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IMPLICIT DIFFERENCE METHODS 
FOR HAMILTON-JACOBI DIFFERENTIAL 

FUNCTIONAL EQUATIONS 

Abstrac t . Classical solutions of the local Cauchy problem on the Haar pyramid 
are approximated in the paper by solutions of suitable quasilinear systems of difference 
functional equations. The numerical methods are difference schemes which are implicit 
with respect to time variable. A complete convergence analysis for the methods is given 
and it is shown that the new methods are considerable better than the explicit schemes. 
The proof of the stability is based on a comparison technique with nonlinear estimates of 
the Perron type. Numerical examples are given. 

1. Introduction 
For any metric spaces X and Y we denote by C(X, Y) the class of all con-

tinuous functions from X into Y. We will use vectorial inequalities with the 
understanding that the same inequalities hold between their corresponding 
components. Let E be the Haar pyramid 

E = {{t,x) E R 1 + n : t E [ 0 , a ] , — b + Mt < x <b — Mt}, 

where x = ( x i , . . . , x n ) , a > 0, M = (M\,...,Mn) E R", R+ = [0,+oo), 
6 = (bi,..., bn) E R n and b > Ma. Write E0 = [-60,0] x [-6,6] C R 1 + n , 
where 60 € R+ and fl = £ x R x Rn . Suppose that the functions 

/ : f i —> R , ip-.Eo^R, V: C(E0 U E,R) -> C(E,R) 

are given. We consider the differential functional equation 

(1) dtz(t, x) = f ( t , x, V[z]{t, x),dxz(t, x)) 

with the initial condition 

(2) z(t,x) = (p(t,x) fo r ( t , x ) € E 0 , 
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where dxz — (dXlz,..., dXnz). A function z : EQIJE —» R is called a classical 
solution of the above problem if 

(i) z € C(E0 U E, R) and z is of class C1 on E, 
(ii) z satisfies (1) on E and initial condition (2) holds. 

We consider classical solutions of (1), (2) and assuming that V satisfies 
the Volterra condition defined below. We are interested in establishing a 
method of numerical approximation of solutions of problem (1), (2) by means 
of solutions of associated systems of difference functional equations and in 
estimating of the difference between the exact and approximate solutions. 

In recent years, a number of papers concerning numerical methods for 
functional partial differential equations have been published. The main 
question in these investigations is to find a difference functional equation 
which satisfies the consistency conditions on all classical solutions of the 
original problem and it is stable. The method of difference inequalities or 
theorems on linear recurrent inequalities are used in the investigations of the 
stability. The proofs of the convergence are also based on a general theo-
rem on the error estimates of approximate solutions to functional difference 
equations of the Volterra type with initial boundary conditions and with 
unknown function of several variables. 

Difference schemes for (1), (2) in the case when differential equation 
does not contain a functional variable were considered in [1], [5], [7], [8]. 
Finite difference approximations relative to initial or initial boundary value 
problems for functional differential equations were investigated in [2], [3], [5], 
[6], [10]. The monograph [4] contains an exposition of recent developments 
of numerical methods for hyperbolic functional differential problems. 

In the paper we present a new class of difference schemes for (1), (2). The 
numerical methods are difference schemes which are implicit with respect 
to time variable. 

Two type of assumptions are needed in theorems on the convergence of 
difference schemes corresponding to (1), (2). The first type conditions deal 
with the regularity of given functions. The assumptions of the second type 
are connected with relations between the steps of the mesh. We show in the 
paper that the assumptions of the second type can be omitted for implicit 
difference schemes. 

In Section 2 we present relations between classical difference methods 
and implicit difference schemes. 

Our considerations are based on the following idea. In the first step 
we transform the nonlinear equation (1) into a quasilinear system of func-
tional differential equations, where unknown functionals are z and the par-
tial derivatives of z with respect to spatial variables. In the second step we 
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construct an implicit Euler method for z and for their spatial derivatives. 
It is important in our considerations that the method of discretizations of 
quasilinear systems corresponding to (1), (2) depend on local properties of 
given functions. The stability of the methods is investigated by using a 
comparison technique. 

The paper is organized as follows. In section 2 we construct an im-
plicit difference functional problem corresponding to (1), (2) and we prove 
that there exists exactly one solution of a difference scheme. In Section 3 
we prove a convergence result and we give an error estimate for implicit 
schemes. Examples of interpolating operators are given in Section 4. Nu-
merical experiments are presented in the last part of the paper. 

Differential equations with deviated variables and differential integral 
problems can be derived from (1), (2) by specializing the operator V. Exis-
tence and uniqueness results for functional differential problems on the Haar 
pyramid can be found in [4] (Th. 2.4, p. 49). 

First order partial functional differential equations find applications in 
different fields of knowledge. 

For additional bibliography on partial functional differential equations 
and their applications see the monographs [4], [12]. 

Let us denote by F(X, F ) the class of all functions defined on X and 
taking values in Y, where X and Y are arbitrary sets. Let N and Z be the 
sets of natural numbers and integers, respectively. 

Denote by R™ the Euclidean real space of vectors x = ( x i , . . . ,xn) and 
by R n x n the space all n x n matrices U = [uij}ij=i,...,n with real elements. 
In R n and R n x n we introduce the norms 

n n 

||a;|| = ^ \xj\ and ||t/|| = max j ^ \uij\ : 1 < i < n j . 
j=l j=l 

If U G R n x n then UT is the transpose matrix. Write 

Et = (E0 U E) n ([—6o, t] x R n ) , 0 < t < a. 
We will say that the operator V : C(EQ U E, R) —> C(E, R) satisfies the 
Volterra conditions if for each (T,X) G E and for Z,ZE C(EQ U E, R) such 
that z\Et = z\Et we have V[z](t,x) = V[z\{t,x). 

For functions z € C(E0 U E,R), u G C(E0 U E, R n ) and for a point 
t G [0, a] we put 

||z||t = max{|z(r,Y)\ : (r,y) G ET} and 
|M| t = max{||u(r,y)|| : (r,y) G Et}. 

We formulate a difference problem corresponding to (1), (2). We define 
a mesh on the set EQ U E in the following way. Suppose that (ho, h), h = 
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(hi,..., hn), stand for steps of the mesh. Denote by H the set of all h = 
(ho,h) such that there are N0 G N, N = (Ni,..., Nn) G N n with the 
properties N{hi = bi for 0 < i < n andji < Mho• Let K G N be defined 
by Kh0 < a < (K + 1 )h0. For h G H and (r,m) G Z 1 + n , where m = 
( m i , . . . , mn), we define nodal points as follows 

t<r> = rh0, x ( m ) = ( x i m i ) , . . . ,4™»)) = (mihi,... ,mnhn). 

Write 
= : (r,m) G Z 1 + n } 

and 

Eh = E 0 Eh 0 = EQ fl 

Ih = {t(r) : 0 < r < K}, 
Eh.r = (Eh. o U Eh) n ([-60,i ( r )] x Rn) , 0 <r<K. 

For functions rj : Ih ^ R, z : Eh.o U Eh -> R, u : Eh.o U Eh -> R n x " we 
write rjM = v( t ( r )) , z ( r , m ) = u(r>m) = u ( t ^ , x ^ ) and 

\\z\\h.i = max{|^'m)| : (&\x^) G Eh.i), 
IMki = max{ | | u^> | | : G EhA}, 

where 0 < i < K. Let ej = (0 , . . . , 0 , 1 , 0 , . . . , 0) G R n , 1 standing on the 
j-th place and 9 = (0 , . . . , 0) G R n . Write 

(3) E'h = {(&\x^) G Eh : (t ( r+1) ,* (m)) G Eh}. 
Classical difference methods for (1), (2) consist in replacing partial deriv-

atives dt and (dXl,..., dXn) = dx with difference operators ¿o and ( ¿ i , . . . , 5n) 
= 5, respectively. Approximate solutions of (1), (2) are functions z^ defined 
on the mesh Eh.o U Eh- On the other hand, equation (1) contains the func-
tional variable V[z] which is an element of the space C(E, R). Therefore we 
need an interpolating operator Vh : F(Eh.o U Eh, R) —> C(E, R). This leads 
to the difference equation 

(4) <W'm ) = f(&\ x(m\ Vh[z]^m\ Sz(r-m)) 
with the initial condition 
(5) z(r,m)=(p(r,m) on ^ 

where iph Eh.o —> R is a given function. 
Suppose that the interpolating operator Vh is fixed. The following ex-

amples of difference schemes are considered in literature. Write 

(6) S0Z{r'm) = - Z ho 
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and 

(7) m) = m+ei) _z(r,m)] for I < i < K j 
hi 

(8) = h z ^ - z f o r k + 1 < i < n, 
hi 

where 0 < k < n is fixed. Numerical method (4), (5) with the above given 
So and S is known as the Euler method. 

The Lax difference scheme is the second important example. It is ob-
tained by putting 

(9) ¿ 0 2 ( r ' m ) = - ^ + 
j = l 

and 

(10) SiZir'm) = - z ( r - m " e ' ) ] , 1 < i < n. 
Ztli 

Assumptions on the regularity of / in convergence theorems are the 
same for both methods. It is required that the function / of the variables 
(t, x, p, q) satisfies the Lipschitz condition with respect to p and it is of class 
C 1 with respect to ( g i , . . . , qn) = q and that the function dqf is bounded. 
The second type of assumptions are the Courant-Friedrichs-Levy conditions. 
In the case of the Lax method they have the form 

(11) ~ -h0^-\dgjf(t,x,p,q)\ > 0. 
ft rij 

For the analysis of the stability of the Euler method we need the assumption 
that 

n 1 

(12) l-h0^-^\dqjf(t,x,p,q)\ > 0 
j = i 3 

and that the functions dqif, i = 1 , . . . , n, have constant signs on Q. 
Condition (11) and (12) are similar and they require some relations be-

tween ho and (hi,..., hn). Then the strong assumption that the functions 
sign dqif,i = l,...,n, are constant on fi is the main difference between the 
above methods. 

There are equations (1) for which both the methods can be used. We give 
comments on the relations between the Euler method and the Lax scheme 
in this case. Suppose that 

(i) dqf G C(il, R n ) and the function dqf satisfies the Lipschitz condition 
with respect to (x,p,q), 
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(ii) for P = (t, x,p, q) E Q we have 
(13) dqJ(P) > 0 for 1 < i < K and dqif(P) < 0 for K + 1 < i < n, 
where 0 < K < n is fixed, and K appears in the definitions (7), (8), 

(iii) the function v € C1(EQ U E, R) is a classical solution of (1), (2) and 
the functions V{v\ and dxv satisfy the Lipschitz condition with respect 
to x. 

For given z € C{EQ UE, R), U <G C(E, R n ) denote by g[z, u] the solution 
of the Cauchy problem 
(14) f]'{T) = -d q f{r ,n{r) ,V[z\{T,r i{r ) )MrMr)) \ 

(15) V(t) = x. 
The function g[z, ii](-, t, x) is the bicharacteristic of equation (1) correspond-
ing to (z, u). The bicharacteristic g[v, dxv}(-, t, x) is defined on some interval 
[0,a(i,x)] such that (a( t , x ) , g[v,dxv](a(t, x),t,x)) G dE, where dE is the 
bounder of E. 

Let us denote by ZH the solution of (4), (5) with SQ and 5 defind by 
(6)-(8). Suppose that Zh is given on Eh.r and (t(-r+1\ x ^ ) 6 E^. Our aim 
is to calculate the number 

Write 
¿ M = [x<mi),xj ro i+1)] x . . . x 

y L K + 1 - 1 ) T(">«+i)l v v r (m„-l) (m»)i /Mj'k+1 ' re+1 J A • • • A lxn »xra J-
It follows from (12), (13) that 

(16) g[v,dxv]{&\&+l\x^) e A(r). 
The following property of the Euler method is important: AW C R n is the 
smallest interval of the form [y,y\ C R n such that (t^r\y), (t^r\y) € Eft 
and g [ v , d x v G [y,y]. 

Let us denote by Zh the solution of (4), (5) with So and S defined by 
(9), (10). Suppose that Zh is given on Eh,r and ( t ^ r + 1 \ x ^ ) £ Eh and we 
calculate by using the Lax scheme. It follows from (9), (10) that 
the numbers 

~(r,m-ei) ~(r,m+ei) . _ , ¿h , ¿h , t — l , . . . , n 
appear in (4). Note that 

x(m~ei) £ A{r) for { = ^ ? K & n d ^m+ej g ¿(r) 

for i = K + 1 , . . . , n. 

This is the reason why the Euler method is more suitable than the Lax 
scheme. Numerical experiments confirm the above theoretical observation. 
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The monograph [4] contains an exposition of recent developments of 
numerical methods for hyperbolic functional differential problems. 

The aim of the paper is to show that for each equation (1) with suffi-
ciently regular / and V the Euler method can be constructed. 

The assumption that the functions sign d q i f , i — 1 , . . . , n, are constant 
is omitted in the paper. In other words, we show that the Lax scheme is 
superfluous for the numerical approximation of classical solutions of (1). 

Since we consider implicit difference schemes, then we show that assump-
tion (12) can be also omitted in convergence theorems. 

2. Generalized Euler method for initial problems 
We formulate implicit difference methods of the Euler type for (1), (2). 

Write 
d0E+ = { ( t , x ) eE:xi = bi- Mit}, 

d0E~ = {(t,x) eE:xi = -bi + Mit}, 

where 1 < i < n. We need the following assumptions on / . 
ASSUMPTION H 0 [ f ] . The function / e C ( i 2 , R ) is such that 

1) the partial derivatives dxf = ( d x J , . . . , d X n f ) , d p f , dqf = ( d q J , . . . , 
dqJ) exist on £2 and d x f , dqf € C ( 0 , R n ) , dpf G C ( f i , R ) , 

2) there is A G R + such that for P = (i, x,p, q) € 0, we have 

||<9X/(P)||, \ d P f ( P ) l \\dqf(P)\\ < A, 

3) there is <5 > 0 such that 

dqJ(t,x,P,q) < S f o r (t,x,p,q) ed0Ef x R x R " 

and 
dqif{t, q)> $ for (t, x,p, q) e d0Er~ x R x R " 

where 1 < % < n. 
REMARK 2.1. Suppose that Assumption Ho[f] is satisfied. For given z 6 
C(Eo U E, R), u £ C(E, Rn) consider the bicharacteristic g[z,u](-,t,x) = 
(gi[z,u](-,t,x),... ,gn[z,u](-,t,x)) as the solution of the Cauchy problem 
(14), (15). By H 0 [ f ] , 3) there is a n e 0 > 0 such that 

(i) functions gi[z,u](-,t,x) : (t — £o, t] —> R are strictly increasing for each 
(t,x) e d 0 E f , 1 < i < n, 

(ii) functions gi[z, «](•, t, x) : (t — £o, t] —> R are strictly decreasing for each 
(t,x) e d0Er, 1 < i < n . 

This property of bicharacteristics is important in the construction of 
implicit difference methods for (1), (2). 

Now we formulate assumptions on V and on interpolating operators. 
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ASSUMPTION H[V, TH, LH], Suppose that the operator V : C(E0 u £ , R ) - > 
C(E, R ) satisfies the Volterra condition and 

1) if z G C1(EQ U E, R ) then there exist partial derivatives dxV[z\ = 
(dXlV[z],..., dXnV[z\), dxv[z] G C(E, R n ) , 

2) there is an operator TH : F{EH_0 U EH, R ) —> C(E, R ) such that 

(i) there is L G R + such that for z, z € F(Eh.o U Eh, R ) we have 

(17) \\Th[z\-Th[z}\\t(r)<L\\z-z\\h.r, 0 <r<K, 

(ii) there is /x > 0 such that for each function v G C2(EQ U E, R ) there 
is Co G R + such that 

(18) \\V[v] - Th{vh\ ||iW < CQhl 0 <r<K, 

where Vh is the restriction of v to the set Eh.o U Eh-

3) there is an interpolating operator LH : F(EH.OUEH, R 1 + n ) —> C(E, R n ) 
with the properties 

(i) there is L 0 G R + such that for (z, u), (z, u) e F(Eh.0 U Eh, R 1 + n ) 
we have 

(19) \\Lh[z,u}-Lh[z,u)\\t(r) < L0[\\z~z\\h.r + \\u-u\\h_r), 0 <r<K, 

(ii) there is v > 0 such that for each function v € C2{E0UE,R) there 
is ci with the property 

(20) ||Lh[vh, (dxv)h] - dxV[v] ||tW < c i 0 < r < K, 

where (d x v)h are the restrictions of dxv to the set Eh.o U Eh-

Examples of the operator V, TH, LH are given in Section 4. 
Note that condition 1) of Assumption H[V,Th,Lh] implies that Th 

satisfies the following Volterra condition: if (t^r\x) G Eh.r and z, z G 
F(Eh.o U Eh, R ) and z(r,y) = z{r,y) for (r,y) G Eh.r then Th[z](fr\x) = 
Th[z](t^r\x). It follows from condition 3) of Assumption H[V,Th,Lh] that 
the operator Lh satisfies the Volterra condition. 

Suppose that the Assumption Ho[f] is satisfied. Let 

Efe = {(t,x) eE:bi-Mit-s<Xi<bi- Mrf} 

and 
E7e = {(t, x)eE:-bi + Mit < Xi < + Mit + e), 

where 1 < i < n. By condition 3) of Assumption Ho[f] there exists e > 0 
such that 

dqJ(t,x,p,q)<-- for (t, x,p, q) G E+£ x R x R n 
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and 

dqif(t, x,p, q)>- for (i, x,p, q) G E~e x R x R n . 

Let 

(21) # = { / i = (/i0 ,M for 1 < i < n}. z 
We write a difference problem corresponding to (1), (2). The unknown 

functions in a difference system are denoted by (z, u), where u = (ui,..., un). 
Put 

S0z<r-m) = - z(r'm)), 
(22) 0 1 < i < n, 

and 

We consider the system of difference equations 

(23) 80z^ = f(P^m) [z,«]) + dqf(P{r'm) [z,«]) [ Sz{r+1'm) - u{r'm) ]T, 

(24) ( W r , m ) = dxf(P^[z,u}) + dpf(P{r'm)[z,u}) Lh[z,u]{r'm) 

+ dqf(p(r>m)[z,u])[6u(-r+1-m) ]T 

with the initial condition 

(25) for ( & \ x W ) e E h . 0 , 

where : Eh.o —> R, tph '• -Ea.o —> R n are given functions. The difference 
operators ( ix , . . . ,5n) for spatial variables are given in the following way. 
Suppose that 6 E'h and that the functions (z, u) are known on 
the set Eh.r. 

(26) If dqJ{P^m)[z,u}) > 0 then = l ( z ( r + 1 > m + e < ) - z(r+1-m>), 
hi 

and 

(27) <&it4r+1'm) = l ( « 5 r + 1 > m + e i ) - nSr+1'm)), 1 <3 <n. 
J hi J J 

(28) If dg if(P ( r 'm ) [z ,«]) < 0 then = ± ( z ( r + 1 ' m > - z ( r + 1 >m~ei)) 
t%i 

and 

(29) Si4+1'm) = l («S r + 1 > r o ) - u( r + 1 > r o-C i)), 1 < j < n. 
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We put % = 1,. . . , n in (26)-(29), and 

5z(r+l,m) = (SlZ(r+l,m)t _ ^ SnZ^r+1'm^), ¿U^1'™) = [SjU^1'^^..^. 

The above difference functional problem is called a generalized implicit Euler 
method for (1), (2). It is important in our considerations that the difference 
expressions 5z and Su appear in (23), (24) at the point x^). 

REMARK 2.2. It follows from (26)-(29) that the generalized implicit Euler 
method has the following property: the definition of the operator 8z at the 
point (t(r+1\ depends on the local properties of the function dqf. More 
precisely, it depend on the numbers 

(sign d q J ( P ^ [ z , « ] ) , . . . , sign d q J ( P ^ [ z , « ] ) ) . 

We prove that under natural assumptions on given functions and on the 
mesh there exists exactly one solution (zh, UH) : E^qUE^ —> R 1 + n of implicit 
difference problem (23)-(25). 

REMARK 2.3. If we apply method (4), (5) to solve problem (1), (2) numeri-
cally then we approximate derivatives with respect to spatial variables with 
difference expressions which are calculated by using the previous values of 
the approximate solution. If we use method (23)-(25) then we approximate 
the spatial derivatives of the unknown function by using adequate difference 
equations which are generated by the original problem. Therefore numer-
ical results obtained by (23)-(25) are better than those obtained by (4), 
(5). We give suitable examples in Section 5. Notice that the assumptions 
on the right-hand sides of equation (1) are more restrictive for the methods 
(23)-(25) than for the classical schemes. 

REMARK 2.4. Note that the implicit difference method generated by (4) has 
the form 

(30) <50z(r'm) = f(&\x(m\Vh[z}^m\Sz^r+1'm\ 

Then the solution z^ : E^.o U Eh —> R of problem (5), (30) is obtained by 
solving of nonlinear systems of algebraic equations. The solution (Zh,Uh) : 
Eh.0 U -E/i —> R 1 + n of implicit difference problem (23)-(25) is obtained by 
solving of linear systems. 

The difference functional problem (23)-(25) is obtained in the following 
way. Suppose that Assumption Ho[f] is satisfied and that the derivatives 
dxip = (dXlip,..., dXn(p) exist on EQ. The method of quasilinearization for 
nonlinear equations consists in replacing problem (1), (2) with the following 
one. We first introduce an additional unknown function u = dxz in equa-
tion (1). Then we consider the linearization of (1) with respect to the last 
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variable: 

(31) dtz(t, x) = f{U[z, u; t, x]) + dqf(U[z, u-1, a:]) [ dxz(t, x) - u(t, x) f , 

where U[z,u-,t,x] = (t,x,V[z](t,x),u(t,x)). Differential equations for u we 
get by differentiation of equation (1) with respect to x. The result is 

(32) dtu(t, x) = dxf(U[z, u-1, x]) 

+dpf(U[z,u; t,ar]) dxV[z]{t,x) + dqf{U[z,u; t,x]) [ dxu(t,x) }T. 

It is natural to consider the following initial boundary condition for (31), 
(32): 
(33) z(t,x) = <p(t,x), u(t,x) = dxip(t,x) for (t,x) G EQ. 

Difference problem (23)-(25) is a discretization of (31)-(33). 
Let 

A(r) = |x(m) . x(m) £ + ¿ ( r ) ^ b _ f ( r ) 0 < r < K. 

The difference functional equations 

(34) z(r+l,m) = h0dqf(P(r'm)[z,u}) [ <5z(r+1>m) ]T 

and 
(35) u(r+hm) = hQdq f {P^m ) [z ,«]) [ f 

are principal parts of (23) and (24) respectively. We prove a lemma on 
difference inequalities generated by (34), (35). Put 

4'm)[z, u] = { j £ { 1 , . . . , n} : dqjf(P^[z, u]) > 0}, 

LEMMA 2.1. Suppose that he H, and zh € F(Eh o U Eh, R) , Uh £ F(Eh 0 U 
Eh, R n ) . 

(I) If Zh anduh satisfy the implicit difference inequalities 

4r+1'm) < h0dqf(P^[zh,uh]) [4r+1'm) ]T, 

u(r+l,m) < W{P(r,m)[zhiUh])[6u£+l,rn) ]T> 

where € E'h and initial estimates 
4 r - m ) < o , u(hr'm) < e 

are satisfied on E^.o then < 0 and <6 on Eh-
(II) If the difference inequalities 

> h , d q f { p ^ [ z h M ) [ ¿ 4 r + 1 , m ) ]T-

4r+1'm) > hodqf(P^[zh,uH]) [Sut+1'm) }T, 
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are satisfied on E'h and 

4r,m> > 0, u^m)>9 on Eh.o 

then z > 0 and >9 on Eh-
Proof . Consider the case (I). Suppose that 0 < r < K — 1 and there exists 

€ A(r+1) such that = M, where 

M = max(4r+1'm) : z(m) G A<r+1)}, 

and 

(36) 4 r + > 0. 

It follows from the difference inequality that 

4+1,fh) <ho £ - * R I , F T ) ) -
(r m) ieJy+'m)[zh, Uh] 

+h0 E bs{p(r,m)[Zh' U h ] ) { z£+ 1 , i h ) ~ 4 r + 1 ,™ _ e i ) ) < o. 
ieJ^m)[zh,uh} 

We thus get < 0 which contradicts (36). In a similar way we prove 
that v£rn) < 6 on Eh. The case (II) can be treated in the same way. This 
completes the proof. 

LEMMA 2.2 . If Assumptions Ho[f] and H[V,Th, Lh] are satisfied then there 
exists exactly one solution (Zh, Uh), Zh • Eh.oUEh —> R , Uh • Eh.o^Eh —> R n , 
of difference functional problem (23)-(25). 

Proof . Suppose that 0 < r < K — l i s fixed and (Zh,Uh) are known on the 
set Eh.r. Consider the linear system 

(37) = 4 r ' m ) + h0f(P^{zh, Uh]) 

+ h0dqf(P^[zh, uh}) [ - u{r'm) }T, 

(38) U(r+1'm> =u^m) + h0dxf(P^[zh,uh]) 

+ h0dpf(P^[zh, uh\) Lh[zh, uh]{r>m) 

+ h0dqf(P^[zh,uh])[Su^+1^ }T 

with unknown functions z^r+1'm\ u(r+1'm) where x ^ £ Suppose 
that (iM,z(m)) G E'h and 0ft/(P(r,m)[zh,Uh]) > 0. Then 

hi 
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and 
SiU{;+1'm) = I[u<r+1'm+e<) - uSr+1,m)l, 1 <j<n. 

3 hi 3 3 

It follows from condition 3) of Assumption HQ [/] that x and 
the difference expressions 5iZ^ r + l , r n\ 6 iU^ + 1 ' m \ 1 < j < n, are well defined. 
The same conclusion can 

be drawn for dqif(P^[zh,uh)) < 0. 
The homogeneous problem corresponding to linear system (37), (38) has 

the form 

z(r+l,m) = hodqf(p(r,rn)[z^Uh]) {Sz(r+l,m) ]T 

u(r+l,m) = hodqf(P(r,m)[zhiUh])[Su(r+l,m) ]T 
It follows from Lemma 2.1 that the above system has exactly one zero so-
lution. Then system (37), (38) has exactly one solution z ^ + 1 ' m \ 

, and consequently the functions (zh, uh) are defined and they 
are unique on EH.r+i- Since (Zh,v>h) are given on E^.O then the proof is 
completed by induction. 
3 . Convergence of t h e generalized implicit Euler m e t h o d 

Throughout this section we will need the following assumptions on / . 

ASSUMPTION H[A, / ] . Suppose that Assumption Ho[/] IS satisfied and there 
is a function a : [0, a] x R + —> R + such that 

1) a is continuous and it is nondecreasing with respect to both variables, 
2) a(t, 0) = 0 for t € [0, a] and for each c > 1 the maximal solution of the 

Cauchy problem 

rj>(t) = c[V(t) + a(t,ci1(t))}, 7/(0) = 0, 

is f}(t) = 0 for t € [0, a], 

3) the terms 

||8xf(t, x,p, q) - dxf(t, x, p,q) ||, |d p f ( t , x, p, q) - dpf(t, x, p,q) |, 

||dqf(t,x,p, q) - dqf(t,x,p,q)\\ 

are bounded from above by a(t, \p — p\ + ||g — <jr||), 
T H E O R E M 3 . 1 . Suppose that Assumptions H[f,a] and H[V,Th, Lh] are sat-
isfied and 

1) the function ip : EQ —> R is of class C2 and v : EQ U E —> R is the 
solution of problem (1), (2) and v is of class C2 on EQ U E, 

2) (zh, Uh) : Eh.o U Eh R 1 + r i is the solution of difference problem (23)-
(25) with operators ¿o, 5 defined by (26)-(29) and there is otQ : H ^ 
R + such that 
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(39) l ^ - ^ l + l l f l t ^ - ^ H a o W on Eh.0 

and lim/j^o 010(h) = 0, where H is defined by (21). 

Then there is a : H —• R+ such that 

(40) \\vh-zh\\h.r + \\(dxv)h-uh\\h.T<a(h), 0 <r<K, 

and 

lim a(h) = 0, 

where vh = v\Eh,0uEh and (dxv)h = dxv\Eh.0uEh-
P r o o f . Write w = dxv. Then the functions (v,w) : Eq LIE —• R 1 + n satisfy 
quasilinear system (31), (32) and initial condition (33). Let us denote by 
61 : Eh.0 U Eh —> R and Ah • Eh.0 U Eh -* R n the functions 
r Ai\ j.(r,m) (r.m) (r.m) \(r,m) (r,m) (r.m) 

(41) % K - « f c > 

where 
Vh = v\Eh,0UEh, Wh = w\Eh.0UEh-

Put 

(42) u£> = ll&IU.r, - ||Afc||fc.r, 0 < r < K, 

and Uh = u>h.0 + Vh. i- We will write a difference inequality for the function 
Uh-

We first examine ojh.o- Set 

U(r'm)[v,w] = (&\x^m\V[v]^r'm\w^). 

Let the functions IVo, A/j.o : E'h —» R be defined by 

(43) r£om) = S0v^m)-dtv^ +dqf(U(r'm~>[v, w}) [ dxv^-6v£+1'm) f 

and 

(44) = f(U^[v,w}) - f(P(r>m)[zh,Uh\) 

-dqf(U{r'm)[v,w])[w^ ]T 

+ dqf(P^[zh,uh])[u{r) f 
+ [dqf(U^[v,w]) - dqf(P^[zh,uh])] [ 8v£+1'm) \T. 

It follows from (23) and (31) that 

(45) = dqf(P{r'm)[zh,Uh]) [ f + l i o m ) + A i T ^ 

where (t^r\x^) G E'h. We conclude that relation (45) is equivalent to 
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( 4 6 ) ti^il + h o i t l W f ( p i r ' m ) l z = 

+ h0 £ ldq]f(P^[zk,nh}) ¿r+1'm+£j) 

j€J+,m)[zh,uh] 

-ho E l9qjf(P{r'm)[zh,uh}) £+1'm~ei) + M ^ f + A ^ l -
j^m)[zh,uh] 3 

I t f o l l o w s e a s i l y t h a t t h e r e i s 70 : H —• R + s u c h t h a t 

( 4 7 ) | l l r o m ) | < 70 ( / i ) o n E'h a n d l i m 7 o W = 0 , 
h—>1) 

w h e r e E'h i s g i v e n b y (3 ) . T h e r e i s c € R + s u c h t h a t 

( 4 8 ) | | a x u ( t , x ) | | , \\dxxv(t,x)l | | d x V [ v ] ( t , x ) \ \ < c for (t,x) € E. 

I t f o l l o w s f r o m A s s u m p t i o n s H [ f , a] a n d H[V,Th, Lh] t h a t 

(49) | f ( U ^ [ v , w } ) ~ f(P{r'm)[zh,uh})\ < A[coK + <fc,<p)], 

w h e r e {t{r\x(m"i) € E'h a n d 

d = m a x { 1 , L } . 

I n t h e s a m e w a y w e c a n s e e t h a t 

||dqf(U^[v,w}) - dqf(P^[zh,uh})\\ < ai&lcoK + dw^), 

w h e r e ( t ^ ^ x ^ ) € E'h a n d c o n s e q u e n t l y 

( 5 0 ) | A ^ m ) | < ¿ { c o K + ^ + 2 c a ( & \ c o K + d J ^ ) + M l -

W e s e e a t o n c e t h a t 

( 5 1 ) h0 £ ^dq.f(P{r'm)[zh,uh}) j ^ r + 1 > m + c i ) j 

j€J+'m)[zh,uh] 

jeJ^m)[zh,uh] J 

j = i 3 

W e c o n c l u d e f r o m ( 4 6 ) , ( 4 9 ) , ( 5 0 ) , ( 5 1 ) t h a t 
( 5 2 ) W [ r o + 1 ) < "hi + + holo(h) + h0A[cQh% + dJ^] 

+ 2hoca(t^r\cq/iq + dw^), 0 < r < K - 1. 
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Now we write a difference inequality for uJh.i- Let the functions Ah : E'h 

K n , T h : E ' h ^ R n be defined by 

(53) r £ ' m ) = 8 0 w ^ m ) - d t w ^ 

+ d q f ( U ^ [ v , w \ ) [ d x w ^ - 8 w £ + 1 ' m ) f 

and 

( 5 4 ) A = d x f ( U ^ [ v , w } ) - d x f ( P ^ [ z h , u h } ) 

+ d p f ( U ^ [ v , w ] ) d x V [ v } ^ 

- d p f ( P ^ [ z h , u h \ ) L h [ z h , u h } { r ' m )  

+ [ d q f ( U ^ [ v , w ] ) ~ d q f ( P ^ [ z h , u h } ) } [ S w £ + 1 ' m ) f . 

Then the function Ah satisfies the difference equation 

= d q f ( p ^ [ z h , u h } ) [ s \ ^ + i ' m ) f 

+ + A i r ' m ) , X W ) € E ' h . 

It follows from the definition of difference operators ( S i , . . . , S n ) that the 
above relation is equivalent to 

(55) + / ^ o ¿ l \ d g j f ( P ^ [ z h , ufc])|] = Af ' m ) 

j = i  3  

+
 h ° E l d q j f ( P ^ [ z h , u h ] ) X ^ m + e i ) 

j e J + ' m \ z h , u h ] 

- h 0 £ ± d q 3 f ( P ^ [ z h , u h ] ) + h Q [ T ^ m ) + A i r ' m ) ] , 

(r 1 

where € E'h. There is 7 : H R + such that 

(56) ||r^'m ) | | < < y ( h ) on E ' h and lim7(fc) = 0. 
h—>0 

It follows form Assumptions H [ f ] and H [ V , T h , Lh] that 

| | d x f ( U ^ [ v , w } ) - d x f ( P ^ [ z h , u h } ) \ \ < a ( & \ c o K + ^ i 0 ) 

and the same estimate we obtain for the derivatives dpf and dqf. It follows 
from Assumption H[V, Th, Lh] that 

\ \ d x V [ v } ^ - L h [ z h , u h } ^ \ \ < Clh% + L o 4 \ 

where e E'h. We thus get 

(57) H A ^ I I < ( l + 2 c ] a ( & \ c o h % + d w { t [ ) ) + A[cih»0 + L o J l [ ) } , 
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where € E'h. It is easily seen that 

(58) h0 £ ¿ : a i , / ( P ^ [ z f c , t i f c ] ) | | A S : + 1 ^ ) | | 
jeJ+[r,m] 3 

-ho £ dqj / (p(r-m) [zh,uh})\\\^+1'm~ej)W 
jeJ-\r,m] 3 

< E l \ 9 g j f ( p { r ' m ) l z h , «fc])|, 
j=1 

where G We conclude from (55), (57), (58) that 

(59) 4 r
1

+ 1 , m ) < u f i + ho( 1 + 22)a(c0< + 

+ /ioi4[ci^ + Lo4r )] + W 0 > 0 < r < K - 1, 
where (tW, x^) € E'h. Adding inequalities (52), (59) we get 

( 6 0 ) 4 r + 1 ) < o;[ r ) + h0aa(tir\coK + ¿ " J 0 ) + + htfy(h), 

0 < r < K — 1, 

where _ 
a — 1 + 4c, d = A(l + d + L0), 

j ( h ) = j o ( h ) + j ( h ) + A(coh% + c1h»0). 

Consider the Cauchy problem 
( 6 1 ) u'(t) = du(t) + aa(t, coh% + du(t)) + 7(h), 

(62) w ( 0 ) = ao(h). 

It follows from Assumption H[f, a] that there is eo > 0 such that for \\h\\ < e 
there exists the maximal solution 77̂  : [0, a] —> R+ of (61), (62) and 

lim rjh(t) = 0 uniformly on [0, a]. 
h—»0 

The function rjh satisfies the recurrent inequality 

Vh+1> > Vh] + hodri^ + hoaa(t(r\coh% + + h07, 

where 0 < r < K — 1. Since < ryh , by the above inequality and (60) 
we have 

<4° < iy[r) for 0 < r < K. 

Then we obtain estimate (40) for a(h) = rjh(a). This proves the theorem. 
Remark 3.1. Suppose that all the assumptions of Theorem 3.1 are satisfied 
with 

a(t,p) = Mp, (t,p) G [0, o] x R + , 
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where M € R+. Then we have assumed that the functions d x f , d p f , dqf 
satisfy the Lipschitz condition with respect to (p, q) and we have the esti-
mates 

L = d + adM, 7 (h) = ah% + cih^ + b, 

a = acoM + Aco, b = C{1 + ||M||). 

The above estimates are obtained by solving problem (61), (62). 

REMARK 3.2. In our considerations we need estimates for the partial deriva-
tives of the solution v of problem (1), (2). One may obtain them by the 
method of differential inequalities, see [9] vol. II (Th. 9.2.1 p.120, Th. 9.2.2 
p. 123) and [11] (Th. 37.1 p. 113). 

4. Examples of interpolating operators 
In this section we assume that h = Mho- Then we can write the defini-

tions of Eoh and Eh in the following way: 

Eo.h = { ( i ( r ) , ^ ) : -AT0 < r < 0, -N<m<N}, 
Eh = {(t{r\x^) : 0 < r < K, \mi\ < N{ - i, t = l , . . . , n } . 

Put B = [-b,b} and Bh = {x(m) : -N < m < N}. For a function 
w : Bh —> R and for a point x(-m'> 6 Bh> we write = w(x^). Set 

We first consider the operator Qh : F(Bfi, R) —> F(B, R) as follows. Let 
w <E F(B-h, R) and x € B. There exists m G Z " such that <x< x(m+1) 
and x(m\ x(m+1) G Bt, where m + 1 = (mi + 1 , . . . , mn + 1). We define 

\\vh ~ ZhWh.r + \\dxvh - uh\\h,r < a(h), 0 < r < K, 
where 

a(h) = aQ{h)ela + if L > 0, 
LJ 

a(h) = ao(h) + aj(h) 

,La 

and 

S+ = { s = ( s i , . . . , s n ) : Si € { 0 , 1 } for 1 < i < n}. 

Qh[w](x) = J2 w(m+s) 

S 6 S + 

X — X 

h 

, (m) \ « 
1 -

X — X 

h 

where 
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i - ' - t - ) - n O - ^ - ) • 

and we take 0° = 1 in the above formulas. If [ao, £>o] C R and w : [ao, 6o] x 

B^ —• R then we write 

Qh[w](t,X)=g ( i - — f 

where x G B, x^ <x< x ( m + 1 ) and x^, x(m + 1) G Bh. 
We define now the interpolating operator Uh • F(Eo flUEfl, R) —> F(EqU 

E, R) in the following way. Suppose that w G F(E0jl U Eh, R) and (t, x) G 
Eq U E, —bo < t < Kho- Two cases will be distinguished. 

I. Suppose that (t, x) G Eq U E and there is (r, m) G Z 1 + n such that 
[¿(^¿(r+i)] x ^(mj^im+i)] c E0MLiEh. We define 

(63) Uh[w}(t,x) = i^p.Qh[w](t<r+1\z) + ( l - t-:j^jQh[w}(&\x). 

II. Suppose that (t, x) G E and there is (r, to) G Z1+n such that 

(i) tW < t < i( r + 1) and x(m> < x < z ( m + 1 \ 
(ii) { t ( r \ x W ) , ( t ( r \ x ( m + V ) G £7 and x<m)) G or x(m + 1)) G 

d0E. 
Define the sets of integers I+[r, TO], I~[r, TO], 7o[r, to] (possibly empty) as 
follows 

J+[r,m] = {i : 1 < t < n, xim < + 1 ) = 6j -
I - [ r , t o ] = { i : 1 < i < n, x j m i ) = -fej + M¿i ( r ) } , 

/o[r,m] = { l , . . . , n } \ (/+[r,m] U/_[r,m]). 

Write x = ( x i , . . . , xn) and x = (xi,..., xn), where 

Xi = x™ + __ t(xi ~ xim^) a n d = x\m^ for i G I+[r,m], 

Xi = + t{r^_t(xi - 4 ^ ) ^ d Xi = for i G J_[r,m] 

and 
il/j — 2/j — 2/j for i G Io[r, TO]. Therefore we define Uh[w](t,x) by the 

formula 
(64) Uh[w}(t,x) = i^lQh[w}(&+1\x) + ( l - t-^^jQh[w](&\x). 

If (t, x) € EoUE and Kho < t < a then we put Uh[w](t,x) = Uh[w](Kho, x). 
Then we have defined Uh[w] : Eo U E —» R. It it easy to see that Uh[w] G 
C{E0UE,R). 
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The above interpolating operator was first introduced in [4], Chapter 3. 
The following properties of Uh are important in our considerations. 

LEMMA 4.1. Suppose that the function w G C2(EQ U E, R ) and 

|dttw(t,x)\, \dtXiw(t,x)\, \dXiXjw(t,x)\ < C, i,j = l,...,n, 

where (t, x) G EQ U E. Let us denote by wh the restriction of w to the set 

Eo.h U Eh. 

Then 

\Uh[wh]{t,x)-w(t,x)\<Ch20, 

where (t, x) e E0l)E,t< Kh0, and C = \C{1 + ||M||)2. 

The above lemma is a consequence of Theorem 3.18 in [4], Chapter 3. 

LEMMA 4.2. Suppose that the function w G C1(£?o U E,~R) and 

\dtw(t,x)\, |dXiw(t,x)\ <C, i = l,...,n, 

where (t, x) G EQ U E. Let us denote by Wh the restriction of w to the set 
Eo.hUEh. Then 

(65) \Uh[wh}(t,x)-w(t,x)\ < C*h0, 

where (t, x)eE0UE,t< Kh0, and C* = C( 1 + ||M||). 

Proof . It is easy to show by induction with respect to n that for x^ < 
x < x(m+1 ) we have 

Write 

A[S,p} = j 2 d - M p M m i + S i ) 

¿=1 

where s G S+, P G E0 U E. 

Suppose that (t,x) G E0 U E and t^ < t < t ( r + 1 \ x ^ <x< x ( m + 1 ) 
and [ i ( r ) , i ( r + 1 ) ] x [x(-m\x^m+^] C E0 U E. Then Uh[wh] is defined by (63) 
and there are P, Q G Eo U E such that 

Uh[wh](t,x) - w(t,x) = / E Mt,x) + dtw(P)(&+V - t) 
ho U i X 
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,R „ „ / ¡ T - I W Y / , x - x m ) y - s , A 

+ ( i - '-^f-) { L H ' ' 1 ) + aMQ)(t<r) - « ) 

., . „ / i - x w y / , x - x ™ > V " „ ,1 

The above relation and (66) imply (65). 
In a similar way we prove (65) in the case when Uh[wh](t, x) is defined 

by (64). This proves the lemma. 

Now we give examples of the operators V and the corresponding inter-
polating operators Th and L^. 

EXAMPLE 4.1. Suppose that the functions 

•00 : [0,a] —> R , V = : E ^ K n 

are given. We assume that 

1) ipo G C( [0 ,a ] ,R) and -b0 < ip0(t) < t for t G [0,o], 
2) ip G C(E, R n ) and the partial derivatives 

[dXj^i(t,x)]i,j=i,...tn = dxip(t,x) 

exist on E and dx'tp G C(E, Mnxn), 

3) (ip0{t),ip(t,x)) G E0UE for (t,x) G E. 

Let the operator V : C(E0 U E, R ) C(E, R ) be given by V[z](t, x) = 

z(ipo(t),ip(t, x)). Then V satisfies the Volterra condition and equation (1) 
is equivalent to the equation with deviated variables 

dtz(t, x ) f ( t , x, z(ipo{t),ip(t, x)),dxz(t, x)). 

Le t the operators T fc : F(Eh,0UEh,K) C(E, R ) , Lh : F(Eh,0UEh,Rn) - » 

C(E, R n ) be defined by 

Th[z}(t,x) = Uh[z](ipo(t),ip(t, x)), (t,x) G E, 

Lh[z,u] = (Lh.i[z,u],...,Lh.n[z,u]), 

n 

Lh.j[z,u](t,x) = Y^Uh[ui]('il>o(t),<p(t,x))dXj'ipj(J;,x), (t,x) G E. 

i=1 

Note that Lh does not depend on the function z in our example. 
It follows from Lemma 4.1 and 4.2 that Assumption H[V,Th, Lh] is sat-

isfied with /a = 2, v = 1, and 

L0 = max{||<9x'i/>(i, x)|| : (t,x) G E}, 

c0 = ^C(l + \\M\\), c1=cL0(l + \\M\\), 
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where C G R + is a constant such that estimates 

( 6 7 ) \dttv(t,x)\, \dtXiv(t,x)l \dXiXjv(t,x)\<C 

are satisfied on EQ U E. 
Now we consider differential integral equations. Suppose that k G N, 

1 < K < n, is fixed for each x = ( x i , . . . ,xn) G R n we write x = (x', x") 
where x' — ( x \ , . . . , x K ) , x" = ... ,n). We have x' = x if K = n. 

EXAMPLE 4 .2 . Consider the operator V : C ( E 0 U E,~R) —• C ( E , R ) given 
by 

t x' 
V [ z ] ( t , x ) = \ \ z(T,s',x")ds'dT, 

—bo —x' 

where s' = (s\,..., sK). Then (1) is equivalent to the differential integral 
equation 

t x' 
dtz(t,x) = f ( t , x , J ^ Z(T,S',x")ds'd,T,dxz(t,x)). 

—bo —x' 

Put 
t x' 

T h [ z ] ( t , x ) = J J U h [ z } ( r , s ' , x " ) d s ' d T , (t,x) e E , 
-bo —x' 

where z G F(Eh.o U E , R) . Then the Lipschitz condition (17) is satisfied 
with 

K 

L = (a + b0)2KYlbi. 
2—1 

Note that the numbers Th[z]^r'm^ may be calculated by using the results 
presented in [4], Chapter 5. If v G C2{EQ U E , R ) then estimate ( 18 ) holds 
with fi = 2 and 

co = \ d { \ + \\M\\)2K(a + bQ) bh 

Z i=l 

where C is given by (67). Write 

x ' [ j ] = ( x i , • • . , X j - l , X j + l , .. . , X K ) , s ' [ j ] = ( s i , . . . , S j - l , S j + l , . . . , S K ) , 

s ' [ j i  T] = ( s i , . . . , S j - l , T , S j + 1 , . . . , S K ) , 

where 1 < j < K. Put 
t x'lj] 

I j [ z ] ( t , x ) = \ 5 z{T,s'\j,Xj\,x")ds'[j\dT. 
-bo —x'[j] 



Implicit difference methods 147 

Consider the operator Lh[z, u] — (L^a[z,it],..., Lh.n[z, it]) given by 

Lh.j[z,u](t,x) = Ij[Uh[z]](t,x) - Ij[Uh[z]](t,xi,... ,xj-i, - x j , x j + i , . . . ,xn) 

for 1 < j < k and 

t x' 
Lh.j[z,u] — J J Uh[uh.j](r, s',x")ds'dr f o r k + 1 < j < n. 

—bo —x' 

Then we have 

IILh[z,u] - Lh[z,u]\\t(r) < L[\\z - z\\h_r + ||tt - u\\h.r] 

with 
K K 

L = 2 K{a + b0)D'[[bi, D = max{l,J2( bi)~ 1}-

i= 1 ¿=1 

If function V G C 2(E0 U E, R) then 

\\Lh[vh, [dxv)h] ~ 9iV[u]||t(r) < cih0, 0 < r < K, 

where 
n k 

d = [1 + (o + b0)(n -k + J ^ ) " 1 ] (1 + ||M||) CT J ] bi 
i=1 i= 1 

and C is given by (67). Thus we see that Assumption H[V, T^, L^] is satis-
fied. 

5. Numerical example 

For n = 1 we put 

£ = [0,0.5] x [-1,1], ^ = {0} x [-1,1], 

Consider the differential equation with deviated variable 

(68) dtz(t, x) = —xdxz(t, x) + sin ( x d x z ( t , x)) + z(t, 0.5x) + z(t, —0.5a:) 

- s i n {xtz(t, x)) + x(l + t)e i x - e 0 5 t x - e~ 0M x  

with the initial condition 

(69) z(0,x) = l , x G [—1,1]. 

The solution of the above problem is given by 

z(t,x) = e t x. 
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Let us denote by Zh the solution of the implicit difference problem corre-
sponding to (68), (69). By Zh we denote the solution of the explicit prob-
lem 

z{r+l ,m) _ I^(r,m+1) z(r,m-l)j _ ¿^(m) ^(r,m+1) _ z(r,m-1)^ 

+ h0 s i n [ x ( m ) - ^ ( z ( r ' m + 1 ) 
2h\ 

- z( r'm~V)] + h 0 ( z ( & \ 0 . 5 x W ) + z ( & \ —0.5x(m))) 

- h0(sin ( i W ^ z M ) + x M ( i + i(0) e X p (t(rVTO>) 

- exp (0 .5i ( r V m ) ) - exp 

Stability of the above difference method, obtained from (68) by using the 
Lax difference schemes, requires from steps of time and spatial variable sat-
isfying the Courant-Friedrichs-Levy condition (11). 

We give the following information on errors of the methods. Write 

i N 
J r ) _ 1 Y ^ | (r ,m) _ ~{r,m)\ 

h ~ 2 N + 1 l h '' 

m=—N 

1 N 

h ~ 2 N + 1 ^  1 / 1  
m=—N (r) ~(r) 

The numbers eh and e~h are the arithmetical mean of the errors with fixed 
. The values of the functions Eh and Eh are listed in the table. We write 

" x " for 4 r ) > 100. 
Table of errors (e/j, Eh) 

ho = 0.005, hi = 0.001 

£h £h 

t = 0.75 0.000884 0.000764 

t 0.80 0.000979 0.000833 

/ = 0.85 0.001083 0.064984 

t = 0.90 0.001194 X 

t 0.95 0.001315 X 

t = 1.00 0.001445 X 
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Table of errors (e/j, e^) 

h0 = 0 .01, hi = 0 .001 

£h 

t = 0.75 0.001807 x 

t = 0.80 0.002005 x 

t = 0.85 0.002220 x 

t = 0.90 0.002452 x 

t = 0.95 0.002701 x 

t = 1.00 0.002970 x 

The results shown in the table are consistent with our mathematical 
analysis. 

Our experiments have the following property. The explicit difference 
method for steps ho = 0.005, hi = 0.001, which are not satisfy the condition 
(11), is not stable. The implicit Euler method is stable aside from selection 
of steps. 
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