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OSCILLATION T H E O R E M S FOR A CLASS 
OF S E C O N D O R D E R N O N L I N E A R D I F F E R E N T I A L 

EQUATION W I T H P E R T U R B A T I O N 

Abstract. In this paper we discuss the oscillatory and asymptotic behavior of a 
second order nonlinear differential equation with perturbation and establish two theorems 
which develop and generalize some known results. 

1. Introduction 
In the past few years, the oscillation problem for the following second 

order nonlinear differential equation with damping 

(£?i) (a(t)iP(x(t))x'(t))' + p(t)x'(t) + q(t)f(x(t)) = 0, ' = | 

has been studied [1,2], and the oscillation of the following second order non-
linear differential equations 

(E2) {a(t)1>(x(t))x'{t))' + q(t)f(x(g(t))) = 0 

and 

(E3) (a(t)iP(x(t))x'(t))' + q(t)f(x(t)) = 0 

have been investigated in [3,4]. And Jurang Yan[5] has given the oscillation 
theorems for a second order linear differential equations with damping 

(E4) (r(t)x'(t))' + p{t)x'(t) + q(t)x(t) = 0. 

In this paper we discuss the oscillatory behavior of the solutions of the 
second order nonlinear differential equation with perturbation of the form 

(1) (a(mx(t))x'(t)Y + Q(t,x(t)) = P(t,x(t),x'(t)), ' = ^ 
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where the condition 
<2> 

is not assumed and 

(v4i) a : [¿o, +00) —> R (R = ( — 0 0 , + 0 0 ) ) is positive continuously 
differentiable; 

(A2) ip : R R is continuously differentiable and ip(u) > 0 for u / 0; 
(As) Q € ([to, +00) x R —> R), and there exists a continuous function 

q{t) and continuously differentiable function f(x) such that ' > q(t) 
J\x) 

for x ^ 0, where q : [to, +00) —> R, q(t) not identically zero, i.e. there exists 
{ifc}, tk -> +00 such that q(tk) 0, / : R -> R, uf(u) > 0 and f'(u) > 0 
for u / 0 ; 

(At) P G ([i0, +00) x i?2 —> i?) and there exists p(t) G ([i0, +00) i?) 
such that x(t)P(t,x{t),x'(t)) < x(t)p(t)x'{t) for x ^ O . 

Throughout by a solution of Eq.(l) we shall mean a function which exists 
on [ i o , + o o ) satisfies Eq.(l) and x(t) ^ 0, t € [T, + 0 0 ) . As usual, a solution 
of Eq.(l) is said to be oscillatory if it has arbitrarily large zeros; otherwise 
it is said to be nonoscillatory. A nonoscillatory solution of Eq.(l) is said to 
be weakly oscillatory if x'(t) changes sign for arbitrarily large values of t (see 
[3, 6]). Eq.(l) is called oscillatory if all its solutions are oscillatory. 

With respect to their asymptotic behavior, all the solutions of Eq.(l) can 
be divided into the following four types: 

S+ = {x = x(t) solution of Eq.(l): there exists tx > to, such that 
x(t)x'(t) > 0 for t > tx}; 

S~ = {x = x(t) solution of Eq.(l): there exists tx > to, such that 
x(t)x'(t) < 0 for t > tx}; 

S° = {x = x(t) solution of Eq.(l): there exists {tn},tn —> +00, such 
that x(tn) = 0}; 

Swo = {x = x(t) solution of Eq.(l): 
x(t) 0 for t sufficiently large and 

for all ta > to there exist tai > ta, ta2 > ta such that x'(tai)xr(ta2) < 0}. 
With very simple argument we can prove that S'+, S~, S°, Swo are mu-

tually disjoint. By the above definitions, it turns out that solutions in the 
class S+ are eventually either positive nondecreasing or negative nonincre-
asing, solutions in the class S~ are eventually either positive nonincreasing or 
negative nondecreasing, solutions in 

the class S° are oscillatory, and finally, 
solutions in the class Swo are weakly oscillatory. 
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2. Main results 
In this section, we establish two oscillatory theorems of Eq. (1). 

LEMMA 1. Assume that i ( j ( x ) f ' ( x ) > c > 0 for x ^ 0. If for sufficiently 

large T 

(3) lim inf \ 
t->+oo J 

T 
l(s) 

p2(s) 
ds > 0, 

4ca(s)_ 

then Swo = 0 for Eq. ( 1 ) . 

Proof . Suppose that Eq.(l) has a solution x(t) € Swo. There is no loss 
of generality in assuming that there exists t\ > to such that x(t) > 0 for 
all t > t\. (For x(t) < 0, the proof is similar.) Thus for all ta > t\ there 
exist tai,ta2 > ta, such that x'(tai)x'(ta2) < 0. Therefore there exists the 
sequence {Cn} —> +oo such that x'(Cn) < 0. Let sufficiently large N be such 
that CM satisfies the condition (3). i.e., 

lim inf \ 
t->+oo J 

CN 

p\s) 

Consider the function 

W(t) = 

4ca(s) 

a(t)i(j(x(t))x'(t) 

Then it follows from Eq.(l) when t > t \ 

ds > 0. 

t > tx. 

W'(t) = -
Q(t,x(t)) x(t)P(t,x(t),x'(t)) 

+ - aW(x(t))f'(x(t)) 
P(x(t)) f(x(t)) x(t)f(x(t)) ^ 

< "9(0 + " aM(x(t))f(x(t)) X' (Î) 

= ~q(t) + 
p2(t) 

P(x(t)) 

4 a{t)^{x{t))f>{x{t)^ 

v W W l X ' { t ) 
P(t) 

< -q(t) + 
p2(t) 

/(*(*)) 2 y/a{t)1>(x(t))f'(x(t)) 

4ca(t)' 

For all b > t\, integrating the above inequality from b to t, we have 

(4) 
a(t)ip{x(t))x'(t) < a(b)i/;(x(b))x'(b) _ j p2(s) 

4ca(s) 
ds. 

Then for the above C'/v when t > Cat we have 

a{t)ip{x(t))x'{t) < a(CN)iP(x(CN))x'(CN) _ j 

f{x{CN)) 
CN 

q(s) 
PHS) 

Aca(s) 
ds. 
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a(t)4>(x(t))x'(t) ^ a(CN)iP(x(CN))x'(CN) 
t—>+00 f(x(t)) - f(x(CN)) 

+ limsup{— J 
t—>+oo CN 

< z t o -
p2(s) 
4ca(s) 

ds} < 0. 

Then for all t > Cjv we obtain x'(t) < 0, which gives a contradiction since 
x' (tai)x' (ta2) < 0. The proof is now complete. 

LEMMA 2. Assume that ip(x)f'(x) > c > 0 for x ± 0. If 

(5) 

and 

(6) 

+oo 

to 
<7 to ds 

t ^ +oo 
lim \ Moo,-1 a(s) 

to v ' 
S 

P 2 t o 
4ca(s) 

P2(r) 
4 ca(r) 

< +oo 

drds = +oo, 

f (u) furthermore ——- is strongly superlinear, that is 
ip(u) 

+oo 

(7) \ -77-fd« < +oo, \ ?rH-du > - o o J f 11/1 J 

/or all e > 0, then for Eq.(l), we have S+ = 0. 

P r o o f . Suppose that Eq.(l) has a solution x(t) € S+. There is no loss of 
generality in assuming that there exists t\ > ¿o such that x(t) > 0, x'(t) > 0 
for all t >t\. (For x(t) < 0, x'(t) < 0, the proof is similar.) As in the the 
proof of lemma 1 we can acquire (4). From (5) we obtain (t > b, x'(t) > 0), 

0 < 
a(b)ip(x(b))x'(b) +oo 

Thus for all t > 6 we have 

f r / \ P 2 t o 

I " i ^ M 
}ds. 

+ f b w _ É i ± ì d s < 
t 4ca(s)1 f(*(t)) 

So we can obtain 
t 

S 
t ^ +oo r r . . p2(r) . Î Mx(s))x'(s)J 

, a(s) ~—.. , b y
 ' s

 v > b 
Letting t —> +oo, which contradicts condition (6) and (7). The proof is 
complete. 
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THEOREM 1. Assume that p(t) > 0 , t > t o and xp(x)f'(x) > c > 0 for x ^ 0 . 
If the conditions (3 ) , (5 ) , (6) and (7) hold and 

< 1 
(8) lim \ —rrds = +oo, 

t - » + o o J a(s) to v ' 

then Eq. (1) is oscillatory. 

P r o o f . It follows from Lemma 1 and Lemma 2 5 + = Swo = 0 for Eq. (1). 
Therefore, to prove Theorem 1, it suffices to show that S~ = 0 for Eq. (1). 
Let x(t) be a solution of class S~ of Eq. (1). There is no loss of generality in 
assuming that there exists t\ > to such that x(t) > 0, x'(t) < 0 for all t>t\. 
(For x(t) < 0, x'(t) > 0, the proof is similar.) It follows from (3) there exists 
¿2 > t\ such that 

for t > t2- From Eq. (1), x'(t) ^ 0 for t > t2. Suppose for t > ¿2 then 
x'(t) = 0. So it follows from Eq.(l) Q(t,x(t)) = P(t,x(t),x'(t)). Because of 
(A3) and (A4) we have q(t)f(x) < p(t)x'(t), then q(t) < 0, which contradicts 
condition (3). So x'(t) ^ 0 for t > ¿2• There exists ts > such that x'(t3) < 
0. Integrating Eq.(l) from t3 to t, we have 

t 
a(t)iP(x(t))x'(t) = a(t3)^(x{t3))x'(t3) + J P(s,x(s),x'(s))ds 

¿3 
t 

- J Q(s, x(s))ds 
t3 

t t 
< a(t3)^(x(t3))x'(t3) + J p(s)x'(s)ds - J q(s)f(x(s))ds. 

<3 t3 

Because p(t) > 0 and x'(t) < 0, we get 

t 
a(t)x(j(x(t))x'(t) < a{t3)xl>{x{t3))x'(t3) - \ q(s)f(x(s))ds 

t3 

p\s) 
= a(t3)iP{x(t3))x'(t3) -

«3 
? W 4ca(s) 

f(x(s))ds 
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t 

< a(t3)i;{x(t3))x'(t3) - j 

is 

P2(s) 
4ca(s) 

= a(t3)i>(x(t3))x'(t3) - f ( x ( t ) ) J q(s) 

f(x{s))ds 

P 2(s) 

+ J f'(x(s))x'(s) \ 

Î3 t3 

t3 

P 2 ( r ) 

4ca(s) 

drds 

ds 

4ca(r)_ 

< a(t3)iP(x{t3))x'(t3) = k (k< 0 ) . 

Consequently, for all t > t3 we have 

x(t) t x 

\ ip(u)du < k \ —^—ds. 

X(t3) '3 V ' 

Observe that the condition (8) and the fact 0 < x(t) < x(t3) imply that 

x{t3) 

lim 
t—>+oo 

ip(u)du = + o o , 

x(t) 

and so a contradiction since lim x(t) exists finite and tp is continuous. The 
t—•+oo 

proof is now complete. 

L E M M A 3. Assume that ij:{x)f'(x) > c > 0 for x ^ 0. If the condition (7) 

hold and 

(9) lim \ 
t->+oo J 

1 
\ drds = + o o 
r a ( r ) 4ca(s) 

is satisfied, then S+ = 0 and S w o = 0 for Eq. (1 ) . 

P r o o f . (I ) Suppose that Eq. ( l ) has a solution x(t) 6 S+. There is no loss of 
generality in assuming that there exists t\ > to such that x(t) > 0, x'(t) > 0 
for all t > ti.(For x(t) < 0 , x ' ( t ) < 0, the proof is similar.) Consider the 
function 

w m = > S « > * . 
/ ( x ( f ) ) 

Then it follows from Eq. ( l ) that 

a(s) 

W'(t) = 
-(a(t)j>(x(t))x'(t)) 

! t 

S o(s) 
ds + 

a(t)tj;(x(t))x'2(t)f(x(t)) 

f2(*(t)) 

t 1 

11 a(s) 
ds 

ip(x(t))x'(t) 
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Q(t,x(t)) x(t)P(t,x(t),x'(t)) + a(ty<P(x(t))x>2(t)f>(x(t)) 

f(x(t)) x(t)f(x(t)) P(x(t)) 

1 
•ds 

> «(*) ~ + a(tMx(t))f'(x(t))- X'2{t) 
7 2 ( * ( i ) ) J 

{ 1 
S ~T\ d s -
i a ( s ) 

t\ a(s) 

^(x(t))x'(t) 

ip(x(t))x'(t) 

n m 

m 

+ 

p2(t) 
4 a(t)i>(x(t))f>(x(t)) 

2 t 

> 

So 

(10) 

9 ( 0 -
P 2 W 
4ca(i) 

-ds — 

a(s) 
ds 

> s 
il 

ti «(*) /(*(*)) 

p2(S) J 1 
ti a ( r ) tj /(*(«)) 4ca(s) 

Noting the condition (7) and (9) we obtain 

lim W(t) = +oo, 
t—*+oo 

which contradicts with the assumption W(t) < 0. 

(II) Suppose that Eq. (1) has a solution x(t) 6 Swo. There is no loss 
of generality in assuming that there exists t\ > to such that x(t) > 0 for 
all t > t\ (For x(t) < 0, the proof is similar). For all ta > t\ there exist 
ta\ ,ta2 > ta, such that x'(tai)x'(ta2) < 0- Proceeding as in the proof of the 
above (I), we obtain (10), i.e., 

liminf W(t) > liminf \ 
11 

P2(s) 
4ca(s)_ S a(r) 

drds 

+ liminf { - \ oo \ . 
tp(x(s))x'(s) 

ds 

Noting the condition (7), 

lim sup j ^ y ^ d s 
ii i^+oo f(x(s)) 

has upper bound. In fact, from the condition (7) we know it has upper bound 
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for x'(s) > 0. And for x'(s) < 0 we know 0 is upper bound. Then 

t ip{x(s))x'(s) 
lim inf{— J ^ > 

t\ f ( x ( s ) ) 

has lower bound. Noting the condition (9) we have x'(t) < 0 for all lar-
ge t, which gives a contradiction since x'(tai)x'(ta2) < 0. The proof is now 
complete. 

THEOREM 2. Assume that p(t) > 0 f o r t > t 0 and i p ( x ) f ' ( x ) > c > 0, x ^ 0. 
If the assumptions (7), (8) and (9) are s a t i s f i e d , then Eq. (1) is oscillatory. 

P r o o f . It follows from Lemma 3 that S+ = S w o = 0. Therefore, to prove 
Theorem 2, it suffices to show that S~ = 0 for Eq.(l). Let x(t) be a solution 
of type S~ of Eq.(l). Without loss of generality, we may assume that there 
exists t\ > to such that x(t) > 0 , x ' ( t ) < 0 for all t > t\. (For x(t) < 
0, x'(t) > 0, the proof is similar.) Consider the function 

- a ( t ) i , ( x ( t ) ) x \ t ) j 1 
w { t ) = — 7 m — ¿ ¡ m " * ' 

As in the proof of Lemma 3 we obtain (10), i.e., 

W(t) > i [ ? W _ i - ^ d r d s - S î i ^ f M ^ * . 
J 4ca(s) ¿ o ( r ) t\ f ( x { s ) ) 

In view of condition (9), W(t) —> +oo for t —> +oo. Then there exists 12 > t\ 
such that W(t) > 1 for t > t2. Therefore 

ib(x(t))x'(t) 1 
^ V)J W < , , , t > t 2 . 

Let A(t, t i ) = fti -¿f^ds. Prom the above we can acquire x'(t) < 0 for t > t2 

and 

X(r] MU) J f 1 A(t,h) 
I •1-rrJrdu < - I ——— -ds = - In ' i J . -> - 0 0 it - > + 0 0 ) . 

z ( L ) / ( u ) ~ 1) A f o , t i ) { ' 

Then x(t) —> 0 (t —> +00). It also follows from (9) that there exists ¿3 > t2 

such that 
s 

«3 
5 4ca(s) 

1 

Integrating Eq. (1) from Î3 to t, we have 
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t A H t- t> 1 

\(a{s)ip(x(s))x'(s))' \ ^-drds = l P{s,x(s),x'(s)) \ ^^drds 

t3 a ( r ) t3 î3 a ( r - ) ts 

\ Q(s,x(s)) \ ——drds. 

ts ts fl(T) 

Then integrating the left side we obtain 

x(t) t J X(t) t S J 

a{t)ip(x(t))x'(t) \ dr < \ ip(u)du+ \ p(s)x'(s) \ drds 

Î3 <3 Î3 o(r) 
x(t3) 

t S 1 

- 5 g(s)f(x(s)) 5 — - drds. 

ts tz ^ ' 

Since p(t) > 0 and x'(t) < 0, we have 

t j x(t) t s , 

a(t)i>(x(t))x'(t) \ dr < J ï>(u)du - \ q{s)f(x{s)) J drds. 

t3 x{t3) t3 t3 
a(r) 

Then 

(11) o(t )^(x(t ) )x ' ( i ) i ¿ y d r 
¿3 

x(t) t 

< \ ij)(u)du - \ 

x(t3) t3 

q(s)~ 
P2(s) 

4ca(s) 

\ i -TTdrds 
4 c a ( s ) J K .{ o ( r ) 

s 1 
f ( x ( s ) ) \ -r^drds 

a{T) t3 

ts 

x(t) t 

< \ ip(u)du - \ 

x{t3) ts 

ts 

Q(s) 
P2(s) 

4ca(s)_ 
f ( x ( s ) ) \ —r^drds 

ts a ( r ) 

x(t) 

= \ rp(u)du-f(x(t))\ 

x(ts) t-3 

q(s) -
P2{s) 

4ca(s) 

+ 5 f'(x(s))x'(s) \ 

ts ¿3 

x(t) 

< J ip(u)du. 

x(ts) 

q{u) -
P2(u) 

4 ca(u) 

s 1 
t —r^drds 

i a ( T ) 

1 
drduds 

ts 
a{r) 
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Consequently, for t —> +00 we have x(t) —• 0. Then there exists £4 > ¿3 such 

that x(t) < f°r all i > ¿4. And there exists the constant L such that 

x(t) 

J tp(u)du < —L. 

x(t3) 

Noting Eq.(ll) we can acquire 
1 

i>(x(t))x'(t) < - L 1 , t > U. 
a { i ) St3 W ) d T 

Then it follows from the above inequality that 

A / t t \ 

\ ip(u)du < —Lin '—- —> —00 ( t —> +00), 

which contradicts with the facts that the left of inequality has lower bound. 
The proof is now complete. 

3. Examples 
In this section, we give two illustrative examples. 

EXAMPLE 1. Consider the equation 

1 , „ A ' 1 1 
( 1 2 ) ) ~ L T X ' { T ) + ¡ R 3 ( I ) = ( I > 0 ) ' 

where a(t) = l,ip(u) — u~2. Let q(t) — t~*,p{t) = t~1,f(u) = u3. It is 
easy to verify that Eq. (12) satisfies the conditions of Theorem 1. Therefore, 
Eq. (12) is oscillatory. However, using any known results, we can not obtain 
the conclusion. 

E X A M P L E 2. Consider the equation 

(is) (Jtrf'w) ~ T T t x ' { t ) + ¿ x 3 ( i ) = { t > 0 ) ' 

where a(t) = 1 ,ip(u) = u~2. Let q{t) = t~2, p(t) = (1 + i ) " 1 , f(u) = u3. 
It is easy to check that Eq. (13) satisfies all the conditions of Theorem 2. 
Therefore, Eq. (13) is oscillatory. However, using any known results, we can 
not obtain the conclusion. 

Acknowledgement. We wish to express our gratitude to the referee for 
his valuable help in rewriting this paper. 
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