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ON THE UNBOUNDED SOLUTIONS FOR PARABOLIC
DIFFERENTIAL-FUNCTIONAL CAUCHY PROBLEM

Abstract. We consider the initial value problem for second order differential-func-
tional equation. Functional dependence on an unknown function is of the Hale type. We
prove the existence theorem for unbounded classical solution. Our formulation admits a
large group of nonlocal problems. We put particular stress on “retarded and deviated”
argument as it seems to be the most difficult.

1. Introduction

In this paper we consider the Cauchy problem for nonlinear differential -
functional heat equation. We extend the result obtained in [5] for bounded
solution and apply it to the case of unbounded solution.

Let E = ©9U O where 8¢ = [—ap,0] x R™, © = (0,7) x R™ and T > 0,
ap > 0. Set D = [—ap,0] x B(r), where B(r) = {z e R™: |z| <r}, 7 >0
and |- | denotes the norm in R™. For every z : E — R and (t,z) € © we
define a function 2(;5) : D — R by zyq)(s,y) = 2(t + 5,7 +y). We call
the operator z — z(; ;) Hale’s operator and functional dependence in the
equation “of the Hale type” (see [1] for an ordinary differential equations).

Let Y C R'*™. Throughout the paper C(Y) stands for the space of all
continuous functions w : ¥ — R with the finite supremum norm |Jwl|ly =
SUp( z)ey |w(t, z)l-

Assume that f: © x C(D) x R™ — R and ¥ : ©p — R are continuous
functions. We investigate the problem

(1) Diyu — eAu = f(t,r,uyy), Du) in O,
(2) u=" in ©g.
where ¢ > 0. In the above Au = Y"7*) D2 u and Du is a gradient of v,
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both with respect to space variable z. In (1) we write Dyu, Au, Du,u for
the values at point (¢,z) and u 4 for the Hale operator.

The above problem contains as a particular case a large group of diffe-
rential - functional equation. The most important are : equations with a
retarded and deviated argument, differential-integral equations and of course
equation without functional dependence (i.e. with component u). This can
be derived from (1), (2) by specializing the function f (see [5]). The main
problem that arise here is, how to formulate assumptions on f in order to
obtain theorems for well known types of differential—functional equations.
We will focus on “retarded and deviated argument” as it is more difficult.

We based on the result obtained in [5] for bounded solution. The result
for unbounded solutions is obtained after transformation of our problem.
To do this, we first need to weaken assumption in [5]. All the differences
between the theory of bounded and unbounded solutions, significant only for
functional dependence, are contain in our transformation. Our result can
be extended to weakly coupled systems without assuming quasimonotone
conditions. With the method presented in the paper we can treat any strictly
parabolic equation of constant coefficients.

For a deep discussion of the related literature we refer the reader to [5].

We write CLS(f, ¥) for the set of all classical solution of (1), (2) i.e.
u € CLS(f,¥) if v : E — R and Dju, D?u, Du exist, are continuous in ©
and (1), (2) are satisfied.

Let K(R) = {z € C(D) : ||z|lp £ R}. For G C RM*™ we write G; =
{(s,2) € G: —apg < s <t}

We call w: Ry — Ry a modulus if w is nondecreasing and limy, o+ w(t)
=0.

Let as above Y C R!*™. We will write v € BUC,(Y) ifu : Y — R
is bounded, continuous and |u(t,z) — u(f,z)| < w(|t — t]) in Y for some
modulus w.

From now we will always assume that ¥ € BUC:(0p). Note, if ap =
0, B = {0} x R™, it means that ¥ is bounded and continuous. In this case
we have no delay in the equation but it can be still interesting functional
dependence.

Set CLS*(f,¥) = CLS(f,¥)N BUC(E).

Let a€(0,1), | =0, 2+ a. We will denote by C¥/24(Y') the space of
all function u : Y — R of the variable (¢, z) such that DZu (for r = 0,...[l])
and Dfu (for k= 0,1...[l/2]) exist and are continuous and bounded in Y,

DYy satisfies Hélder condition with exponent [ — [I] with respect to z and

Dy/ 2l satisfies Holder condition with exponent [/2 — (/2] with respect to ¢.
It is well known that (CY24(Y), |-|;) is a Banach space. For the definition
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of the norm || - ||; and for the properties of C*/24(Y") we refer the reader to
[2]. We will only define here the symbols that we use in the paper.
Let @ € (0,1] and 1 > p > 0. Define

H2[u] = sup { [utt, "I”t)__t_chf’ N ), Ea) €Yt £ t‘},
H[u] = sup { '“(t’lz)__;‘lff’ N, (4,2),(6,3) € Y,z £ 5, |o—3] < p}.

We write Ly[u] = HL[u], Li[u] = H}[u] for the Lipschitz constant in
and t for u. We write z € C?**(R™) if 7 defined by Z(¢,z) = 2(x) belongs
to Cl+a/2,2+a(@).

We will also use the following spaces:
CL(Y) = {ue C(Y): Liz] < o0, H2[2] < o0},
CHOY) = {ue C(Y) : Liz] < oo},
COL(Y)Y={ueC(Y): L[z} < o, },
CO*(Y) = {u € C(Y) : H2[z] < o0}.
CLL(Y)={ue C(Y): Li[z] < oo, Lg[2] < 0, }.

2. The existence theorem

In the paper [5] we proved theorem on the existence of unique bounded
solutions for (1), (2) under the following assumption on f.

ASSUMPTION 1. Suppose that

1. There exists v > 0 such that || f(-,-,0,0)|lg < 7.
2. There exists H > 0 such that

|f(t,z,w,p)— f(t,z,®,D)| < H(|w—d|p+[p-p|) inOxC(D)xR™
3. There exist H >0, 0< pp <1, a € (0,1) such that for |z —Z| < po
|f(t, z,w,p)—f(t, %, w,p)| < HH(1+H2[w])|z—Z* in ©xCY*(D)xR™.
4. There erists Hy > 0 such that
|t z,w,p) — f(t, 2, w,p)| < Ha(1 + Le[w] + H[w])[t — ¢
in © x CH*(D) x R™.

(In 1. symbol “0” stands both for the null function and for the null
vector.)

A quite general form of 3),4) allows us to apply the results to equations
with a retarded and deviated argument (see [5] for more precise explanation).

The theorem proved in [5] states as follows



154 K. A. Topolski

THEOREM 1. Suppose that f satisfies Assumption 1, ¥ € CH%(6y) and
¥(0,-) € C***(R™). Then the initial value problem (1), (2) has ezactly one
solution u € CL(E) N C1+e/2.2+a(Q),

REMARK 1. Following the proof given in [5] we can put @ = 1 in Assump-
tion 1, and ¥ € CLL(6¢). Together with ¥(0,-) € C?t*(R™) we get an
existence of a solution u € CLL(E) N C1+e/22+2(§),

In this section we generalize Theorem 1 (for ¥ € CL£(6y) and Assump-
tion 1 with a = 1). We will give a sufficient condition to have z-derivative
of the solution of (1), (2) uniformly bounded.

In the following we assume that M > 0.

DEFINITION 1. We write 0 € Op if 0 : [0,T] X Ry — Ry is continuous,
nondecreasing in both variable, and if a mazimal solution of the problem

3) Z(t)=o(t,2(t),  2(0)=M.
exists in [0, T]. We will write py(-, M) for this solution.

DEFINITION 2. Let 0 € Op. We write f € X pm if
() f(t,z,w,0)sgnw(0,0) <o (¢, |wlp)  in © x C(D);
(i) For every R > 0 there exists modulus wg such that,

|f(t, z,w,p) — f(t,z,w,0)| <wgr(lp]) in O x K(R) xR™.
Put po (T, M) = R(o, M).

Though in [4] we consider the space BUC(F) (bounded uniformly con-
tinuous) it is immediate that all the results are valid also in BUC(FE). Thus
in view of Theorem 2 [4] we can write,

PROPOSITION 1. If f € X4 m, ||¥)lo, < M and u € CLS*(f, ) then
(4) |lullE, < o(t, M) < R(c,M) for tel0,T].

REMARK 2. Let o(t,z) = v+ Cz forv,C > 0. If |¥lle, =M, f€ Xoum
and u € CLS*(f,¥). Then

(5) lullg, < e“(I1¥lle, +t) for tel[0,T).

In the following we will use

DEFINITION 3. Let (X,| - ||) be any normed space, R > 0 any constant.
Define I : X — X by
z, i |zl <R;
® wo)={%n § ISR
Of course

(1)  IMr(z)l| = min (||, R), [lIr(z) - Ir(W)l <2lz—y| in X.
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For a given f : © x C(D) x R™ — R we define fgr: © x C(D) xR™ — R
by
(8) fr(t, z,w,p) = f(t, z, Ir(w),p).
Let R > R(o, M). It is easy to verify that
REMARK 3. Let ||[Vle, < M, 0 € Oym. If f € X, then, fr € Xom and
CLS*(f,¥) = CLS*(fgr,¥).

Since conditions 1), 2) of the Assumption 1 gives (see Remark 2) esti-
mation by R = ef/T(M + 4T) for any solution of (1), (2) we can assume
that 2),3),4) are satisfied for w € K(R).

ASSUMPTION 2. Suppose that

1. f € X5 M for some o € Op;

2. there exists C > 0 such that

|f(t,:c,w,p) - f(tamaw’p)l < C"w - ’lI)"D in © x K(R) X Rm;
3. there exists C > 0 such that
|f(t,.'1:,w,p) - f(taj,wap)l < C’(l + Ipl + L:,;[’U)])I.’I? - .’il
in © x K(R) N C*L(D) x R™;

4. for every L > 0 there exists modulus wj such that

|f(t,m,w,p) - f(t,:z:,w,ﬁ)[ < w[:(lp _Z_’l) in © x K(R) X B(L)’
where R = R(o, M).
REMARK 4. Let ||¥|lo < M, o € Opr, R = R(o, M). If f satisfies Assump-
tion 2 with o, M, C,C then fg satisfies it with o, M, 2C,C.

Define CLS;(f,¥) = {u € CLS*(f,¥) : Du is bounded in ©} and

BUCt(@(),Lo) = {‘I/ S BUCt(@o) : |\I/(t,.’L') - \I/(t,y)| < Lol.’L' — y| in @0}
LEMMA 1. Suppose that f satisfies Assumption 2 with o, M,C,C,
¥lle, <M and ¥ € BUC(©0, Lo), for Lo =2 0. If u € CLS;(f,¥) then
there exists L > 0 depending on C,C, Ly such that ||Du|le < L.
Proof. By Remarks 3 and 4 we can assume that Assumption 2 is satis-
fied globally in w. Put L; = max(||Dul|e,, Lo). Let £ € R™ and u¢(t,x) =
u(t,z +§), Ye(t,z) = U(t,z + &), fe(t,x,w,p) = f(t,z + & w,p). Clearly
ue € CLSE(fe, V) and Y, fe satisfies assumptions with the same param-
eters. Define

g(t,:c, wap) = fé‘(t,.’l), w+ U(t,x)s P + D’LL(t,.’L')) - f(t,.’L‘, U(t,x)s DU(t,ZL‘))
Notice that, u¢ —u € CLS*(g9,V¢ — V) and g € X j7, where &(s,2) =
2C(1 + Ly)|¢| + Cz, M = Lyl|é| for s < t. In view of Remark 2 (in the
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set E;) we get
llu — gl < e“I1¥ ~ Tlle, +208(1 + Le)ié]),

which yields L; < eCt[Lg + 2C~’§(1 + L)) for te|0,T).

Let k € N such that 1 — 2Che€? > 0 for h = T/k. Put L; = Ly, for
1=0,1,2,... k. Repeating argument leads to

L; < eCh[Li_l +2hé(1 +L,)] for i=1,2,...k.

and by a standard procedure to
Ch
9) L=L<[a(h)*(Lo+20T) where a(h)=——"— >1.
®) L=Li<[a(W)]*(Lo+2CT) where a(h)=—=—

Since [o(h)]F — e(C+20T while h — 0 we get
(10) | Dulle = L < e+29T(Ly 4+ 26T) = L = L(C, C, L),

which proves the lemma.

Let R > 0 and L > 0. For every function f : © x C(D) x R™ — R we
define

fR,L(t7 z, w,p) = f(t’ z, IR(’LU), IL(p)).
In view of the above lemma and earlier consideration we have

ProposITION 2. If ||¥|le, < M and f satisfies Assumption 2 with o,C,

C, M then fr,L satisfies it with o,2C, C, M globally in w and p. Moreover,
if ¥ € BUCy(©q, Lo) for some Lo > 0 and L > L(2C,C, Lo), R > R(s, M)
then CLS;(f,¥) = CLS;(fr,,¥)-

ASSUMPTION 3. Suppose that

1. Assumption 2 1), 2), 3) are satisfied, R = R(o, M),
2. for every L > 0 there exists C; > 0 such that

[f(t,z,w,p) — f(t,2,w,p)| < Cilp— 5l in©xK(R)x B(L),
3. for every L > 0 there exists Hy > 0 such that
|f(t,z,w,p) — f(t,z,w,p)| < Hy (14 Le[w] + Lo[w])|t — ¢|
in © x K(R) N CLL(D) x B(L).

THEOREM 2. Let ¥ € CLL(Qy), ¥(0,-) € C?*+*(R™) for some o € (0,1)
and M = ||¥|le. Suppose that Assumption 3 is satisfied. Then problem (1),
(2) has a unique solution u € C1+2/22+¢(@) N CLL(E).

Proof. Notice that, Assumption 3 implies Assumption 2. In view of Propo-
sition 2 fg s, satisfies Assumption 1. Thus we can apply Theorem 1 (with a
Remark 1) to fr L.
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3. Unbounded solutions

In this section we extend our result to some class of unbounded solutions.
Let ¢(z) = e?VIH® where b > 0,2 = (x1,...,2m). Suppose that ¥ is

continuous function such that ¥ is bounded. First we look for the solution
z

in the class of function u such tﬁat ¢ is bounded. In comparison to the case
of bounded solutions we need
ASSUMPTION 4. Suppose that
1. there exists C > 0 such that
|f(ta z, w’p) _f(ta z, wap)l < C(”’LU-’(I/”D-}- |p_ﬁ|) in © x C(D) me;
2. there ezists C > 0 such that
|f(t,z,w,p) — (¢, %, w,p)| < C(1+ |wl|p + |p| + La[w))|z — 2|
in © x C®L(D) x R™;
3. there exists nondecreasing I' : Ry — Ry such that
|f(¢,z,w,p) — f(t, 2, w,p)| <T(|p))(1 + Lefw] + Lg[w])|t — ]
in © x CbL(D) x R™.
REMARK 5. It follows from the Assumption 4 2) and from the continuity of
f that there exists v > 0 such that ||%f(, 40,0)|lg <.

THEOREM 3. Suppose that % € CLL(ey), E(%Z € C?**(R™) and Assump-
tion 4 is satisfied. Then there erists a unique solution of (1), (2) such that
Y g C1te22(@) N CLL(E).

Proof. It is not difficult to verify that w satisfies (1),(2) if and only if
v = u/¢ satisfies

(11) Dy — eAv = g(t,z,v4 ), Dv) in 6,
v .
(12) V= E n eOa
with g : © x C(D) x R™ + R given by
(13) oft,z,wp) = 2¢ (p, 2 00) + 20 A
1

where ¢,y (y) = ¢(z +y) for y € B(r) and <, > denotes the standard scalar
product (we omit writing x with ¢, Dp, A¢ since there is no functional
dependence). Here and later w write w(0) = w(0,0), where (0,0) € D C
R!*™. We claim that g satisfies assumptions of Theorem 2. First we show
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that g satisfies Assumption 3 1) which means that g satisfies Assumption 2
1), 2), 3).
We will base on the following estimation:
[¢@llp _ o
14 SRR < o) for ¢ < 6.
1y #+) ¢!

In order to demonstrate it , notice that if |y| < r and |£] < § we have

AT HY) _ b/ THAP—/THtER) < HOI2LED) < (26(r+9),

¢(z +¢)

We begin with Assumption 2 2). Of course %D(ﬁ and %Aq& are bounded
by some N > 0. We can write

Ig(t’ x)w’p) - g(t,a:, "Dup)l < 6N|w(0) - 'U—)(O)l + Cﬁ(““’d’(m) - U_)‘»b(w)”D
+ [0(0)Dé(@) ~ 5(0) DY(z))
< (e+ ONPu(0) ~ 0(0) + 1222 g

< (e + C)N|lw — w|lp + Ce®"||\w — @||p.

In the last inequality we have used (14) with £ = 0, § = 0. Thus point 2)
of Assumption 2 follows. This gives also Assumption 2 1). Indeed putting
w =0, p=p =0 in the Assumption 4 2) we get g € X, ps, where o is linear
and M > 0 arbitrary.

Consider now point 3) of Assumption 2. Since D(%Dd)), D(%Ad)) are
bounded, we will consider only the term with f. Let ||wl|p < R = R(o, M),
M= ||%Heo, | — % <6, § >0 and w € COL(D). Observe that

1 1
‘Mf (t, 2, wh(g), p(x) + w(0) D(z)) — ) f(t, 7, wha), pH() + w(0) D(Z))
1 1
< |3~ 3@ 16 w810 2960) +wO) Do)
1

+ Wlf (t, 2, we(z), pd(z) + w(0)D(z)) — £ (2, T, wh(z), pd(Z) + w(0) Dg(Z))|

1 1
< ‘M - @’ﬂf(tv:m w¢(z)7p¢(x) + W(O)D¢($)) - f(t,.’E,0,0)l + |f(t,$, 0, 0)')
+ ﬁﬂf(t,za qu(x),p(ﬁ(l‘) + w(O)D¢($)) - f(tﬂ_"’ wqﬁ(z),pqﬁ(w) + w(O)D¢(z))|
+|f (1,2, we), pd(2) + w(0) DP(2)) = f(t, 7, wh(z), pd(Z) + w(0) D(2))}).

First term in the last sum (see Assumption 4 1) and Remark 5) is bounded
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by

(Cllwém)llp + Co(z)lp! + Clw(0)|| Dé(z)| + ¢(x)7),

’(b (z) ¢( )
while the second (see Assumption 4.1) and 2)) by

[ C( 1+ [wee)llp + [pl6(z) + [w(0)[| Dé(x)] + Lowe(s)] )z — 2|
+ C( lwé) — whllp + |pllé() — #(Z)] + |w(0)||Dé(z) — D(Z)])].

¢()

Since
1

1 —_—
- bt s {5 s e -
< boup { g 6] <8 I60o ol — 2 < be "Vl 3]
(in view of (14)) and

thus

(15) L)Lz[w(z)]swbwm[ wp 1@l gy g2

¢(z ¢(z)

(see (14), & = 0). Moreover: $%—) < e (see (14) 7 = 0), |Do(z)| <

bo(x) and ﬁqu&(m) — D¢(z)| < Ay slz — z| for A5 > 0. All this gives
Assumption 2 3) for g, with a some constant Cj, while |z — Z| < . In
a standard way we can show that this constant is right for all z,Z. Thus
letting & — 0 we obtain an independent constant C.

Since Assumption 3 2) is easy, it is left to the reader.

It remain to consider Assumption 3 3). In this case the conclusion follows
easily from (15) and from: Li{wé(y)] < (¢ llpLi[w]. We skip the details.

By Theorem 2 we have ¢, an unique solution of (11),(12). Putting & = 0¢
we get an unique solution of (1),(2) in a class of exponentially bounded
function.

It is a good place to underline the difference between bounded and un-
bounded solutions of (1), (2) in context to unbounded deviation. Notice
that all the results of previous sections hold true if we put » = co. How-
ever, in case of unbounded solution, this require from assumption on f to
be modified in a natural way.

The above method, after a little modification of Proposition 1, can be
applied to a larger class of unbounded solution i.e. to these bounded by
Me"*®. The main difference is that we can expect only a local existence
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theorem. The Lipshitz condition on w must be strengthen also in this case
(except for r=0) (see [3]).
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