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IMPLICIT DIFFERENCE METHODS
FOR HAMILTON-JACOBI DIFFERENTIAL
FUNCTIONAL EQUATIONS

Abstract. Classical solutions of the local Cauchy problem on the Haar pyramid
are approximated in the paper by solutions of suitable quasilinear systems of difference
functional equations. The numerical methods are difference schemes which are implicit
with respect to time variable. A complete convergence analysis for the methods is given
and it is shown that the new methods are considerable better than the explicit schemes.
The proof of the stability is based on a comparison technique with nonlinear estimates of
the Perron type. Numerical examples are given.

1. Introduction

For any metric spaces X and Y we denote by C(X,Y’) the class of all con-
tinuous functions from X into Y. We will use vectorial inequalities with the
understanding that the same inequalities hold between their corresponding
components. Let F be the Haar pyramid

E={(t,z) eR"™:tc[0,a],-b+ Mt <z <b- Mt}

where x = (21,...,2Zn), a > 0, M = (My,...,M,) € R}, Ry = [0,+0c0),
b= (b1,...,by) € R" and b > Ma. Write Ey = [—bp,0] x [~b,b] C R},
where by € R4 and Q = F x R x R™. Suppose that the functions

f:Q@->R, p:E—R, V:C(EqUE,R)— C(E,R)

are given. We consider the differential functional equation

(1) Oz(t,z) = f(t,z, VI[2|(t, ), Or2(t, x))
with the initial condition
(2) z(t,z) = p(t,z) for (t,z) € Ep,
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where 02 = (0g,2,...,0z,2). A function 2 : EgUE — R is called a classical
solution of the above problem if

(i) z€ C(Ep UE,R) and z is of class C! on E,
(ii) z satisfies (1) on E and initial condition (2) holds.

We consider classical solutions of (1), (2) and assuming that V satisfies
the Volterra condition defined below. We are interested in establishing a
method of numerical approximation of solutions of problem (1), (2) by means
of solutions of associated systems of difference functional equations and in
estimating of the difference between the exact and approximate solutions.

In recent years, a number of papers concerning numerical methods for
functional partial differential equations have been published. The main
question in these investigations is to find a difference functional equation
which satisfies the consistency conditions on all classical solutions of the
original problem and it is stable. The method of difference inequalities or
theorems on linear recurrent inequalities are used in the investigations of the
stability. The proofs of the convergence are also based on a general theo-
rem on the error estimates of approximate solutions to functional difference
equations of the Volterra type with initial boundary conditions and with
unknown function of several variables.

Difference schemes for (1), (2) in the case when differential equation
does not contain a functional variable were considered in [1], [5], [7], [8]-
Finite difference approximations relative to initial or initial boundary value
problems for functional differential equations were investigated in [2], [3], [5],
[6], [10]. The monograph [4] contains an exposition of recent developments
of numerical methods for hyperbolic functional differential problems.

In the paper we present a new class of difference schemes for (1), (2). The
numerical methods are difference schemes which are implicit with respect
to time variable.

Two type of assumptions are needed in theorems on the convergence of
difference schemes corresponding to (1), (2). The first type conditions deal
with the regularity of given functions. The assumptions of the second type
are connected with relations between the steps of the mesh. We show in the
paper that the assumptions of the second type can be omitted for implicit
difference schemes.

In Section 2 we present relations between classical difference methods
and implicit difference schemes.

Our considerations are based on the following idea. In the first step
we transform the nonlinear equation (1) into a quasilinear system of func-
tional differential equations, where unknown functionals are z and the par-
tial derivatives of z with respect to spatial variables. In the second step we
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construct an implicit Euler method for z and for their spatial derivatives.
It is important in our considerations that the method of discretizations of
quasilinear systems corresponding to (1), (2) depend on local properties of
given functions. The stability of the methods is investigated by using a
comparison technique.

The paper is organized as follows. In section 2 we construct an im-
plicit difference functional problem corresponding to (1), (2) and we prove
that there exists exactly one solution of a difference scheme. In Section 3
we prove a convergence result and we give an error estimate for implicit
schemes. Examples of interpolating operators are given in Section 4. Nu-
merical experiments are presented in the last part of the paper.

Differential equations with deviated variables and differential integral
problems can be derived from (1), (2) by specializing the operator V. Exis-
tence and uniqueness results for functional differential problems on the Haar
pyramid can be found in [4] (Th. 2.4, p. 49).

First order partial functional differential equations find applications in
different fields of knowledge.

For additional bibliography on partial functional differential equations
and their applications see the monographs [4], [12].

Let us denote by F(X,Y) the class of all functions defined on X and
taking values in Y, where X and Y are arbitrary sets. Let N and Z be the
sets of natural numbers and integers, respectively.

Denote by R™ the Euclidean real space of vectors z = (x1,...,z,) and
by R™ ™ the space all n x n matrices U = [uy;]; j=1,..n With real elements.
In R™ and R™ "™ we introduce the norms

n n
Izl =Y le;l and U] = max{z hugj| 1 1< < n}
j=1 j=1
If U € R™™ then U7 is the transpose matrix. Write
E:=(EgUE)N([~bo,t] xR"), 0<t<a.
We will say that the operator V : C(Ey U E,R) — C(E,R) satisfies the
Volterra conditions if for each (¢,z) € E and for 2,z € C(Ep U E,R) such
that z|g, = Z|g, we have V[z|(t,z) = V[Z](¢, z).
For functions z € C(Ep U E,R), u € C(Ep U E,R"™) and for a point
t € [0,a] we put
Izll: = max{|z(7,y)| : (,9) € B¢} and
[ulle = max{[lu(r, y)| : (r,y) € E¢}.
We formulate a difference problem corresponding to (1), (2). We define
a mesh on the set Fy U E in the following way. Suppose that (hg, h), h =
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(h1,...,hy), stand for steps of the mesh. Denote by H the set of all h =
(ho,h) such that there are Ng € N, N = (Ny,...,N,) € N" with the
properties NV;h; = b; for 0 < ¢ < n and h < Mhy. Let K € N be defined

by Khy < a < (K + 1)hg. For h € H and (r,m) € Z'*", where m =

(myq,...,my,), we define nodal points as follows
t) = rhy, 2™ = (zgml), ... ,a:gm")) = (m1ih1,...,muhy).
Write

Ry = {(t7,2™) : (r,m) € 217}
and
E,=ENR™, Epo=EnRI™,
I ={t":0<r <K},
Bhy = (BEhoUER) N ([-bo,t"] xR™), 0<r<K.
For functions n : I, = R, 2 : ERgUER, — R, u: EpgU Ep — R™"™ we
write ) = (t™), 2™ = 2(t(), (M), 4™ = 4 (¢t (™) and
I2llni = max{|z™)] : (¢, 20™) € By},
lullp.s = max{[u>™]| : (¢, 2™) € B},
where 0 < 3 < K. Let ¢; = (0,...,0,1,0,...,0) € R", 1 standing on the
j-th place and 8 = (0,...,0) € R™. Write
(3) By = {(t™,2™) € By, : (", 2(™) € Ey}.

Classical difference methods for (1), (2) consist in replacing partial deriv-
atives 8; and (8;,, ..., 0z, ) = O, with difference operators dp and (41, ..., 6,)
= ¢, respectively. Approximate solutions of (1), (2) are functions z, defined
on the mesh Ej g U Ep. On the other hand, equation (1) contains the func-
tional variable V[z] which is an element of the space C(E,R). Therefore we

need an interpolating operator Vj, : F(EpoU Ep, R) — C(E,R). This leads
to the difference equation

4 02" = F(tD, 20, Vi [z)"m), 62(rm)
with the initial condition
(5) 20 = o™ on Epo,

where ¢, : Ep g — R is a given function.
Suppose that the interpolating operator V4, is fixed. The following ex-
amples of difference schemes are considered in literature. Write

L rtim) _ (rm)
E 2"

(rm) —
(6) 502 ho
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and

() 8;z(rm) = —’%[z(r’m"'ei) — 2] for 1<i<k,

(8) 5iz('r,m) — ?ll_[z(r,m) . z(’r,m—ei)] for k+1<i< n,
1

where 0 < k < n is fixed. Numerical method (4), (5) with the above given
8o and 4 is known as the Euler method.

The Lax difference scheme is the second important example. It is ob-
tained by putting

1 1 - j rm—e,;
(9) 602(r’m) = %[Z(T+1’m) ~on Z(z(ﬁm*‘e:) + 2 J))]
j=1
and
(10) 5,2 = _L_[plrmte) _ rmed] 1< <n.

2h;

Assumptions on the regularity of f in convergence theorems are the
same for both methods. It is required that the function f of the variables
(t,z, p, q) satisfies the Lipschitz condition with respect to p and it is of class
C! with respect to (g1,...,g:) = ¢ and that the function d,f is bounded.
The second type of assumptions are the Courant-Friedrichs-Levy conditions.
In the case of the Lax method they have the form

1 1

For the analysis of the stability of the Euler method we need the assumption
that

n
j=1"7

and that the functions dg, f, ¢ = 1,...,n, have constant signs on Q.

Condition (11) and (12) are similar and they require some relations be-
tween hg and (hy,...,hy). Then the strong assumption that the functions
sign 04, f, 1 =1,...,n, are constant on {2 is the main difference between the
above methods.

There are equations (1) for which both the methods can be used. We give
comments on the relations between the Euler method and the Lax scheme
in this case. Suppose that

(i) Oqf € C(R2,R™) and the function J,f satisfies the Lipschitz condition
with respect to (x,p, q),
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(ii) for P = (t,z,p,q) € Q we have
(13) 05, f(P)>0 for 1<i<k and 04, f(P)<0 for k+1<1¢<mn,
where 0 < k < n is fixed, and x appears in the definitions (7), (8),
(iii) the function v € C'(Ey U E,R) is a classical solution of (1), (2) and

the functions V{v] and 0, v satisfy the Lipschitz condition with respect
to x.

For given z € C(EgUE, R), u € C(E,R"™) denote by g[z,u] the solution
of the Cauchy problem

(14) (1) = =83f (1,n(7), V[2] (7, n(7)), u(r, n(r))),

(15) n(t) = z.
The function g[z, u](-, t, z) is the bicharacteristic of equation (1) correspond-
ing to (z,u). The bicharacteristic g[v, 9;v](-, ¢, z) is defined on some interval
[0, a(t, z)] such that (a(t,z), g[v, Ov](al(t, z),t,z)) € OF, where OF is the
bounder of E.

Let us denote by z, the solution of (4), (5) with & and 4§ defind by
(6)-(8). Suppose that z, is given on Ej, and (¢ (™) € E;,. Our aim

is to calculate the number z,(LrH’m).
Write
AT = [w&ml),:cgmlﬂ)] X ... x [z{me) gty
X[l T el o [, 2]
It follows from (12), (13) that
(16) glv, 0zv] ), ¢+ £m)y e AT,

The following property of the Euler method is important: A C R" is the
smallest interval of the form [y,7] C R™ such that (¢, y), (t("),7) € Ej
and glv, ;0] (1, 11, 2(™) € [y, 7).

Let us denote by Zz; the solution of (4), (5) with 8y and § defined by
(9), (10). Suppose that z} is given on Ej, . and (t(”l),x(m)) € Ep, and we
calculate 'z‘ffﬂ’m) by using the Lax scheme. It follows from (9), (10) that
the numbers

Efl'r,m—ei)’ Eflr,m+ei), i=1,....n

appear in (4). Note that
gm—ei) & AT for i=1,....,k and z(mte) & A
for i=k+1,...,n.

This is the reason why the Euler method is more suitable than the Lax
scheme. Numerical experiments confirm the above theoretical observation.
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The monograph [4] contains an exposition of recent developments of
numerical methods for hyperbolic functional differential problems.

The aim of the paper is to show that for each equation (1) with suffi-
ciently regular f and V the Euler method can be constructed.

The assumption that the functions sign J,, f, ¢ = 1,...,n, are constant
is omitted in the paper. In other words, we show that the Lax scheme is
superfluous for the numerical approximation of classical solutions of (1).

Since we consider implicit difference schemes, then we show that assump-
tion (12) can be also omitted in convergence theorems.

2. Generalized Euler method for initial problems
We formulate implicit difference methods of the Euler type for (1), (2).
Write
BUE:_ = {(t,:l:) EF:x;=b — Mit},
3()Ei_ = {(t,.’E) eE:x;=-b+ Mit},
where 1 < ¢ < n. We need the following assumptions on f.
AssuMPTION Hy|f]. The function f € C(2, R) is such that

1) the partial derivatives 0, f = (Oz, f,-..,05,.f), Opf, Ogf = (Oqif,---,
0Og,. f) exist on Q and 0, f, 05f € C(}, R™), Opf € C(}, R),
2) there is A € Ry such that for P = (¢, z,p, q) € Q we have
10:F (P, 18pf(P)], |8 (P)Il < A,
3) there is § > 0 such that
alh'f(t,xapa q) <-4 for (t,:L‘,p, q) € aOE:— xR xR"
and
Og f(t,z,p,q) >6 for (t,z,p,q) € E xR xR"
where 1 <7 < n.

REMARK 2.1. Suppose that Assumption Hp[f] is satisfied. For given 2z €
C(Eo U E,R), u € C(E,R"™) consider the bicharacteristic g[z,u](-,t,z) =
(91[z,u](-, ¢, 2), - .., gnl2,u](-,t,2)) as the solution of the Cauchy problem
(14), (15). By Ho|[f], 3) there is an g9 > 0 such that
(i) functions g;[z,u](-,t,z) : (t —ep,t] — R are strictly increasing for each
(t,z) € BE}, 1<i<m,
(ii) functions g;[z,u|(-,t,z) : (¢t —€o,t] — R are strictly decreasing for each
(t,z) €OE;,1<i<n.
This property of bicharacteristics is important in the construction of
implicit difference methods for (1), (2).

Now we formulate assumptions on V' and on interpolating operators.
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ASsuMPTION H|[V, T}, Lp]. Suppose that the operator V : C(Ey U E,R) —
C(F,R) satisfies the Volterra condition and

1) if 2 € CY(Ep U E,R) then there exist partial derivatives 9,V [z] =
(0, VI2],-..,0:,V[2]), 0:V[z] € C(E,R"),
2) there is an operator T}, : F(EpoU Ep,R) — C(E,R) such that

(i) there is L € R4 such that for z,Z € F(EoU E, R) we have
(17) 1Th(2] = Tul2lls» < Lllz = 2||ar, 0<r <K,
(i) there is u > 0 such that for each function v € C?(EyU E, R) there
is ¢p € Ry such that
(18) IV[v] = Tulonlllyny < cohy, 0<r<K,
where v}, is the restriction of v to the set Ep o U Fjp,.
3) there is an interpolating operator Ly, : F(E, oUEp, R1*t") — C(E,R")
with the properties
(i) there is Ly € R4 such that for (z,u), (2,4) € F(EpoU Ep, R1™)
we have
(19) |l Ln[z, u} = Lp[2, @lllyy < Lolllz— Zllhr +lu—allns], 0<r <K,
(ii) there is v > 0 such that for each function v € C?(EyU E, R) there
is ¢; with the property
(20) ”Lh[vha (8mv)h] - a:z:V['U]”t(r) < C1h6, 0<r<K,
where (9,v)p are the restrictions of d;v to the set Ep g U Ej,.

Examples of the operator V, T}, Ly are given in Section 4.

Note that condition 1) of Assumption H[V,T}y, Lp] implies that T}
satisfies the following Volterra condition: if (t(’),a;) € Ep, and 2,7 €
F(Eh_o U Ex,R) and z2(r,y) = z(r,y) for (,y) € Ey, then Tj,[2](t™),z) =

T [2)(t™), z). It follows from condition 3) of Assumption H [V Ty, Ly) that
the operator Ly satisfies the Volterra condition.

Suppose that the Assumption Hy[f] is satisfied. Let

Ef, ={(t,z) € E:b;— Myt — e < z; < b; — Mjt}

and
E, ={(t,z) € E: —bi + Mit < x; < —b; + Mt + €},

where 1 < 7 < n. By condition 3) of Assumption Hy[f] there exists € > 0
such that

)
O, f(t,z,p,q) < ~3 for (t,z,p,q) € EZ'E xR x R"™
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and 5

0 f(t,z,p,q) > 3 for (t,z,p,q) € E;_, x R xR".
Let
(21) H={h=(h0,fz)eﬁ:hz—<g for 1<i<n}.

We write a difference problem corresponding to (1), (2). The unknown
functions in a difference system are denoted by (z, u), where u=(uy, . . ., up).
Put

5ozt = L (ptrim) _ ().
(22) 10 1<i<n,
(souz('r,m) - h_O( 1('T+1,m) _ ugr,m))7
(Sou(r,m) — (60u§'r,m), o ,(50’(1,,2’1’"‘)),

and

POm [z 0] = (M), 2™ Ty, [z ™), u(mm),
We consider the system of difference equations
(23) 802" = F(PT™)2,u)) + Oy f(PT™ [z, 4]) [ §20rH1m) — 4 (nm) |T
(24) 6™ = 8, F(PT™z,ul) + B f(PU™[z,u]) Lylz, u] ™™

+ 0, f(PE™ [z, u)) [ Gulr+1m) |7

with the initial condition
(25) 2™ =™, W =yt for (¢, 20™) € By,

where ¢y : Epg — R, ¥, 1 Epg — R are given functions. The difference
operators (d1,...,0,) for spatial variables are given in the following way.
Suppose that (¢, z(m) ¢ E} and that the functions (z,u) are known on
the set Ep, .

(26) If Oy, f(P"™[2,u]) > 0 then 8;2"+1™) = hi(z<f+1ym+ei> — rHlm)y,

1

and

@) - ), s

(28) If 8, f(P"™[z,u]) < O then &;2("+b™) = %(z(T+1,m) — plr¥lm—e))
and '

(9) sl - S ), <<,

j h;
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We put i =1,...,n in (26)—(29), and

52(T+1’m) — (51Z(r+1’m), e 5nz(r+1,m)), 5u(r+1,m) — [5juz(r+1,m)]ij=1 e

The above difference functional problem is called a generalized implicit Euler
method for (1), (2). It is important in our considerations that the difference
expressions 6z and éu appear in (23), (24) at the point (t"+1), (™),

REMARK 2.2. It follows from (26)—(29) that the generalized implicit Euler
method has the following property: the definition of the operator 2z at the
point (¢ 2(™)) depends on the local properties of the function 0qf. More
precisely, it depend on the numbers

(sign 8, f(PT"™]z,u)), ..., sign B, f(PT™z,u))).

We prove that under natural assumptions on given functions and on the
mesh there exists exactly one solution (21, up) : EpoUER — R of implicit
difference problem (23)—(25).

REMARK 2.3. If we apply method (4), (5) to solve problem (1), (2) numeri-
cally then we approximate derivatives with respect to spatial variables with
difference expressions which are calculated by using the previous values of
the approximate solution. If we use method (23)—(25) then we approximate
the spatial derivatives of the unknown function by using adequate difference
equations which are generated by the original problem. Therefore numer-
ical results obtained by (23)—(25) are better than those obtained by (4),
(5). We give suitable examples in Section 5. Notice that the assumptions
on the right-hand sides of equation (1) are more restrictive for the methods
(23)—(25) than for the classical schemes.

REMARK 2.4. Note that the implicit difference method generated by (4) has
the form

(30) d2™) = f(t0), (™) V3 [2) ™) g rHLm),

Then the solution 2 : EpoU Ep — R of problem (5), (30) is obtained by
solving of nonlinear systems of algebraic equations. The solution (zp,up) :
Epo U Ep, — RI'™ of implicit difference problem (23)—(25) is obtained by
solving of linear systems.

The difference functional problem (23)-(25) is obtained in the following
way. Suppose that Assumption Hy[f] is satisfied and that the derivatives
Ozp = (05,0, -..,0z,p) exist on Ey. The method of quasilinearization for
nonlinear equations consists in replacing problem (1), (2) with the following
one. We first introduce an additional unknown function v = 9,z in equa-
tion (1). Then we consider the linearization of (1) with respect to the last
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variable:
(31) Bz(t,z) = f(Ulz,ust,2)) + 8y f (Ulz, ust, 7)) [ Be2(t, x) — ult, z) |7,

where Ulz,u;t,z] = (¢, z, V[2](t, z), u(t, x)). Differential equations for u we
get by differentiation of equation (1) with respect to z. The result is

(32) 8tu(t’ :C) = a:cf(U[za u; t, "L'])
+0pf(Ulz,u;t, x]) 8;V[2](t, ) 4+ 8,f (U2, u; t, z]) [ Bpu(t, z) 7.

It is natural to consider the following initial boundary condition for (31),
(32):

(33) z(t,z) = p(t,x), u(t,x)=0z0(t,x) for (¢t z)€ Ep.

Difference problem (23)—(25) is a discretization of (31)—(33).
Let

A® = (o™ oM € b4 (M, b~ M)}, 0<r<K.

The difference functional equations

(34) Lr+lm) _ hoaqf(P(r,m) [2,4]) [52(T+1,m) d
and
(35) urtim) — hoaqf(p(r,m) (2, u]) [5u(r+1,m) ]T

are principal parts of (23) and (24) respectively. We prove a lemma on
difference inequalities generated by (34), (35). Put

T e, u) = {5 € {1,...,n} : 85, F(PT™z,)) > 0},
T ] = {1,y \ TSz, ).

LEMMA 2.1. Suppose that h € H, and 2z, € F(EpoU Ep,R), up € F(EpoU
En,R™).

(1) If zp, and uy, satisfy the implicit difference inequalities
a0 1™ < oDy f (PO [z, unl) [ 82 7,
ufl T < hody f(PO™ iy, wi) [ Sufl T |,
where (t), (™) € E}, and initial estimates
z,(:’m) <0, uglr’m) <@

are satisfied on Ej, o then z,(lr’m) <0 and ug’m) < 8 on Ey,.
(II) If the difference inequalities

z’(1r+1,m) > hoaqf(P(T’m)[Zh,uh]) [52’(:4-17"1) ]T7

ugr-i-l,m) > hoaqf(P(r,m) [zh7uh]) [(5U§:+Lm) ]T’
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are satisfied on E} and
(r ™) >0, ugr’m) >0 on Ehg

then z(r ™ >0 and u(r ™) > 6 on Ej,.
Proof. Consider the case (I). Suppose that 0 < r < K —1 and there exists
™ e AT+ such that z,(:H’ﬁl) = M, where

M = max {z,(:H’m) (™ ¢ A(T"'l)},
and
(36) 2T s o,
It follows from the difference inequality that
zi(:-%—l,fr’z) < ho Z hi B4, f (PT™ [z, up]) (Z’(:‘+1,'r7z+ei) _ z’(Lr+1,ﬁz))‘
i€ "™ [z, un) ’

tho X a0 P e unl) (e ) <o,
iGJ(_T'm) [zh,uh]

We thus get z,(:H’ﬁ‘) < 0 which contradicts (36). In a similar way we prove

that uglr’ﬁl) < 0 on Ej. The case (II) can be treated in the same way. This
completes the proof.

LEMMA 2.2. If Assumptions Hy[f] and H[V, Ty, Ly are satisfied then there
exists exactly one solution (z,un), zn : EngUER = R, up : EpoUER, — R™,
of difference functional problem (23)-(25).

Proof. Suppose that 0 < r < K — 1 is fixed and (zp,up) are known on the
set By, .. Consider the linear system

37) AT = 5™ 4 g f(PO™) 2, up])
+ hoB f(PT™ [z, up)) [ 62040 — 7™ T,
(38) plrtim) — ug’m) + hoOz f (P(r’m) [2h, up))
+ hoOp f (P"™ [z, up]) Ln[2n, up] ™™
+hoBy f (PT™ [z, up]) [ Sulrtim) T

with unknown functions z("+1m) 4 (r+1m) where (™ e A+, Suppose
that (t(,2(™) € E} and 8y, f(P"™ [z, us]) > 0. Then

6iz(r+1,m) _ l[z(r—}—l,m—f—ei) _ z(r+1,m)]

i
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and )
+1, +Hme; +1, :
Jiuy m = E—[ugr mted) _ ug-r m)], 1<j<m.

It follows from condition 3) of Assumption Hp[f] that z(™+e:) ¢ A(+1) and
the difference expressions ;z("t1™), (Siug.”l’m), 1 < § < n, are well defined.
The same conclusion can be drawn for 8, f(P™ [z, up]) < 0.

The homogeneous problem corresponding to linear system (37), (38) has

the form

z(r+1,m) - hoaqf(P(r,m) [zh7uh]) [52(r+1,m) ]T,

pr+im) — hoaqf(P(r,m) [Zh,Uh]) [ Su(r+1m) ]T_
It follows from Lemma 2.1 that the above system has exactly one zero so-
lution. Then system (37), (38) has exactly one solution z,(LrH’m), ugﬂ’m),
™ e A+1) and consequently the functions (zp,u) are defined and they
are unique on Ejy ,41. Since (2zp,up) are given on Ej o then the proof is
completed by induction.

3. Convergence of the generalized implicit Euler method
Throughout this section we will need the following assumptions on f.

ASSUMPTION H|o, f]. Suppose that Assumption Hy[f] is satisfied and there
is a function o : [0,a] x Ry — R such that

1) o is continuous and it is nondecreasing with respect to both variables,
2) o(t,0) =0 for t € [0, a] and for each ¢ > 1 the maximal solution of the
Cauchy problem

n'(t) = cln(t) + o(t,en(t))], n(0) =0,
is 7(t) = 0 for t € [0, qa],
3) the terms
Hazf(tam)pa q) - azf(ta'xaﬁa a)”a |6pf(t’ z,p, Q) - apf(t,l"np, ?j)l,

”6qf(t, z,p, q) - 6qf(t» xaﬁ? q)”
are bounded from above by o(t, |p — B| + |l¢g — Gl}),

THEOREM 3.1. Suppose that Assumptions H|f,o] and H|V, Ty, L] are sat-
isfied and

1) the function ¢ : Ey — R is of class C?> and v : EUE — R is the
solution of problem (1), (2) and v is of class C? on EgUE,

2) (zn,up) : EpoUEy — R is the solution of difference problem (23)-
(25) with operators &y, & defined by (26)-(29) and there is ag : H —
R, such that
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(39) 1™ — o ™|+ 96" ™ — 4™ < ao(h) on Eno
and limp_,g ag(h) = 0, where H is defined by (21).
Then there is o : H — R such that
(40) lvn = zallar + 11(Bzv)n — unllne < alh), 0<r <K,
and
}3_12) a(h) =0,
where vy, = v|g, quE, and (0zv)n = Ozv|E, (uE, -

Proof. Write w = 8,v. Then the functions (v,w) : Eg U E — R satisfy
quasilinear system (31), (32) and initial condition (33). Let us denote by
&n i EpoUER — R and A : EpgU Ep — R™ the functions

(41) E’(lr,m) — v’(:",m) _ Z’(Lr,m)’ /\flr,m) — wl(lr,m) _ ugr,m),
where
Vb = V|E, UE,, Wh = W|E, qUE,-
Put
(42) i = léalnr, @) = 1Mnllnr, 0<T <K,

and wp = wpg + wp.1. We will write a difference inequality for the function
Wh-
We first examine wp . Set

Ur™ iy, w] = (0, 2™, V{p]™m™ | pTm),

Let the functions I'y g, Apg : E}, — R be defined by
(43) F%n ) = dov,(lr’m)—atv(’"’m)+6q f{Uu (rym) [v, w]) [amv(r’m)—év,(:-i'l’m) ]T
and
(44) ASY = FUT™ o, wl) = F(PO™ [z, un])

= 8 f (U™ v, w]) [w™ |7

+ 8 f(PO™ 2, up]) [uff™ T

+[0af U™ o, w]) = 0y f (PU™ e, unl)] [ vy ™ .
It follows from (23) and (31) that
(45)  Soe™ = 0 F(P™ e, wi)) [ 86 T+ TG + AT,

where (t("),z(™)) € E,. We conclude that relation (45) is equivalent to



Implicit difference methods 139

n

1 ram
(46) 6’(Lr+1,m)[1 + hOZ 77;laqjJt'(lzy(r,rrz)[z’“uh])” — Eg ym)
J=1

+he S —aq,f(P(’ ™ 2, up]) £ T
'EJ(r‘m)[zh,uh] ]

“ho Y O fPOaual) €7 4 Rl + A

GEIT™ [2hup)
It follows easily that there is 79 : H — Ry such that
(47) |F(T m)l <<v(h) on E; and ’lzin%) Y(h) =0,
where Ej is given by (3). There is ¢ € R, such that
(48)  16zv(t, @)}, NOuv(t,)ll, 0:VI](t,x)| <€ for (t,x)€E.
It follows from Assumptions H{f, o] and H{V, T}, L] that
(49)  FUTo,wl) — FPElen, unl)] < Aleohf + dioy,
where (¢, z(™) € E}, and

d =max{l,L}.

In the same way we can see that

180 f U™ v, w]) = 8 f(P™ [zn, un))| < o(t™, cohly + doy),
where (£, z(M) ¢ E;, and consequently
(50) AT < Alcoht + dw") + 280 (T, cob + dw'”) + Aw'T).
We see at once that

(61) ho ) —%f(P(’ ™ 2, up]) JE0TIEE)|
. (r,ym) J
]€J+ [Zh ,Uh]

—ho Y —6 , F(PO™ [z, ) (€577

F€TT™ 2 up]

< T S 10, F(PO o ).
=1
We conclude from (46), (49), (50), (51) that
(52) Wi < W 4 hoAw ) + hoyo(h) + hoAlcoht + dw”)
+2h0ca(t(r),cohg + dw,(:)), 0<r<K-1.
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Now we write a difference inequality for wp ;. Let the functions Ay, : E;, —
R", Ty, : E; — R™ be defined by
(53) ™ = sowi™™ — Bw™
+ 8, (U™ o, w]) [ Bpw™™ — swy ™ |T

and
(54) AJ™ = 8, (U™ (v, w]) — B f(PT™ [z, un])

+8p f(UT™ [v, w]) B, V [v] ™™

— Op f (P™™ (2, up]) Ln[2zn, un)™™

+ [aqf(U(r,m) [v, w]) - 3qf(P(r,m) [2n, un))] | 5w£r+1,m) I7.
Then the function A satisfies the difference equation

(SOA;:,m) — 0qf(P('r,m) [zhy uh]) [ 51\5:‘4-1,771) ]T

+ Fg’"m) + Ag":m), (t("'),x(m)) (= E;l'

It follows from the definition of difference operators (é1,...,d,) that the
above relation is equivalent to

n
1
(55) AT+ Y 100, (P e, unl) = R
j=1
1 , .
the Do Oy F(PE [, u]) AT
5€JE™ [2n,un)
1 e
—ho Y =0 FP™ e, anl) AT 4 holTy ™ + AT,
jGJST’m)[Zhyuh]
where (¢t("), (™) € E}. There is v : H — Ry such that
(56) ICy™lI <A(h) on B} and lm~(h)=0.
It follows form Assumptions H[f] and H[V, T}, L] that
182 F(U ™ [v, w]) — 8 f(PT™ [z4, un))|| < o (¢, cohly + duwy)

and the same estimate we obtain for the derivatives 0, f and 9, f. It follows
from Assumption H[V, T}y, L] that

185V 0] ™™ — Lylzn, un] ™| < c1hl + Low”,
where (¢, 2(m) € E|. We thus get
67 AC™) < (14 20)0(t™), coh + dw”) + Alcrhl + Low(™],
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where (¢, 2(m) ¢ E}. It is easily seen that
(58) ho 3 -0 fPO L wl) AT
j€Jylrm)
—h Y %aqu(P“’"‘)[zh,uh1>||A§:”“”"‘e”||

jeJ_[rm]

< T Y Loy, £PE™ e, ),
j=1 h
where (¢, 2(™) € E!. We conclude from (55), (57), (58) that
(59) W™ < w4 ho(1 + 28)0(coht + dw?))
+ hoAlerthl + Low(”] + hoy(h), 0<r<K -1,
where (¢, 2(™) € E,,. Adding inequalities (52), (59) we get

60) WY < Wl 4 hoao(t), cohtt + dw") + hodw” + ko (h),

0<r<K-1,
where _ _
a=1+4¢, d= A(l+d+ Ly),
3(h) = 70(h) +v(h) + Alcoh§ + c1h().
Con51der the Cauchy problem
(61) W' (t) = dw(t) + G0 (t, cohly + dw(t)) +F(h),

(62) w(0) = ag(h).
It follows from Assumption H|f, o] that there is €9 > 0 such that for ||| < e
there exists the maximal solution 7, : [0,a] — R4 of (61), (62) and

’llin%) Nr(t) =0 uniformly on [0, al.
The function 7y, satisfies the recurrent inequality
(TH) > 77(?) + hodn( "+ hoto (t), cohly + Jng)) + ho?,

where 0 < r < K — 1. Since w( ") < n(r) by the above inequality and (60)
we have

(T) < n(r) for 0<r<K.
Then we obtain estimate (40) for a(h) = nxp(a). This proves the theorem.

REMARK 3.1. Suppose that all the assumptions of Theorem 3.1 are satisfied
with B
o(t,p) = Mp, (t,p) € [0,a] x Ry,



142 A. Kepczynska

where M € R;. Then we have assumed that the functions 0, f, 0pf, Oqf
satisfy the Lipschitz condition with respect to (p,q) and we have the esti-
mates

lvh — 2ellhr + 10zvh — unllnr < @(h), 0<r <K,

where

- La _ B
a(h) = ag(h)ek® + 5(h)S—— if L >0,

a(h) = ao(h) + a7(h)

and
L=d+adM, #(h)=ahh+cihy+Db,
a=dcoM + Acy, b=C(1+ ||M])).
The above estimates are obtained by solving problem (61), (62).

REMARK 3.2. In our considerations we need estimates for the partial deriva-
tives of the solution v of problem (1), (2). One may obtain them by the
method of differential inequalities, see [9] vol. II (Th. 9.2.1 p.120, Th. 9.2.2
p. 123) and [11] (Th. 37.1 p.113).

4. Examples of interpolating operators

In this section we assume that A = M hg. Then we can write the defini-
tions of Ey and Ep in the following way:

Eon={(t",2™): -No<r <0, -N<m< N},
By={({t",z™): 0<r <K, |mi| <N;j—i, i=1,...,n}.
Put B = [-b,b] and By, = {z(™ : —N < m < N}. For a function

w : By, — R and for a point (™ € By, we write w(™ = w(z(™). Set
Sy ={s=(s1,--,8n):8,€{0,1}for1 <i<n}.

We first consider the operator Qy : F(B;,R) — F(B,R) as follows. Let
w € F(B;,R) and z € B. There exists m € Z" such that ™ < g < gm+1)
and (™ g(m+1) ¢ B;, where m +1=(my +1,...,m, + 1). We define

_gm)\® _ g\ 1
vl = 3w () (1-557)

seSy

z—zM\° £ a:i—xz(-mi) .
< h >_1_[1( hi )’

where
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_ a(m)\ 1-s n o ma) N 1-s
T— T —Z;
(-=7) -H(-=5—)

i=
and we take 0° = 1 in the above formulas. If [ag, bg] C R and w : [ag, bg] x
B; — R then we write

Qulul(t) = 3 wlatmd) (T2 (1 22

s€Sy h

where z € B, z(™ < g < z(m+1) and (M) g(m+1) ¢ By

We define now the interpolating operator Uy, : F(Eyg,UEp, R) — F(EyU
E,R) in the following way. Suppose that w € F(Fpp U Ep,R) and (¢,z) €
EyUE, —by <t < Khy. Two cases will be distinguished.

I. Suppose that (¢,z) € Eg U E and there is (r,m) € Z'*" such that
[tM), 1 +D] x [z £(m+)] ¢ By, U Ep,. We define

— ¢ —¢"
o Qatul(er .2 + (1= S ) Qulule®, )

I1. Suppose that (¢,z) € E and there is (r,m) € Z'*" such that

(1) t(r) <t t(T+l) and .’E(m) <z< l'(m+1),
(i) (¢0,2(M), (¢, 20"+ € B and (0, 2(™) € &F or (¢7),z(mD) €
OoE.

Define the sets of integers I[r,m], I_[r,m], Io[r,m] (possibly empty) as
follows

(63) Unlw](t,z) =

Lijrym|={i:1<i<n, J;gmiﬂ) = b; — M;t™},
I[r,ml={i:1<i<n, mgmi) =—-b; + Mit(r)},
IO[T, m] = {la s ,n} \ (I+[T7 m] U I—[Ta m])

Write Z = (%1,...,%,) and & = (&1, ..., %n), where
. h A - ; .
z; = :rl(-m') + ——_t(r+1;)_ t(.’Bi - :vgm‘)) and Z; = zgm’) for i € I [r,m],
A h , N ; .
Z; = xz(m’H) ﬁ;(z, - mgm’ﬂ)) and Z; = :Egm’ﬂ) fori € I_[r,m]

and Z; = ; = x; for ¢ € Iy[r,m]. Therefore we define Up[w](¢,z) by the
formula

—¢n
Qulul(t40.3) + (1= 50 ) Quful (1, 3).

If (t,z) € EgUE and Kho < t < a then we put Uy [w](¢, ) = Up[w]|(Kho, z).
Then we have defined Up[w] : Eg U E — R. It it easy to see that Upfw] €
C(Ey U E,R).

t —

(64) Uplw|(t,z) =
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The above interpolating operator was first introduced in [4], Chapter 3.
The following properties of Uy are important in our considerations.

LEMMA 4.1. Suppose that the function w € C?(EyU E,R) and
|0sw(t, z)|, Otz w(t, z)|, |Oze,w(t,z)| < C, 4,5 =1,...,n,

where (t,z) € Eg U E. Let us denote by wy, the restriction of w to the set
Eyp, U E,.
Then

|Un[wh] (¢, x) — w(t, )| < Chy,
where (t, ) € EgUE, t < Khg, and C = 3C(1 + | M|))%.
The above lemma is a consequence of Theorem 3.18 in [4], Chapter 3.

LEMMA 4.2. Suppose that the function w € C*(EpU E,R) and
|Osw(t, z)|, |0s,w(t,z)| < C,i=1,...,n,

where (t,x) € Eg U E. Let us denote by wy, the restriction of w to the set
Egp UE;,. Then

(65) |Un[wh](t, z) — w(t, z)| < C*ho,
where (t,x) € EgU E, t < Khg, and C* = C(1 + | M|)).

Proof. It is easy to show by induction with respect to n that for z(™ <
z < z{m*+1) we have

@ B

s€ESL

Write
Afs, P = Zaxzw @™ — ),

where s € S, P EqUE.

Suppose that (t,z) € Eg U E and t( < ¢t <t z(m) < ¢ < g(m+1)
and [t tD] x [z(m™) 2(m+D] € Eg U E. Then Uy[wy] is defined by (63)
and there are P,Q € FEy U E such that

— ¢
Uh[wh] (t,$) — w(t, q;) — t—1 { Z [w(t,w) + atw(P)(t('r-l-l) . t)

h
0 seESy
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+ (1 _t _h(t)()){ 3 [w(t,z) + Bw(@)(E) ~ ¢)

s€ESL

The above relation and (66) imply (65).
In a similar way we prove (65) in the case when Up[wy](t, z) is defined
by (64). This proves the lemma.

Now we give examples of the operators V' and the corresponding inter-
polating operators Ty and Ly,

EXAMPLE 4.1. Suppose that the functions
Yo :[0,al > R, ¢ =(1,...,¢¥n): E—R"

are given. We assume that

1) 9o € C([0,a],R) and —by < ¢(t) <t for t € [0, al,

2) ¥ € C(E,R™) and the partial derivatives

[0, i (t, T))i j=1,..n = Oc¥(t, T)
exist on E and 0,9 € C(E, Myxn),
3) (¢0(t),¢(t,33)) € Eg UFE for (tvx) €k

Let the operator V : C(EyU E,R) — C(E,R) be given by V[z](t,z) =
2(¢o(t),¥(t,z)). Then V satisfies the Volterra condition and equation (1)
is equivalent to the equation with deviated variables

Ouz(t, ) f(t, 2, 2(¢o(t), ¥(¢, 7)), O:2(t, ).
Let the operators Ty, : F(Ep gUER, R) — C(E,R), Ly, : F(EpoUEL,R™) —
C(E,R"™) be defined by
Th[z](t’x) = Uh[z](%(t),w(t,-’t)), (t,.’L‘) €E,
Lh[Z,U] = (Lh.l[z7u]a ) Lh.n[z’ ’LL]),

Lh.j [27 u] (t7 .’L‘) = Z Uh[ui]("/}O(t)) <P(t, x))az]d)] (ta .CC), (t7 "I:) €FE.
=1

Note that Ly, does not depend on the function z in our example.
It follows from Lemma 4.1 and 4.2 that Assumption H([V, T}, Ly] is sat-
isfled with 4 = 2, v =1, and

Lo = max{||0;¥(¢, z)| : (¢t,z) € E},
co=3C+IMI), e =2Lo(1+ M),
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where C € R is a constant such that estimates
(67) |Buev(t, @)l |Besv(t @), |Baayv(t @) < C
are satisfied on Ey U E.

Now we consider differential integral equations. Suppose that x € N,
1 < k < n, is fixed for each z = (z1,...,2,) € R™ we write z = (z/,z")
where ¢’ = (z1,...,2x), " = (Tg+1,...,n). We have 2’/ =z if kK = n.

EXAMPLE 4.2. Consider the operator V : C(Ep U E,R) — C(E,R) given
by

t

Viz|(t, ) = S S z(r, s, x")ds'dr,
—bg —z’
where s’ = (s1,...,8¢). Then (1) is equivalent to the differential integral
equation
t
Oz(t, ) = f(t,z, S S 2(r, s, 2")ds'dr, 0,2(t, T)).
—bg —z’
Put
t o
Th2](t, ) = S S Upl?)(r,§,2")ds'dr, (t,z) € E,
—bo —z’

where z € F(Epo U E,R). Then the Lipschitz condition (17) is satisfied
with

K
L= (a+b)2*[]b:
: i=1

Note that the numbers T,[2]("™) may be calculated by using the results
presented in [4], Chapter 5. If v € C?(Ey U E,R) then estimate (18) holds
with g = 2 and

co = 5O+ [ MI)2*(a+ o) [T b

i=1
where C is given by (67). Write
Z'[§] = (@1, -+, Tj=1, Tj41s- - -, Tie)s s'[j] = (815 -+185=1,8j41, -+~ Sk),
s'l4, 7] = (S1)-++,85—1, T, 8j41, -+ Sk,
where 1 < j < k. Put
t «'[j]
Li[2](t,z) = S S 2(1, ' [j, z;], 2")ds'[j]dr.
~bo —2'[j]
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Consider the operator Lp[z,u] = (Lp1[z,u], ..., Lrnl[2,u]) given by
Lh-j [Z, u](t’ .’I)) = I][Uh[Z]](t, .'I?) - IJ[Uh[Z”(t’ L1y s Tj—1, —Tj, Lj4+1y-- -, xn)

for 1 <j<kand

t
Lujlz,u) = | | Unlunjl(r,6',2")ds'dr for k+1<j<n.
—bo —x'

Then we have
I Lulz,u] — La[z,@lllye) < L{llz = Zllnr + llu — @l|h.s]

with

K K

L=2%a+b0)D]]b; D=max{1, (b:)7"}.
i=1

i=1
If function v € C%(Ep U E, R) then
| La[vr, (Ozv)n] — OcV [v]l|yr) < e1ho, 0<r <K,
where
n - K
aa=[1+(a+b)n—r+> ()] (1+M]) C2*[] b
i=1 i=1

and C is given by (67). Thus we see that Assumption H[V, T}, L] is satis-
fied.

5. Numerical example
For n =1 we put

E =10,0.5] x [-1,1], Ep={0} x[-1,1],
Consider the differential equation with deviated variable
(68) Oz(t,z) = —2052(t, ) + sin (20, 2(t, x)) + 2(t,0.5z) + 2(¢, —0.5z)
—sin (ztz(t, 7)) + (1 + t)e'® — 05 — 705
with the initial condition
(69) 2(0,z) =1, z € [-1,1].
The solution of the above problem is given by

Z(t,z) = .
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Let us denote by 2z, the solution of the implicit difference problem corre-
sponding to (68), (69). By Z, we denote the solution of the explicit prob-
lem

ArHLm) _ %(z(nmﬂ) + rm=1y _ hom(m)%(z(r,m-kl) _ 4rm-1)
1

+ ho sin[:c(m) 2—1111 (z(mm+D)

— 2N 4 ho(2(6,0.52(™) + 2(¢), —0.52(™)

N+ ho(2(t™, )+ 2(7, )
— ho(sin (x(m)t(’) z(r,m)) + x(m)(l + 1t(r)) exp (t(T)x("‘))
— exp (0.5t z(™) — exp (0.5t N z(™)).

Stability of the above difference method, obtained from (68) by using the
Lax difference schemes, requires from steps of time and spatial variable sat-
isfying the Courant-Friedrichs-Levy condition (11).

We give the following information on errors of the methods. Write

N
() — _1___ (rm) _ ~rm)
L N e

N
Sr) _ 1 S(rm) _ ~(r,m)
D= X, A

The numbers ag) and Eg) are the arithmetical mean of the errors with fixed
("), The values of the functions ¢;, and &, are listed in the table. We write

” % ” for &7 > 100.
Table of errors (ep, £p)
hg = 0.005, h; =0.001
Eh En
t=0.75 0.000884 0.000764
t=0.80 0.000979 0.000833

t=10.85 0.001083 0.064984
t=0.90 0.001194 X
t=0.95 0.001315 X

t=1.00 0.001445 X
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Table of errors (gp, €p)

ho = 0.01, h; =0.001

Eh En
t=0.75 0.001807 X
t=0.80 0.002005 X
t=0.85 0.002220 X
t=0.90 0.002452 X
t=0.95 0.002701 x
t =1.00 0.002970 X

The results shown in the table are consistent with our mathematical

analysis.

Our experiments have the following property. The explicit difference

method for steps hg = 0.005, h; = 0.001, which are not satisfy the condition
(11), is not stable. The implicit Euler method is stable aside from selection
of steps.
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