

Hidetaka Hamada, Gabriela Kohr

***k*-FOLD SYMMETRICAL MAPPINGS
AND LOEWNER CHAINS**

Abstract. Let B be the unit ball in \mathbb{C}^n with respect to an arbitrary norm on \mathbb{C}^n . In this paper, we give a necessary and sufficient condition that a Loewner chain $f(z, t)$, such that $\{e^{-t}f(z, t)\}_{t \geq 0}$ is a normal family on B , is k -fold symmetrical. As a corollary, we give a necessary and sufficient condition that a normalized locally biholomorphic mapping on B is spirallike of type α and k -fold symmetrical. When $\alpha = 0$, this result solves a natural problem that is similar to an open problem posed by Liczberski. We also give two examples of k -fold symmetrical Loewner chains.

1. Introduction

Let \mathbb{B}^n be the Euclidean unit ball in \mathbb{C}^n and let f be a normalized locally biholomorphic mapping on \mathbb{B}^n . Suffridge [20] proved that f is starlike if and only if

$$\operatorname{Re}\langle [Df(z)]^{-1}f(z), z \rangle > 0, \quad z \in \mathbb{B}^n \setminus \{0\},$$

where $\langle \cdot, \cdot \rangle$ is the Euclidean inner product in \mathbb{C}^n . Let $k \geq 2$ be an arbitrarily fixed integer and let $f_{1,k}$ be the $(1, k)$ -symmetrical part of f . Then Liczberski [11] showed that f is starlike and k -fold symmetrical if and only if $f_{1,k}$ is locally biholomorphic and one of the following conditions is satisfied:

- (i) $\operatorname{Re}\langle [Df_{1,k}(z)]^{-1}f(z), z \rangle > 0$ for $z \in \mathbb{B}^n \setminus \{0\}$ and $[Df_{1,k}(z)]^{-1}f(z)$ is k -fold symmetrical;
- (ii) $\operatorname{Re}\langle [Df(z)]^{-1}f_{1,k}(z), z \rangle > 0$ for $z \in \mathbb{B}^n \setminus \{0\}$ and $[Df(z)]^{-1}f_{1,k}(z)$ is k -fold symmetrical.

It is natural to pose the following open problem (cf. [11, Open problem 4.6]).

OPEN PROBLEM: Assume that $\operatorname{Re}\langle [Df(z)]^{-1}f(z), z \rangle > 0$ for $z \in \mathbb{B}^n \setminus \{0\}$ and $[Df(z)]^{-1}f(z)$ is k -fold symmetrical. Is $f(z)$ k -fold symmetrical?

1991 *Mathematics Subject Classification*: 32H02, 30C45.

Key words and phrases: k -fold symmetrical mapping, Loewner chain, spirallike mapping, starlike mapping.

Recently, k -fold symmetrical mappings are studied in [7], [9] and [13].

Let B be the unit ball in \mathbb{C}^n with respect to an arbitrary norm on \mathbb{C}^n . In this paper, we give a necessary and sufficient condition that a Loewner chain $f(z, t)$, such that $\{e^{-t}f(z, t)\}_{t \geq 0}$ is a normal family on B , is k -fold symmetrical. As a corollary, we give a necessary and sufficient condition that a normalized locally biholomorphic mapping on B is spirallike of type α and k -fold symmetrical. When $\alpha = 0$, this result solves the above open problem. It seems that it is very difficult to solve the open problem without using Loewner chain. We also give examples of k -fold symmetrical Loewner chains.

2. Preliminaries

Let \mathbb{C}^n denote the space of n complex variables $z = (z_1, \dots, z_n)$ with respect to an arbitrary norm $\|\cdot\|$. Let $B = \{z \in \mathbb{C}^n : \|z\| < 1\}$. The Euclidean unit ball in \mathbb{C}^n is denoted by \mathbb{B}^n . Let U be the unit disc in \mathbb{C} . Let $H(G)$ denote the set of holomorphic mappings from an open set $G \subset \mathbb{C}^n$ into \mathbb{C}^n . Further, let $L(\mathbb{C}^n, \mathbb{C}^m)$ be the space of all continuous linear operators from \mathbb{C}^n into \mathbb{C}^m with the standard operator norm. Let I be the identity in $L(\mathbb{C}^n, \mathbb{C}^n)$. A mapping $f \in H(B)$ is called normalized if $f(0) = 0$ and $Df(0) = I$.

For each $z \in \mathbb{C}^n \setminus \{0\}$, we set $T(z) = \{l_z \in L(\mathbb{C}^n, \mathbb{C}) : l_z(z) = \|z\|, \|l_z\| = 1\}$. Then this set is nonempty by the Hahn-Banach theorem.

If $f, g \in H(B)$, we say that f is subordinate to g , and write $f \prec g$, if there exists a Schwarz mapping v (i.e. $v \in H(B)$, $v(0) = 0$, and $\|v(z)\| < 1$, $z \in B$) such that $f = g \circ v$ on B . If g is biholomorphic on B , this condition is equivalent to $f(0) = g(0)$ and $f(B) \subset g(B)$.

We recall that a mapping $f : B \times [0, \infty) \rightarrow \mathbb{C}^n$ is called a Loewner chain if $f(\cdot, t)$ is biholomorphic on B , $f(0, t) = 0$, $Df(0, t) = e^t I$ for $t \geq 0$, and

$$f(z, s) \prec f(z, t), \quad z \in B, \quad 0 \leq s \leq t < \infty.$$

The above condition is equivalent to the fact that there exists a unique biholomorphic Schwarz mapping $v = v(z, s, t)$, called the transition mapping of $f(z, t)$, such that $f(z, s) = f(v(z, s, t), t)$, $z \in B$, $t \geq s \geq 0$. The normalization of $f(z, t)$ implies the normalization $Dv(0, s, t) = e^{s-t} I$ for $t \geq s \geq 0$.

A fundamental role in the study of Loewner chains and the Loewner differential equation in several complex variables is played by the following sets

$$\mathcal{N} = \{p \in H(B) : p(0) = 0, \quad \operatorname{Re} l_z(p(z)) > 0, z \in B \setminus \{0\}, l_z \in T(z)\}$$

and $\mathcal{M} = \{p \in \mathcal{N} : Dp(0) = I\}$.

The set \mathcal{M} is the generalization to higher dimensions of the Carathéodory set in one complex variable.

The basic existence theorem for the Loewner differential equation on B , originally due to Pfaltzgraff (see [14, Theorem 2.1]), can be improved by omitting the boundedness assumption on $h(z, t)$. The following proposition is due to [3, Theorem 1.4, Lemma 1.6] (cf. [5], [14], [19], [10]).

PROPOSITION 1. *Let $h = h(z, t) : B \times [0, \infty) \rightarrow \mathbb{C}^n$ satisfy the following conditions:*

- (i) *for each $t \geq 0$, $h(\cdot, t) \in \mathcal{M}$;*
- (ii) *for each $z \in B$, $h(z, t)$ is a measurable function of $t \in [0, \infty)$.*

Let $f(z, t)$ be a Loewner chain which satisfies the differential equation

$$(2.1) \quad \frac{\partial f}{\partial t}(z, t) = Df(z, t)h(z, t), \quad \text{a.e. } t \geq 0, \quad \forall z \in B.$$

Suppose that $\{e^{-t}f(z, t)\}$ be a normal family. Then for each $s \geq 0$ and $z \in B$, the initial value problem

$$(2.2) \quad \frac{\partial v}{\partial t} = -h(v, t), \quad \text{a.e. } t \geq s, \quad v(z, s, s) = z,$$

has a unique solution $v = v(z, s, t)$. The mapping $v(z, s, t) = e^{s-t}z + \dots$ is a univalent Schwarz mapping on B and is a locally Lipschitz function of $t \geq s$ locally uniformly with respect to $z \in B$. Moreover,

$$\lim_{t \rightarrow \infty} e^t v(z, s, t) = f(z, s)$$

locally uniformly on B for each $s \geq 0$.

REMARK 2. Let $f(z, t)$ be a Loewner chain. Then $f(z, \cdot)$ is locally absolutely continuous on $[0, \infty)$ locally uniformly with respect to $z \in B$ (see e.g. [5]). In [3], it is shown that there exists a mapping $h = h(z, t)$ such that $h(\cdot, t) \in \mathcal{M}$, $t \geq 0$, $h(z, \cdot)$ is measurable on $[0, \infty)$ for $z \in B$, and

$$\frac{\partial f}{\partial t}(z, t) = Df(z, t)h(z, t), \quad \text{a.e. } t \geq 0, \quad \forall z \in B.$$

Moreover, if $\{e^{-t}f(z, t)\}_{t \geq 0}$ is a normal family, then $f(z, t)$ satisfies the condition (2.2) in Proposition 1.

Let $\alpha \in \mathbb{R}$ with $|\alpha| < \pi/2$. A normalized locally biholomorphic mapping $f \in H(B)$ is said to be spirallike of type α if f is biholomorphic and the spiral $\exp(-e^{-i\alpha}t)f(z)$ ($t \geq 0$) is contained in $f(B)$ for any $z \in B$. When $\alpha = 0$, we obtain the usual notion of starlikeness.

Then according to [8, Theorem 2.1], a normalized locally biholomorphic mapping $f \in H(B)$ is spirallike of type α if and only if

$$\operatorname{Re} l_z (e^{-i\alpha}[Df(z)]^{-1}f(z)) > 0, \quad z \in B \setminus \{0\}, \quad l_z \in T(z).$$

Especially, a normalized locally biholomorphic mapping $f \in H(B)$ is starlike if and only if (see [20])

$$\operatorname{Re} l_z([Df(z)]^{-1}f(z)) > 0, \quad z \in B \setminus \{0\}, \quad l_z \in T(z).$$

In [8, Theorem 3.1], the following alternative characterization of spirallikeness of type α is proved: f is spirallike of type α if and only if $f(z, t) = e^{(1-ia)t}f(e^{iat}z)$ is a Loewner chain, where $a = \tan \alpha$. Especially, a normalized locally biholomorphic mapping $f \in H(B)$ is starlike if and only if $f(z, t) = e^t f(z)$ is a Loewner chain [16].

Let $f \in H(B)$ be a normalized locally biholomorphic mapping on B . Then f is called close-to-starlike with respect to a normalized starlike mapping g if

$$\operatorname{Re} l_z([Df(z)]^{-1}g(z)) > 0, \quad z \in B \setminus \{0\}, \quad l_z \in T(z).$$

This definition was introduced by Pfaltzgraff and Suffridge [16]. They proved that f is close-to-starlike with respect to g if and only if

$$f(z, t) = f(z) + (e^t - 1)g(z)$$

is a Loewner chain (see [16]).

DEFINITION 3 ([12]). Let $j = 0, 1, \dots, k-1$, where $k \geq 2$ is a natural number. A mapping $f : B \rightarrow \mathbb{C}^n$ will be called (j, k) -symmetrical, if

$$f(\varepsilon_k z) = \varepsilon_k^j f(z), \quad z \in B,$$

where $\varepsilon_k = \exp(2\pi i/k)$.

Liczberski and Połubiński [12] proved the following decomposition theorem.

THEOREM 4. *For every mapping $f : B \rightarrow \mathbb{C}^n$, there exists exactly one sequence of (j, k) -symmetrical mappings $f_{j,k}$, $j = 0, 1, \dots, k-1$ such that*

$$f = \sum_{j=0}^{k-1} f_{j,k}.$$

Moreover,

$$f_{j,k}(z) = \frac{1}{k} \sum_{l=0}^{k-1} \varepsilon_k^{-jl} f(\varepsilon_k^l z), \quad z \in B.$$

By the uniqueness of the above decomposition, the mappings $f_{j,k}$ are called (j, k) -symmetrical parts of the mapping f .

$(1, k)$ -symmetrical mappings are also called k -fold symmetrical mappings. Then f is k -fold symmetrical if and only if $f = f_{1,k}$. A Loewner chain $f(z, t)$ is said to be k -fold symmetrical if $f(z, t)$ is k -fold symmetrical for each $t \geq 0$.

3. Main results

First, we give a necessary and sufficient condition that a Loewner chain which satisfies the assumptions of Proposition 1 is k -fold symmetrical.

THEOREM 5. *Let $f(z, t)$ be a Loewner chain which satisfies the assumptions of Proposition 1. Also let $h(z, t)$ be the mapping which satisfies the assumptions of Proposition 1. Then $f(z, t)$ is k -fold symmetrical if and only if $h(z, t)$ is k -fold symmetrical for almost all $t \geq 0$.*

This result has the following equivalent formulation by Remark 2.

THEOREM 6. *Let $f(z, t)$ be a Loewner chain such that $\{e^{-t}f(z, t)\}_{t \geq 0}$ is a normal family on B . Also let $h(z, t)$ be given by (2.1). Then $f(z, t)$ is k -fold symmetrical if and only if $h(z, t)$ is k -fold symmetrical for almost all $t \geq 0$.*

Proof of Theorem 5. First, assume that $f(z, t)$ is k -fold symmetrical, that is, $f(\varepsilon_k z, t) = \varepsilon_k f(z, t)$ for all $z \in B$, $t \geq 0$. Therefore, we obtain that $Df(\varepsilon_k z, t) = Df(z, t)$, $z \in B$, $t \geq 0$, and since $f(z, \cdot)$ is differentiable a.e. on $[0, \infty)$, we have that

$$\frac{\partial f}{\partial t}(\varepsilon_k z, t) = \varepsilon_k \frac{\partial f}{\partial t}(z, t), \quad \text{a.e. } t \geq 0, \forall z \in B.$$

Thus, in view of (2.1) we obtain that $h(\varepsilon_k z, t) = \varepsilon_k h(z, t)$ for almost all $t \geq 0$ and for all $z \in B$.

Next, we assume that $h(z, t)$ is k -fold symmetrical for almost all $t \geq 0$. That is, there exists a subset E of $[0, \infty)$ of measure zero such that $h(z, t)$ is k -fold symmetrical in B , for all $t \in [0, \infty) \setminus E$. The solution of the initial value problem (2.2) is constructed by the method of successive approximation as follows (see the proof of [14, Theorem 2.1])

$$\begin{aligned} v_0(z, s, t) &= z \\ v_m(z, s, t) &= z - \int_s^t h(v_{m-1}(z, s, \tau), \tau) d\tau, \quad m \geq 1 \end{aligned}$$

and the solution of (2.2) is defined by

$$v(z, s, t) = \lim_{m \rightarrow \infty} v_m(z, s, t),$$

where the above limit holds locally uniformly on B . Since every $v_m(z, s, t)$ is k -fold symmetrical by induction on m , $v(z, s, t)$ is k -fold symmetrical. By Proposition 1, $f(z, s) = \lim_{t \rightarrow \infty} e^t v(z, s, t)$ locally uniformly on B . So $f(z, s)$ is k -fold symmetrical too. This completes the proof.

REMARK 7. Let $f(z, t)$ be a Loewner chain such that $\{e^{-t}f(z, t)\}_{t \geq 0}$ is a normal family on B . Assume that $f(z, t)$ is k -fold symmetrical. Then Hamada,

Honda and Kohr [7] showed that

$$\frac{\|z\|}{(1 + \|z\|^k)^{2/k}} \leq \|e^{-t}f(z, t)\| \leq \frac{\|z\|}{(1 - \|z\|^k)^{2/k}}, \quad z \in B, t \geq 0.$$

In Liu and Liu [13], it is shown that this result is sharp (cf. [2, Corollary 3.2.1]).

As corollaries to the above theorem, we obtain the following results.

COROLLARY 8. *Let $f \in H(B)$ be a normalized locally biholomorphic mapping on B . Then f is spirallike of type α and k -fold symmetrical if and only if $e^{-i\alpha}[Df(z)]^{-1}f(z) \in \mathcal{N}$ and $[Df(z)]^{-1}f(z)$ is k -fold symmetrical.*

Proof. First, assume that f is spirallike of type α and k -fold symmetrical. Then $e^{-i\alpha}[Df(z)]^{-1}f(z) \in \mathcal{N}$ and $f(\varepsilon_k z) = \varepsilon_k f(z)$. Therefore, $Df(\varepsilon_k z) = Df(z)$ and this implies that $[Df(z)]^{-1}f(z)$ is k -fold symmetrical.

Next, assume that $e^{-i\alpha}[Df(z)]^{-1}f(z) \in \mathcal{N}$ and $[Df(z)]^{-1}f(z)$ is k -fold symmetrical. Also let $a = \tan \alpha$. Then f is spirallike of type α by [8, Theorem 2.1], and $f(z, t) = e^{(1-ia)t}f(e^{iat}z)$ is a Loewner chain by [8, Theorem 3.1], which satisfies the assumptions of Proposition 1. Since $f(z, t)$ is of class C^∞ on $B \times [0, \infty)$, it follows in view of the relation (2.1) that

$$h(z, t) = [Df(z, t)]^{-1} \frac{\partial f}{\partial t}(z, t) = iaz + (1 - ia)e^{-iat}[Df(e^{iat}z)]^{-1}f(e^{iat}z)$$

is k -fold symmetrical. Hence f is k -fold symmetrical by Theorem 5. This completes the proof.

If we put $\alpha = 0$ in the above corollary, we obtain the following corollary. This corollary solves the open problem which is described in the introduction (cf. [11, Open problem 4.6]).

COROLLARY 9. *Let f be a normalized locally biholomorphic mapping on B . Then f is starlike and k -fold symmetrical if and only if $[Df(z)]^{-1}f(z) \in \mathcal{M}$ and $[Df(z)]^{-1}f(z)$ is k -fold symmetrical.*

For the Euclidean unit ball \mathbb{B}^n in \mathbb{C}^n , we have the following necessary and sufficient condition for a mapping f which satisfies (3.1) to be k -fold symmetrical (cf. [1], [14]).

THEOREM 10. *Let $f \in H(\mathbb{B}^n)$ be a normalized locally biholomorphic mapping which satisfies the condition*

$$(3.1) \quad (1 - \|z\|^2) \| [Df(z)]^{-1} D^2 f(z)(z, \cdot) \| \leq 1, \quad \text{for all } z \in \mathbb{B}^n.$$

Then f is k -fold symmetrical if and only if $M(z) = [Df(z)]^{-1} D^2 f(z)(z, \cdot)$ satisfies $M(\varepsilon_k z) = M(z)$ for all $z \in \mathbb{B}^n$.

Proof. First, assume that f is k -fold symmetrical. Then $Df(\varepsilon_k z) = Df(z)$ and $D^2f(\varepsilon_k z)(\varepsilon_k z, \cdot) = D^2f(z)(z, \cdot)$. Therefore, $M(\varepsilon_k z) = M(z)$ for all $z \in \mathbb{B}^n$.

Next, assume that $M(\varepsilon_k z) = M(z)$ for all $z \in \mathbb{B}^n$. Let

$$(3.2) \quad f(z, t) = f(ze^{-t}) + (e^t - e^{-t})Df(ze^{-t})(z), \quad t \geq 0.$$

Since f satisfies the condition (3.1), it follows from [14, Theorem 2.4] that $f(z, t)$ is a Loewner chain which satisfies the assumptions of Proposition 1 and

$$h(z, t) = [Df(z, t)]^{-1} \frac{\partial f}{\partial t}(z, t) = (I - E(z, t))^{-1}(I + E(z, t))(z),$$

for all $t \geq 0$ and $z \in B$, where

$$E(z, t) = -(1 - e^{-2t})[Df(ze^{-t})]^{-1}D^2f(ze^{-t})(ze^{-t}, \cdot).$$

Since $M(\varepsilon_k z) = M(z)$, we obtain that $E(\varepsilon_k z, t) = E(z, t)$ for all $z \in \mathbb{B}^n$, $t \geq 0$. Therefore, we obtain that $h(z, t)$ is k -fold symmetrical for all $t \geq 0$. By Theorem 5, f is k -fold symmetrical. This completes the proof.

In the case of one complex variable, every Loewner chain satisfies the assumptions of Proposition 1, i.e. every Loewner chain $f(z, t)$ has the property that $\{e^{-t}f(z, t)\}_{t \geq 0}$ is a normal family, by [18, Theorem 6.2]. However, in higher dimensions, there exists a Loewner chain which does not satisfy the assumptions of Proposition 1 [3, Example 2.12]. Also, in higher dimensions, there exists a k -fold symmetrical Loewner chain $f(z, t)$ which does not satisfy the assumptions of Proposition 1 [7].

REMARK 11. (i) Let f be a normalized starlike mapping on B . This is equivalent to the fact that $f(z, t) = e^t f(z)$ is a Loewner chain. It is obvious that f is k -fold symmetrical if and only if $f(z, t)$ is k -fold symmetrical.

(ii) If f is a spirallike mapping of type α , then it is clear that f is k -fold symmetrical if and only if $f(z, t) = e^{(1-ia)t} f(e^{iat} z)$ is a k -fold symmetrical Loewner chain, where $a = \tan \alpha$.

(iii) Let $f \in H(\mathbb{B}^n)$ be a normalized locally biholomorphic mapping which satisfies the assumption (3.1). Then f is k -fold symmetrical if and only if

$$f(z, t) = f(ze^{-t}) + (e^t - e^{-t})Df(ze^{-t})(z)$$

is a k -fold symmetrical Loewner chain.

(iv) Let $f : B \rightarrow \mathbb{C}^n$ be a mapping which have parametric representation on B , i.e. there exists a Loewner chain $f(z, t)$ such that $\{e^{-t}f(z, t)\}_{t \geq 0}$ is a normal family on B and $f(z) = f(z, 0)$, $z \in B$ (see [3]). Clearly if $f(z, t)$ is k -fold symmetrical then f is also k -fold symmetrical. However, if f is k -fold symmetrical then $f(z, t)$ need not be k -fold symmetrical for each $t \geq 0$. For

example, let f be a normalized close-to-starlike mapping with respect to a normalized starlike mapping g . Then

$$f(z, t) = f(z) + (e^t - 1)g(z)$$

is a Loewner chain, and it is clear that if f is close-to-starlike with respect to g , then $f \in S^0(B)$. It is easy to see that if f is k -fold symmetrical but g is not k -fold symmetrical, then $f(z, t)$ is not k -fold symmetrical for $t > 0$.

REMARK 12. Let $f \in H(\mathbb{B}^n)$ be a normalized quasiregular mapping. If there exists a constant $c < 1$ such that

$$(1 - \|z\|^2) \| [Df(z)]^{-1} D^2 f(z)(z, \cdot) \| \leq c, \quad z \in \mathbb{B}^n,$$

then f has a continuous extension to $\overline{\mathbb{B}}^n$, again denoted by f , and

$$F(z) = \begin{cases} f(z) & z \in \overline{\mathbb{B}}^n \\ f\left(\frac{z}{\|z\|}, \log \|z\|\right) & z \notin \overline{\mathbb{B}}^n, \end{cases}$$

where $f(z, t)$ is a Loewner chain defined in (3.2), is a quasiconformal homeomorphism of \mathbb{C}^n onto itself, by [15]. In addition, if f is a k -fold symmetrical mapping, then the extension F is also k -fold symmetrical, i.e. $F(\varepsilon_k z) = \varepsilon_k F(z)$ for $z \in \mathbb{C}^n$.

EXAMPLE 13. Let $\alpha \in [0, 1]$ and $\beta \in [0, 1/2]$ be such that $\alpha + \beta \leq 1$. In the proof of [4, Theorem 2.1], the authors proved that if $f(z_1, t)$ is a Loewner chain on U , then $F_{n,\alpha,\beta}(z, t)$ is a Loewner chain which satisfies the assumptions of Proposition 1 on \mathbb{B}^n , where

$$(3.3) \quad F_{n,\alpha,\beta}(z, t) = \left(f(z_1, t), e^{(1-\alpha-\beta)t} \tilde{z} \left(\frac{f(z_1, t)}{z_1} \right)^\alpha (f'(z_1, t))^\beta \right)$$

for $z = (z_1, \tilde{z}) \in \mathbb{B}^n$. The branches of the power functions are chosen so that

$$\left. \left(\frac{f(z_1, 0)}{z_1} \right)^\alpha \right|_{z_1=0} = 1 \quad \text{and} \quad \left. (f'(z_1, 0))^\beta \right|_{z_1=0} = 1.$$

Moreover, we can easily show that if $f(z_1, t)$ is a k -fold symmetrical Loewner chain, then $F_{n,\alpha,\beta}(z, t)$ is a k -fold symmetrical Loewner chain which satisfies the assumptions of Proposition 1.

EXAMPLE 14. In the following result, we shall denote by \mathcal{LS}_n the set of normalized locally biholomorphic mappings in \mathbb{B}^n . Also for $n \geq 1$, let $z' = (z_1, \dots, z_n)$ so that $z = (z', z_{n+1}) \in \mathbb{C}^{n+1}$. Pfaltzgraff and Suffridge [17] defined the following extension operator $\Phi_n : \mathcal{LS}_n \rightarrow \mathcal{LS}_{n+1}$ given by

$$\Phi_n(f)(z) = F(z) = \left(f(z'), z_{n+1} [J_f(z')]^{1/(n+1)} \right), \quad z = (z', z_{n+1}) \in \mathbb{B}^{n+1},$$

where $J_f(z') = \det Df(z')$ for $z' \in \mathbb{B}^n$. On the other hand, in [6] the authors have recently proved that if $f(z', t)$ is a Loewner chain on \mathbb{B}^n such that

$\{e^{-t}f(z', t)\}_{t \geq 0}$ is a normal family on \mathbb{B}^n , then $F(z, t)$ is also a Loewner chain such that $\{e^{-t}F(z, t)\}_{t \geq 0}$ is a normal family on \mathbb{B}^{n+1} , where

$$F(z, t) = \left(f(z', t), z_{n+1} e^{t/(n+1)} [J_{f_t}(z')]^{1/(n+1)} \right), z = (z', z_{n+1}) \in \mathbb{B}^{n+1}, t \geq 0,$$

and $f_t(z') = f(z', t)$. We choose the branch of the power function such that $[J_{f_t}(z')]^{1/(n+1)} \Big|_{z'=0} = e^{nt/(n+1)}$ for $t \geq 0$.

Now, it is easy to see that if $f(z', t)$ is a k -fold symmetrical Loewner chain then $F(z, t)$ is also a k -fold symmetrical Loewner chain.

Acknowledgement. The authors thank the referee for helpful comments and suggestions. The first author is partially supported by Grant-in-Aid for Scientific Research (C) no. 17540183 from Japan Society for the Promotion of Science, 2006.

References

- [1] J. Becker, *Löwner'sche differentialgleichung und quasikonform fortsetzbare schlichte funktionen*, J. Reine Angew. Math. 255 (1972), 23–43.
- [2] S. Gong, *Convex and starlike mappings in several complex variables*, Science Press, Beijing, 1998.
- [3] I. Graham, H. Hamada, G. Kohr, *Parametric representation of univalent mappings in several complex variables*, Canadian J. Math. 54(2) (2002), 324–351.
- [4] I. Graham, H. Hamada, G. Kohr, T. J. Suffridge, *Extension operators for locally univalent mappings*, Michigan Math. J. 50 (2002), 37–55.
- [5] I. Graham, G. Kohr, *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc., New York, 2003.
- [6] I. Graham, G. Kohr, J. A. Pfaltzgraff, *Parametric representation and linear functionals associated with extension operators*, Rev. Roum. Math. Pures Appl., to appear.
- [7] H. Hamada, T. Honda, G. Kohr, *Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation*, J. Math. Anal. Appl. 317 (2006), 302–319.
- [8] H. Hamada, G. Kohr, *Subordination chains and the growth theorem of spirallike mappings*, Mathematica (Cluj) 42(65), 2 (2000), 153–161.
- [9] T. Honda, *The growth theorem for k -fold symmetric convex mappings*, Bull. London Math. Soc. 34 (2002), 717–724.
- [10] G. Kohr, P. Liczberski, *Univalent mappings of several complex variables*, Cluj Univ. Press, 1998.
- [11] P. Liczberski, *Applications of a decomposition of holomorphic mappings in \mathbb{C}^n with respect to a cyclic group*, J. Math. Anal. Appl. 281 (2003), 276–286.
- [12] P. Liczberski, J. Połubiński, *On (j, k) -symmetrical functions*, Math. Bohem. 120 (1995), 13–28.
- [13] T. Liu, X. Liu, *On the precise growth, covering, and distortion theorems for normalized biholomorphic mappings*, J. Math. Anal. Appl. 295 (2004), 404–417.
- [14] J. A. Pfaltzgraff, *Subordination chains and univalence of holomorphic mappings in \mathbb{C}^n* , Math. Ann. 210 (1974), 55–68.

- [15] J. A. Pfaltzgraff, *Subordination chains and quasiconformal extension of holomorphic maps in \mathbb{C}^n* , Ann. Acad. Scie. Fenn. Ser. A I Math. 1 (1975), 13–25.
- [16] J. A. Pfaltzgraff, T. J. Suffridge, *Close-to-starlike holomorphic functions of several variables*, Pacif. J. Math. 57 (1975), 271–279.
- [17] J. A. Pfaltzgraff, T. J. Suffridge, *An extension theorem and linear invariant families generated by starlike maps*, Ann. Univ. Mariae Curie Skłodowska, Sect. A 53 (1999), 193–207.
- [18] C. Pommerenke, *Univalent Functions*, Vandenhoeck & Ruprecht, Göttingen, 1975.
- [19] T. Poreda, *On the univalent subordination chains of holomorphic mappings in Banach spaces*, Commentat. Math. 128 (1989), 295–304.
- [20] T. J. Suffridge, *The principle of subordination applied to functions of several complex variables*, Pacific. J. Math. 33 (1970), 241–248.

Hidetaka Hamada

FACULTY OF ENGINEERING
KYUSHU SANGYO UNIVERSITY
3-1 Matsukadai 2-Chome, Higashi-ku
FUKUOKA 813-8503, JAPAN
e-mail: h.hamada@ip.kyusan-u.ac.jp

Gabriela Kohr

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
BABEŞ-BOLYAI UNIVERSITY
1 M. Kogălniceanu Str.
400084 CLUJ-NAPOKA, ROMANIA
e-mail: gkohr@math.ubbcluj.ro

Received January 17, 2006; revised version July 5, 2006.