we 
define 

= f(t,x,IR{w),IL(p)). 

In view of the above lemma and earlier consideration we have 

PROPOSITION 2. If ||\&||e0 < M and f satisfies Assumption 2 with a,C, 
C, M then fRiL satisfies it with a, 2C, C, M globally in w and p. Moreover, 
ifV E BUCt(@o, Lo) for some Lo>0 and L> L(2C, C, L0), R > R(a, M) 
then CLS*b(f, tf) = CLS*b(fR,L, *). 

ASSUMPTION 3. Suppose that 

1. Assumption 2 1), 2), 3) are satisfied, R — R(a,M), 

2. for every L > 0 there exists 0 such that 

\f(t,x,w,p)- f(t,x,w,p)\ < CL\p-p\ in © x K{R) x B(L), 

3. for every L > 0 there exists Hi > 0 such that 
| f(t,x,w,p) - f(i,x,w,p)| < HL( 1 + Lt[w] + Lx[w])\t - t\ 

in @ x K(R) n CL'L(D) x B(L). 

THEOREM 2. Let TF <E C L ' L ( © 0 ) , $ (0 , •) € C 2 + Q ( M M ) for some a e (0 ,1 ) 
and M = H^He- Suppose that Assumption 3 is satisfied. Then problem (1), 
(2) has a unique solution u <E C1+a/2-2+a(0) fl CL<L(E). 

Proof. Notice that, Assumption 3 implies Assumption 2. In view of Propo-
sition 2 fR>L satisfies Assumption 1. Thus we can apply Theorem 1 (with a 
Remark 1) to fRjL. 
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3. Unbounded solutions 
In this section we extend our result to some class of unbounded solutions. 
Let 4>{x) = ebV/i+NI where b > 0, x — ( « i , . . . , xm). Suppose that is 

continuous function such that % is bounded. First we look for the solution 
in the class of function u such that | is bounded. In comparison to the case 
of bounded solutions we need 

ASSUMPTION 4. Suppose that 

1. there exists C > 0 such that 

\f(t,x,w,p)-f(t,x,w,p)\ < C(\\w-w\\D + \p-p\) in GxC(D) x l m ; 

2. there exists C > 0 such that 

|f(t,x,w,p) - f(t,x,w,p)| < C( 1 + \w\D + H + Lx[w])\x-x\ 

in © x C°'L{D) x Rm; 

3. there exists nondecreasing T : —> M+ such that 

| f(t, x,w,p) - f(i, X,w,p)I < r(|p|)(l + Lt[w] + Lx[w])\t - i\ 

in © x CL>L{D) x Mm. 

REMARK 5. It follows from the Assumption 4 2) and from the continuity of 
/ that there exists 7 > 0 such that •, 0, 0)||q < 7. 

THEOREM 3. Suppose that J € ( ^ ( © o ) , ^^ € C 2 + a (R m ) and Assump-

tion 4 is satisfied. Then there exists a unique solution of (1), (2) such that 
u e Cl+a/2,2+a(Q) R C L ' L {E ) . 

P roo f . It is not difficult to verify that u satisfies (1),(2) if and only if 
v = u/4> satisfies 

(11) Dtv - eAv = g^^x.v^^Dv) in ©, 

(12) t> = ^ in ©0, 
<P 

with g : 0 x C(D) x Rm 1—» R given by 

(13) g(t,x,w,p) = 2£ (p ,^D4^ + ^ j^A<t> 

+ •j)f{t,x,'w<t>(x),P<t> + 'w(fi)D<t>), 

where </>(x)(y) = 4>{x + y) for y e B(r) and <, > denotes the standard scalar 
product (we omit writing x with <j>, D<f>, A<p since there is no functional 
dependence). Here and later w write u;(0) = w(0,0), where (0,0) 6 D C 
R1 + m . We claim that g satisfies assumptions of Theorem 2. First we show 
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that g satisfies Assumption 3 1) which means that g satisfies Assumption 2 
1), 2), 3). 

We will base on the following estimation: 

( 14 ) Ui^D 2 Kr+5) for | e | < 5 i 

(j){x + f) 

In order to demonstrate it , notice that if \y\ < r and |£| < S we have 

+ y) = e6(v/l+k+yl2-\/l+k+el2) < e6(2|»|+2|i|) < e2b(r+S) 
<t>{x + 0 ~ ~ 

We begin with Assumption 2 2). Of course ^D<p and ^A</> are bounded 
by some N > 0. We can write 

|g(t, x,w,p)~ g(t, x, w,p)\< eN\w{0) — w(0)| + C-^(\\w^x) - w(f>{x) ||D 

+ \w(0)D<t>(x) - w(0)D(j>(x)\) 

< (e + C)JV|u;(0) - w(0)| + C ^ ^ \\w - w\\D 
(p{x) 

< (s + C)N\\w - W\\D + Ce2lrr\\w - W\\D. 

In the last inequality we have used (14) with £ = 0, 5 = 0. Thus point 2) 
of Assumption 2 follows. This gives also Assumption 2 1). Indeed putting 
u) = 0, p = p = 0 in the Assumption 4 2) we get g G where a is linear 
and M > 0 arbitrary. 

Consider now point 3) of Assumption 2. Since D(^D<j>), D(^A(j>) are 
bounded, we will consider only the term with / . Let < R = R(tr, M), 
M = llflleo, \x ~ x\ < 6, 5 > 0 and w G C°>L(D). Observe that 

f(t, x, ,p<j){x) + w(0)D<l){x)) - — f { t , x, w<p{x),p(f>(x) + w{0)D<j)(x)) 

¿ ) ~ ¿ ) I M ® ' 1 " ^ * ) ' ^ ® ) + wi0)D<f>(x))\ 

+ -^\f{t,x,w(l){x),p(t>(x) + w(0)D(t){x)) - /(i,z,w0(i),p</>(z) + w(0)D<j)(x))\ 

< 

< 1 
(\f(t,x,w<f>(x),P4>{x) + w(0)D<f>(x)) - f(t,x,0,0)| + 1/(4,1,0,0)1) 

<f){x) <j)(x) 

+ ^{\f(t,x,w<t>(x),P<t>{x) + ™(0)D(l>{x)) - f(t,x,™<t>(x),P<t>{x) + w{0)D<t>{x))\ 

+ I f{t,x, ,p<f>(x) + w(0)D<t>{x)) - f{t,x, W(j){x),p<t>(x) + w(0)D<j>(x))\). 

First term in the last sum (see Assumption 4 1) and Remark 5) is bounded 
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by 
1 

{C\\W4>{x)\\d+C4>{x)\p\+c\wmw(x)\+m 7 ) , 

4>{x) <t>(x) 

<j>(x) 4>(x) 

while the second (see Assumption 4.1) and 2)) by 

C{ 1 + \\w<t>{x)\\D + W{x) + K0)||Zty(x)| + Lx[wcj>{x)} )\x - x\ 

+ C( \\w<p(x) - wcj>{x)\\D + \pMx) - m \ + \w(0)\\D<f>(x) - D<f>(x)|)]. 

Since 

\\<f>(x)\\D < sup | : \Z\ <S^U{x)\\d\x-x\ 

< 6 s u p | : 1̂ 1 < ¿|||0(X)||d|x - x\ < be2b^\x - x\ 

(in view of (14)) and 

Lx[w<f>(x)} < R\\D<f>{x)\\D + H^IIdLxM, 

thus 

(15) Lx[w4>{x)] < ( R b + L . H ) 1 1 ^ ^ < (Kb + Lx[w])e2br, 

(see (14), £ = 0). Moreover: < e2bS (see (14) r = 0), |£><?!>(a:)| < 

b<f>(x) and D<f)(x) — D<p(x)\ < Ar^\x — x\ for Arj > 0. All this gives 

Assumption 2 3) for g, with a some constant C$, while \x — x\ < S. In 
a standard way we can show that this constant is right for all x, x. Thus 
letting <5 —> 0 we obtain an independent constant C. 

Since Assumption 3 2) is easy, it is left to the reader. 
It remain to consider Assumption 3 3). In this case the conclusion follows 

easily from (15) and from: Lt[w4>(x)} < \\<p{x)\\DLt[w]. We skip the details. 
By Theorem 2 we have v, an unique solution of (11),(12). Putting u = vcf) 

we get an unique solution of (1),(2) in a class of exponentially bounded 
function. 

It is a good place to underline the difference between bounded and un-
bounded solutions of (1), (2) in context to unbounded deviation. Notice 
that all the results of previous sections hold true if we put r — oo. How-
ever, in case of unbounded solution, this require from assumption on / to 
be modified in a natural way. 

The above method, after a little modification of Proposition 1, can be 
applied to a larger class of unbounded solution i.e. to these bounded by 
Me6 '112. The main difference is that we can expect only a local existence 
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theorem. The Lipshitz condition on w must be strengthen also in this case 
(except for r=0) (see [3]). 
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