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OSCILLATION THEOREMS FOR A CLASS
OF SECOND ORDER NONLINEAR DIFFERENTIAL
EQUATION WITH PERTURBATION

Abstract. In this paper we discuss the oscillatory and asymptotic behavior of a
second order nonlinear differential equation with perturbation and establish two theorems
which develop and generalize some known results.

1. Introduction

In the past few years, the oscillation problem for the following second
order nonlinear differential equation with damping
d

(Br)  (a(O)y((®)=' (1)) +p()2'(t) + 9())f(=(1)) = 0, "= —

has been studied [1,2], and the oscillation of the following second order non-
linear differential equations

(Er) (a(®)y(z()z'(t))" + a(t) f(z(9(t))) = 0
and
(E3) (a(t)y(z())'(t))" + q(t) f(=(t)) = 0

have been investigated in [3,4]. And Jurang Yan[5] has given the oscillation
theorems for a second order linear differential equations with damping

(E4) (r(t)z' () + p(H)z'(t) + q(t)z(t) = 0.

In this paper we discuss the oscillatory behavior of the solutions of the
second order nonlinear differential equation with perturbation of the form

(1) (@EEOR ) + QU a(®) = Pal),1), "=
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where the condition

@ tim_{[g(s) — 220

4ca(s)

lds = +o00

is not assumed and

(A1) a : [to,+o00) = R (R = (—o0,+00)) is positive continuously
differentiable;
(A2) v : R — Ris continuously differentiable and (u) > 0 for u # 0;
(A3) @ € ([to, +o0) x R — R), and there exists a continuous function
flz) ~
for x # 0, where q : [tg, +00) — R, ¢(t) not identically zero, i.e. there exists
{tx}, tx — +oo such that ¢(tx) #0, f: R — R, uf(u) > 0 and f'(u) >0
for u # 0;
(Ag) P € ([to,+o0) x R* — R) and there exists p(t) € ([tg, +00) — R)
such that z(¢t)P(t, z(t), z'(t)) < z(t)p(t)z'(t) for z # 0.

q(t) and continuously differentiable function f(z) such that

Throughout by a solution of Eq.(1) we shall mean a function which exists
on [tg, +00) satisfies Eq.(1) and z(t) £ 0, t € [T, +00). As usual, a solution
of Eq.(1) is said to be oscillatory if it has arbitrarily large zeros; otherwise
it is said to be nonoscillatory. A nonoscillatory solution of Eq.(1) is said to
be weakly oscillatory if z'(t) changes sign for arbitrarily large values of ¢ (see
[3, 6]). Eq.(1) is called oscillatory if all its solutions are oscillatory.

With respect to their asymptotic behavior, all the solutions of Eq.(1) can
be divided into the following four types:

St = {z = z(t) solution of Eq.(1): there exists t, > tg, such that
z(t)z'(t) > 0 for t > t;};

S~ = {z = z(t) solution of Eq.(1): there exists t; > tp, such that
z(t)z'(t) < 0 for t > t;};

SO = {z = z(t) solution of Eq.(1): there exists {t,},t, — 400, such
that z(¢,) = 0};

SWO — [z = z(t) solution of Eq.(1): z(t) # 0 for t sufficiently large and
for all t, > to there exist to, > ta, tay > to such that z'(ta,)z'(ta,) < 0}.

With very simple argument we can prove that S+, 57,5, SWO are mu-

tually disjoint. By the above definitions, it turns out that solutions in the
class St are eventually either positive nondecreasing or negative nonincre-
asing, solutions in the class S~ are eventually either positive nonincreasing or
negative nondecreasing, solutions in the class SO are oscillatory, and finally,
solutions in the class SW© are weakly oscillatory.



Oscillation theorems 97

2. Main results
In this section, we establish two oscillatory theorems of Eq. (1).

LEMMA 1. Assume that ¥(x)f'(z) > ¢ > 0 for x # 0. If for sufficiently
large T

(3) liminf§ [q(s) P }ds >0
T 4ca(s) -

t—+00

then SWO =@ for Eq. (1).

Proof. Suppose that Eq.(1) has a solution z(t) € S"©. There is no loss

of generality in assuming that there exists ¢; > to such that z(t) > 0 for

all t > ¢;. (For z(t) < 0, the proof is similar.) Thus for all ¢, > ¢ there

exist ta;,tay > ta, such that z/(t,,)z'(ta,) < 0. Therefore there exists the

sequence {Cp} — +o0 such that z'(C,) < 0. Let sufficiently large N be such

that Cy satisfies the condition (3). i.e.,
¢

it | o) -
N

p*(s)
4ca(s)

}dsEO.

Consider the function
W _a(®)y(z(t)2' (1)
O=""far) ~ 'Z™

Then it follows from Eq.(1) when t > t;

o QUa®) | sOPLE®.20) 2
Wi = o) )*() 20 (D) (t"pi((;))f SUNEE)
p(t)'(t , 2’2 (t

= —q(t) + A
U7 ), " 2
1o (< ()t) AEON 2\/a(t)¢(w(t))f’(x(t))]

S _Q(t) + 4ca( )
For all b > t;, integrating the above inequality from b to ¢, we have
a(t)p(x(t)z'(t) _ a(b)p(z(b))a’'(b) ¢ P AOR
“ o) S fa®) ) 0 )
Then for the above Cy when ¢t > Cny we have
at)p (@) () _ a(Cn)p((Cn))z'(Cn) | o) P*(s)
E@) S J@(Cw) ) ) Jas
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Therefore
lim sup ZPENZE) _ a(Cn)¥(2(Cn))z'(Cn)
t—-+o0 f=@®) f(z(Cn))
) _ t g pZ(S) S
+lim sup{ CSN [q( ) 4ca(s)]d } <o.

Then for all t > Cn we obtain z'(t) < 0, which gives a contradiction since
Z'(to, )2 (tay) < 0. The proof is now complete.

LEMMA 2. Assume that ¥(z)f'(x) > ¢ >0 forx #0. If

+o00

2(s
(5) S [q(S) - i::a((s))]ds < 400
and
t +o0 2 T
(6) t—léinoo S % S [q(T) - éf;a((‘r))] drds = 400,
furthermore 1{183 is strongly superlinear, that is
+00 u —€ u
(7 S %(u—;du < 400, S %du > —00

for all e > 0, then for Eq.(1), we have ST = 0.

Proof. Suppose that Eq.(1) has a solution z(t) € S*. There is no loss of
generality in assuming that there exists t; > ¢o such that z(t) > 0,z'(t) > 0
for all ¢t > ¢;. (For z(t) < 0, z/(t) < 0, the proof is similar.) As in the the
proof of lemma 1 we can acquire (4). From (5) we obtain (¢ > b, 2/(¢t) > 0),
/ +00 2
o< RO Ty 50,

- f(z(b)) §, 4ca(s)
Thus for all ¢ > b we have
o P

V)~ G = T Tt

t

So we can obtain

t R ),
Vi )0 G < ey

Letting ¢ — +o0o, which contradicts condition (6) and (7). The proof is
complete.



Oscillation theorems 99

THEOREM 1. Assume that p(t) > 0,t > tg and Y(z)f'(z) > ¢ >0 forx #0.
If the conditions (3), (5), (6) and (7) hold and
1

t
) tl1+moo tS a(s) ds = Foo,
0

then Eq. (1) is oscillatory.

Proof. It follows from Lemma 1 and Lemma 2 S+ = SW©O = { for Eq. (1).
Therefore, to prove Theorem 1, it suffices to show that S~ = @ for Eq. (1).
Let z(t) be a solution of class S~ of Eq. (1). There is no loss of generality in
assuming that there exists t; > to such that z(t) > 0,2(t) <0 for all ¢ > ¢;.
(For z(t) < 0,2'(t) > 0, the proof is similar.) It follows from (3) there exists
ty > t; such that

for t > t3. From Eq. (1), 2/(t) # 0 for t > t2. Suppose for ¢t > ¢, then
Z'(t) = 0. So it follows from Eq.(1) Q(¢,z(¢ )) = P(t,z(t),2/(t)). Because of
(As) and (A4) we have ¢(t) f(z) < p(t)z'(t), then ¢(t) < 0, which contradicts
condition (3). So z'(t) # 0 for t > t5. There exists t3 > to such that z'(t3) <
0. Integrating Eq.(1) from t3 to t, we have

a(typ(z(t))e'(t) = a(ts)P(z(ts))z'(t3) + | P(s, 2(s), 2/ (s))ds

t3
t
- S Q(S,.’E(S))ds
t3
t t
a(ts)P(x(ts))a' (t3) + § p(s)2'(s)ds — | q(s)f((s))ds.
t3 t3

Because p(t) > 0 and z'(t) < 0, we get

t
a(t)y(z(1)z'(t) < alts)y(z(ts))e'(ts) — | a(s)f(x(s))ds

t 2 s
()(alea)e’(t9) - | [ate) = 2 reato)as




100 Q. Zhang, F. Qiu, Z. Ji

< ats)p(e(ta))e (ts) — | [q<s> _ e ]f(w(S))ds

t 2 s
— a(t) (1)) () ~ (a0 | Jale) — 2 s

fs 4ca(s)
t s 9 -
+ {1626 | [atn - £Taras

t3 t3
< a(ta)¥(z(t3))2'(ts) =k (k <0).
Consequently, for all t > ¢t3 we have

I |
Y(u)du < k \ —ds.
=(t3) 2 (8)

Observe that the condition (8) and the fact 0 < z(¢) < z(t3) imply that

(t3)
li =
Jim S Y(u)du = 400,
z(t)
and so a contradiction since . li_{r{l z(t) exists finite and ¢ is continuous. The
—1+00

proof is now complete.

LEMMA 3. Assume that ¥(z)f'(z) > ¢ > 0 for z # 0. If the condition (7)
hold and
¢

i _p2(s) SLTS: 00
) t—1}+moo§, [q(s) 4ca(s)] ;a(T)d ds=+

is satisfied, then ST =0 and SWO =0 for Eq. (1).

Proof. (I) Suppose that Eq.(1) has a solution z(¢) € S*. There is no loss of
generality in assuming that there exists ¢1 > to such that z(¢) > 0,2/(t) > 0
for all t > t;.(For z(t) < 0,2'(t) < 0, the proof is similar.) Consider the
function

—apE®)) | 1
TEm) )l

Then it follows from Eq.(1) that

OO | L OO @) | 1,
[ e 7)) 2 afs)

W(t) = t > t1.

w'(t) =
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N EOREQLECLOR a(t)¢(w(t))w’2(t)f’(w(t))] F g,
1) T e () ) o)

)z

Fa®)

07 ) 20 11w
JLOR R @) ) ae) ™ T Fa®)

~ dea(t)] ) als) 7))
So
t 2 s : . ,
(10) w(t) 2 S [‘I(S) - %a(%] S %des - S %%s—)ds.
1 t

t1
Noting the condition (7) and (9) we obtain
lim W(t) = +oo,
t——+00
which contradicts with the assumption W (¢) < 0.

(IT) Suppose that Eq. (1) has a solution z(t) € SW©. There is no loss
of generality in assuming that there exists ¢t; > o such that z(t) > 0 for
all t > t; (For z(t) < 0, the proof is similar). For all t, > ¢; there exist
tarstay > ta, such that o'(tq, )2’ (ta,) < 0. Proceeding as in the proof of the
above (I), we obtain (10), i.e.,

t

- L p’(s) 17 1
lminf W) 2 mnf | - 55 ) e
o { _ { $E(E)T)
rmnt{ o

Noting the condition (7),
t !
Y()e'(s)

tmsup | =)

)
has upper bound. In fact, from the condition (7) we know it has upper bound
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for 2/(s) > 0. And for z'(s) < 0 we know 0 is upper bound. Then

t
P(z(s))z'(s)
s Lt

N ER

has lower bound. Noting the condition (9) we have z'(t) < 0 for all lar-

ge t, which gives a contradiction since z’(tq, )z (ts,) < 0. The proof is now
complete.

lim inf{—
t—+00

THEOREM 2. Assume that p(t) > 0 fort >ty and ¥(z)f'(z) > ¢ > 0,z # 0.
If the assumptions (7), (8) and (9) are satisfied, then Eq. (1) is oscillatory.

Proof. It follows from Lemma 3 that St = SW©O = (). Therefore, to prove
Theorem 2, it suffices to show that S~ = @ for Eq.(1). Let z(t) be a solution
of type S~ of Eq.(1). Without loss of generality, we may assume that there
exists t1 > tp such that z(t) > 0,2'(t) < 0 for all ¢t > t;. (For z(t) <
0,z'(t) > 0, the proof is similar.) Consider the function

—aEE)r) | 1
CONEO)

As in the proof of Lemma 3 we obtain (10), i.e.,

W(t) = s, t>t.

t 2 s t /
p(s) ;¢ 1 P(x(s))z'(s)
W(t) > \[g(s) — —=] \ ——=drds — \ ————ds.
® 2 1) = 3251 a4 = ) =Gy
In view of condition (9), W (t) — +oo for t — +00. Then there exists t2 > t;
such that W(t) > 1 for t > to. Therefore

Ple(®)2'(t) o _ 1
f@®)  ~ a(t)§; ds

a(s)

t > to.

Let A(t,t1) = Sil ﬁds. From the above we can acquire z'(t) < 0 for t > t
and

z(t) t
Ov, b1 A

o T ™= T A m T T Al

Then z(t) — 0 (t — +00). It also follows from (9) that there exists t3 > to
such that

— —00 (t — +00).

t p2(8) s 1
t{ [q(s) - 4ca(8)] ,§3 E(—T—deds 20, t21ts

Integrating Eq. (1) from t3 to t, we have
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t t s

S(a(s)z/}(w(s)) '(s)) S ——drds = S P(s,xz(s),z'(s)) S Ld7'ds

o ( ) s i o7)
t

- SQ(S z(s )S ides

& 5 (7)
Then integrating the left side we obtain

z(t) t s 1
dr < Y(u)du + ( ——drd
T z(§3) (u)du t{p(s)w s) th ) Tds

wwmm<nsh)

Then
(1) a(@pp()e(e) § ——dr

z(t) t 2 s
< xwww—sh@—ﬂll

IA
L ]
<
~
54
S’
.
<
I
Gy
| e—
o~
~~
-
=
N
~~
w
N
—
e
—
~~
N’
e
wh
U
\]
I3
®

t 2 s s
= S Y(u)du — f(z(t)) S [q(s) - :;a((z)] S %dﬂis

] 2 U u
+ { F@(s)e(s) § [q(u) - i’; a((u))] { %T)dfduds

103
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Consequently, for £ — +00 we have z(t) — 0. Then there exists ¢4 > t3 such

t
that z(t) < i;'z for all ¢ > t4. And there exists the constant L such that

(1)
| v(w)du < ~L.
z(t3)

Noting Eq.(11) we can acquire

1
YEt)r'(t) < ~L——f——, t>ts
a(t) st ﬁdr
Then it follows from the above inequality that
z(t)
A(tv t3)
wdu < —Lln———~ — —00 (t — 400),

z(ta)

which contradicts with the facts that the left of inequality has lower bound.
The proof is now complete.

3. Examples
In this section, we give two illustrative examples.

EXAMPLE 1. Consider the equation

1 "1 1
12 ——2'(t) ) — =2’ (t)+ S23(1t) =0, (t>0
where a(t) = 1,%(u) = u=2. Let q(t) = t_%,p(t) =t71 f(u) = w3 It is
easy to verify that Eq. (12) satisfies the conditions of Theorem 1. Therefore,
Eq. (12) is oscillatory. However, using any known results, we can not obtain
the conclusion.

EXAMPLE 2. Consider the equation
(13) oY - v+ L@ =0, (>0
z2(t) 1+t t2 - ’

where a(t) = 1,%(u) = u=2. Let q(t) = t72, p(t) = (1 + )71, f(u) = v
It is easy to check that Eq. (13) satisfies all the conditions of Theorem 2.
Therefore, Eq. (13) is oscillatory. However, using any known results, we can
not obtain the conclusion.
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