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ADJOINT FUNCTIONS TO BOUNDARY SOLUTIONS 
OF DIFFERENTIAL INCLUSIONS AND SMOOTHNESS OF 
BARRIER SOLUTIONS ON SEMIPERMEABLE SURFACES 

Abstract. The problem of existence of adjoint functions to boundary solutions is 
considered - it depends on the geometry of the attained set at the end point. This is 
applied to prove the smoothness of boundary solutions in the case of strictly convex 
right-hand side of differential inclusion which in turn permitts to show the smoothness of 
barrier solutions on semipermeable surfaces. 

1. Introduction 
This work is a continuation of investigations included in [10] concerning 

the regularity of solutions of differential inclusions which do not exit so 
called semipermeable surfaces. Such problems were considered in [2] and 
[3] where one of main assumptions was the smoothness of dF(x), where 
F ( - ) is the right-hand side of corresponding differential inclusion. We are 
interested in the regularity of barrier solutions under weaker assumption of 
strict convexity of F(x). 

Let us fix first the basic notions - we refer to [10] for more details. The 
solutions of a differential inclusion 

(1) x G F(x) 

where x G Q C Q open, F(x) C Md, are understood in the sense of 
Caratheodory (absolutely continuous functions x(-) defined on an interval 
with x(t) G F(x(t)) almost everywhere in the domain). 

DEFINITION 1.1. We call a multifunction F : fi of Lipschitz type if 
the sets F(x) C Md are nonempty, compact, convex and 
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(2) 3 L > 0, V® , y G i î : F ( y ) C F(x) + L\\x - y\\Bu 

where B\ denotes the closed unit ball in 
Remark that (2) is a usual Lipschitz condition for multifunctions with 

respect to the HausdorfF metric. We add the compactness and convexity of 
F(x) as we always require it. 

SolF(x0,T), where XQ G il and T > 0, is the set of all solutions of (1) 
defined on [0, T] and satisfying 
(3) X(0) = X Q . 

A(xo,t) = {x(t) : x(-) G SolF(xo,i)} is the set of points which can be re-
ached starting from XQ and using solutions of (1),(3) on [0, t}. 

A solution x(-) € So[p(xo,T) is called boundary if x(t) G dA(xo,t) for 
all t G [0,T], 

Let K C M.d. We refer to [1] for the notions of contingent cone TK(%), 
Dubovitski-Miliutin tangent cone D^-(x), the Clarke's tangent cone and the 
hypertangent cone 
DEFINITION 1.2. The boundary dM of a closed set M C Kd is semipermeable 
in an open set U with respect to the differential inclusion (1) if the following 
conditions hold: 

(i) V Ç e M n i / , 3 T > 0 , 3x(-) eSo\F{Ç,T), V i e [0 ,T] : x(t) G M, 
(ii) V ^ G M n i / , 3T> 0, Var(-) G Sol_F(^,T), V i G [0,T] : x(t) G M. 

For Lipschitz type multifunctions F(-) the third important condition implied 
by (i) and (ii) is valid for semipermeable surfaces: 

(hi) V£ G dMDU, 3T > 0, Vx(-) G SolF(£,T), Vt G [0,T] : x(t) G M, 
where M = R d \ M . 

The properties (i) and (iii) ensure the existence of barrier solutions defi-
ned below. 
DEFINITION 1.3. We call barrier solution on a semipermeable boundary dM 
every solution of (1) which starts on dM and does not quit it. 

Barrier solutions start from any point of dM but not necessarily every 
point of dM is crossed by some barrier solutions. This is connected with 
some regularity properties of dM. 

The C1 regularity of barrier solutions was already discussed in [2] 
and [10]. A natural condition which is required is the strict convexity of 
F(x), examples given in [10] show why this assumption should not be omit-
ted. The general idea is based on the use of an adjoint function to the barrier 
solutions x(-) i.e. such absolutely continuous map p : [0, T] —> Rd for which 
(4) H(x(t),p(t)) = (x(t),p(t)) a.e. in [0,T] 
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where H(x,p) = m&x{(v,p) : v €E If the sets F(x) are strictly convex 
then 
(5) x(t) = Argmaxy^^iv,p(t)) a.e. in [0,T] 
and due to the continuity of (x,p) —> Arg m a x ^ ^ ) (v, p) the function i(-) 
is almost everywhere equal to a continuous function. This implies that £(•) 
itself must be continuous as it is a derivative of the integral of continuous 
function. 

In view of the above remarks crucial for getting the desired regularity of 
barrier solutions is the existence of adjoint functions. In [10] the existence of 
adjoint functions was obtained for barrier solutions which are also time opti-
mal solutions. In this paper we present two other approaches. One based on 
parametrization of multivalued maps, the other on application of differential 
Hamiltonian inclusions. 

2. Application of smooth parametrization 
The content of this section is based on a classical result - a version of 

the Maximum Principle of Pontryagin ([8], chapter 4, Theorem 3) which we 
recall at the beginning. 

Consider the differential equation below 
(6) x(t) = f(x(t),u(t)), x(0)=x0 

where / : ft x U Rd, ft C Rd, U C R m . Measurable functions u(-) occuring 
in (6) are usually interpreted as controls. Solutions are again understood in 
the sense of Caratheodory and xo) is the set of points attained by 
solutions of (6) at time T. 

T H E O R E M 2.1 . Suppose that f is continuous, ^ exists and is also continuous 
in (x, u). We fix a measurable control function u(-) and let x(-) be the corre-
sponding solution of (6). If x(T) G dA^(T,xo) then there exists a nonzero, 
absolutely continuous function p : [0, T] —> W* which satisfies the equation 

(the asterisk above denotes the transposition of a matrix) and for almost all 
t the condition 

(p(t), f(x(t),u{t))) = max(p(i), f(x(t),u)). 
u£U 

In order to apply the above theorem to our goals we would need to 
represent the initial value problem (1), (3) under the form of some control 
system (6). This can be achieved using so called parametrization of the 
multifunction F{-) by which we mean a function / : Q x B\ —> ]Rd with 
(7) f{x, Bi) = F(x) for all x G ft 
and / satisfying the assumptions of Theorem 2.1. 
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In view of remarks given in the previous section we may formulate now 
the following theorem which is implied by Theorem 2.1. 

T H E O R E M 2.2 . Let a multifunction F : fl has strictly convex values 
and admit a continuous parametrization f : il x —> satisfying (7). If 

exists and is continuous in (x, u) then every boundary solution of (1) is 
of class C1. 

So, if only we know that such regular parametrization exists then the 
regularity of boundary solutions, and in consequence of barrier solutions on 
semipermeable surfaces, is assured. 

There exist theorems on parametrization of multifunctions in the litera-
ture. One based on projections on convex sets published by I. Ekeland and 
M. Valadier in [7] and other due to S. Lojasiewicz Jr. using the notion of 
Steiner points of convex sets (see [1]) with a variant given by A. Ornelas [11]. 

These mentioned authors prove the regularity of their parametrizations 
with respect to x - continuity in the case of Ekeland and Valadier, Lipschitz 
condition in the case of Lojasiewicz and Ornelas. But we need more to ap-
ply in Theorem 2.2, which is our goal. The existence (and continuity) of 
(df/dx)(x,u) would be necessary. The problem is whether under some re-
asonable assumptions on our multifunction F the parametrization described 
in [7]), [1] or [11] has this property. Unfortunately, this is not the case. 

To see why the answer to the above question is negative one has to 
analyse the way how the parametrizations are constructed. We think that 
showing their deeper nature in this discussion presents an interest in itself 
although does not provide a tool to resolve our main problem - that will be 
done farther. 

All this does not mean that Theorem 2.2 is useless. In some situations 
the right-hand side of differential inclusion (1) may be given directly thro-
ugh a parametrization. In such case this theorem provides the regularity of 
boundary solutions and barrier solutions on semipermeable surfaces. 

2.1. Parametrizations of Ekeland-Valadier and Lojasiewicz 
We assume now that F is bounded and let M > 0 be such that F(x) C 

M • B\ for x G i l 
We start with the description of parametrization defined in [7]. It can be 

given the following form where the projection on convex sets F(x) is used. 

f(x, u) = p r o j F ( x j ( M u ) , for x G ii , u G B\. 

The condition (7) is satisfied, / is Lipschitzean in u and continuous in x 
but in general the derivative d f / d x does not exist apart particular cases 
like when F does not depend on x or F(x) = {4>(x)} and </>(•) is a usual, 
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single-valued, differentiable map. This is illustrated by Example 2.1 below 
which will serve also to discuss the parametrization of Lojasiewicz. 

The definition of parametrization of Lojasiewicz requires the notion of 
Steiner point of a convex set which we recall now. By UJ we mean the Lebesgue 
measure on the sphere Sd~l in Md and a(p,K) = max{(p, u) : u G K} is 
the support function of a convex set K C Md. Then the Steiner point of K 
is defined by the integral 

v V gd-1 

An auxiliary multifunction $ : f2 x Bi —> Conv(Rd) is defined (a slightly 
simplified version in comparison to [1]) 

u) = B(Mu, 2 dist(Afu, F(x)) D F(x). 

Remark that when Mu G F(x) then u) is reduced to {Mu} and in the 
opposite case it is a piece of F(x) contained in the ball centered at Mu. 

The parametrization is now defined as the Steiner point 

f ( x , u ) = s($(®,u)). 

$ is Lipschitz in x (Lemma 9.4.2 in [1]). The Steiner point s(K) is also 
Lipschitzean in K with respect to the Hausdorff metric so / is Lipschitzean 
in x. It is easy to see that / is also Lipschitzean in u. 

Unfortunately, when the interiors of F(x) are not empty and F is not 
constant then for none of those parametrizations df /dx exists - the reason 
for this can be seen in the following example. 

E X A M P L E 2 .1 . Let Q = ( 0 , 2 ) , F(x) = [x, 3] and denote by f i respecti-
vely the parametrizations of Ekeland-Valadier and Lojasiewicz. Then 

' 1 for x € (0,1] 
x for x € (1, 2), 

fE(x, 1) = 

h ( x , 1) = 
1 for x G (0,1] 

\ for x G (1,2). I 2" 2 
We see that although the behaviour of F(x) with respect to x is 'smooth' 

both parametrizations are not smooth. 

3. Existence of adjoint functions in the case of nonsmooth diffe-
rential inclusions 
In this section we prove some results on existence of adjoint functions 

to boundary solutions - and thus also on regularity of barrier solutions -
in the case when a smooth parametrization of the right-hand side of the 



112 A. Lesniewski 

inclusion (1) may not exist so in a sense this right-hand side itself is not 
smooth. It is natural to expect such kind of result having in mind that for 
an ordinary differential equation x = g(x) if only g is continuous (and need 
not be smooth) then every Caratheodory solution is of class C1 . 

We shall apply a theorem which makes use of Clarke's generalized gra-
dient of locally Lipschitzean functions - we recall now its definition (see [5] 
for details). Let ip : M.d —> R be such function, XQ G Rd and take any v G Rd . 
The generalized directional derivative is defined by 

<p°(xo;v) = limsup + hv) ~ <P(X) 
x—>xo,h—>0+ 

and the Clarke's gradient of ip at xo 

dcip(x0) = {pe Rd : (p,v) < (p°(x0;v) for all v G Rd}. 

T H E O R E M 3.1 ([5], Thm. 9.1). Let x(-) be a solution of the minimization 
problem 

(8) min{Z(x(T)) : ¿(f) G F(x(t)) a.e. in [0,T], x(0) = x 0} 

where I : fi —> R is a Lipschitzean function. Then there exists an absolutely 
continuous function p : [0, T] —> Rd such that —p(T) G dcl{x{T)) and the 
pair (x(-),p(-)) satisfies the differential inclusion 

(9) (-p(t),x(t))edcH(x(t),p(t)). 

We shall use the notion of a proximal normal to a set K at a point 
y G dK. This is every vector v for which there exists a > 0 such that 

K n B(y + av, a||w||) = {y}. 

The set of all proximal normals at a given point is a cone - it may reduce 
to the origin 0. It is known that the set of points at which nonzero proximal 
normals exist is dense in the boundary dK (see, for example, [5], Thm.3.1). 

We consider the differential inclusion (1) and corresponding attained set 
A(x0,T) for some fixed x0 G Rd and T > 0. 

T H E O R E M 3.2 . Let F : fi R D be a Lipschitz type multifunction and y G 
dA(xo,T). For at least one x(-) G Sol(xo,T), with x(T) = y, exists an 
adjoint function p : [0, T] Rd such that p{t) ^ 0 for all t G [0, T]. If in 
addition at y there is a nonzero proximal normal to A(xo,T) then to every 
such solution x(-) an adjoint function exists. 

P r o o f . We consider first the case when a nonzero proximal normal v to 
A(xo,T) at y exists and we fix an a > 0 for which A(xo,T) fl B(y + 
q:w,q||u||) = {y}. Every solution x( ) of the initial value problem (1), (3) 
for which x(T) = y is a solution of the optimisation problem (8) for l(u) = 
II«- (y + otv)\\. 
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We apply now Theorem 3.1. Remark first that dcl(y) = — v/IMI so 
there exists an absolutely continuous function p : [0,T] —> such that 
p(T) = f/|H| and the pair (x(-),p(-)) satisfies the differential inclusion 

(10) (-p(t),x(t))edcH(x(t),p(t)). 

Due to the Lipschitz condition imposed on F it is true that for every 
(q, v) £ dcH(x,p) the inequality ||g|| < L\\p\\ holds, where L is the Lipschitz 
constant. Comparing with (10) we see that 

||p(i)||<L||p(i)ll a.e. in [0,T]. 
As p(T) ^ 0 so p(t) ± 0 for all t G [0, T] - if there was t0 with p(t0) = 0 
then the Gronwall's lemma would imply p(t) = 0. 

We apply Proposition 3.2.4 in [4] to deduce from (10) that x(t) € 
dp H(x(t),p(t)) a.e. in [0,T] - the generalized gradient is here taken with 
respect to the variable p. In view of convexity of function H(x,p) with re-
spect to p the Clarke's gradient dp H coincides with the usual generalized 
gradient dH/dp ([4], Proposition 2.2.7). As (dH/dp)(x,p) = {v <E F(x) : 
(p, v) = H(x,p)} so we finally get (4). 

We consider now the situation when at a point y £ 8A{XQ,T) there is 
no nonzero proximal normal to A(XQ,T). AS the set of points at which a 
proximal normal exists is dense in DA(xo,T) so there is a sequence yn of 
such points converging to y. We may also fix a sequence xn{-) of solutions 
of (1), (3) with xn(T) = yn. According to the first part of the proof we can 
also fix a sequence of their adjoint functions pn(-) such that 

(~pn{t),xn(t)) e dcH(xn{t),Pn(t)). 

The sets dcH(x,p) are convex and bounded and the map (x,p) —> dcH(x,p) 
is upper semicontinuous ([5], Chapter 2, Prop. 1.5). Using a standard proce-
dure (see, for example, [1], Chapter 7.2) we get a subsequence (xnk(-),pnk(-)) 
uniformy convergent to a solution (xo(')>Po(-)) °f (10), xo(0) = Xo, XQ(T) — y 
and llpoCOH = 1. 

In the same way as in the first part of the proof one may show that 
Po(t) / 0 for all t 6 [0,T] and (xo(-),po(-)) satisfies the condition (4). 

According to the discussion at the end of Section 1 we get the following 
property of smoothness of boundary solutions. 

COROLLARY 3 .1 . Let F : Q R d be a Lipschitz type multifunction and the 
sets F(x) strictly convex for all x. For every point y € DA(xo,T) exists at 
least one solution x(-) of (1), (3) satisfying x(T) = y which is of class Cl. 
If at y € 8A{XQ, T) exists a nonzero proximal normal to ^4(xo, T) then every 
such solution is of class Cl. 
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