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SOME RELATIONS INCLUDING VARIOUS 
LINEAR OPERATORS 

Abstract. Making use of the Carlson-Schaffer linear operator, some subclasses of 
analytic functions are studied. Some relations including various linear operators are given. 

1. Introduction 
We denote by Ap the class of functions / of the form 

oo 
(1) f(z) = zp + £ akzk, (PeX={ 1 ,2 ,3 , . . .} ) , 

k=p+1 

which are analytic in U — U{ 1), where U(r) — {z : \z\ < r}. 
A function / belonging to the class Ap is said to be p-valently starlike of 

order a in U{r) if and only if 

We denote by S*(a) the class of all functions in Ap which are p-valently 
starlike of order a m U . 

For analytic functions 
oo oo 

f ( z ) = a n z U a n d 9 = bnzH> 
n=0 n = 0 

by f *g we denote the Hadamard product or convolution of / and g, defined 
by 

oo 

U*g) (z) = ^anbnzn. 
n=0 
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For complex parameters a, b,c ( c ^ 0, —1, —2,...) we define the hyper-

geometric function 2F\{a,b-,c-,z) b y 

( 2 ) 2F1(a,b;c-,z) = ' A (zEU), 

f o (c'n) n! 

where (A, n) is the Pochhammer symbol defined, in terms of the Gamma 
function T, by 

r(A + n) ( 1 (n = 0) 
(A,n) = -

r(A) i A(A + 1) • • • (A + n — 1) ( n E Af). 

The power series (2) converges in the unit disk U. For 5ftec > 5ie6 > 0 the 
hypergeometric function has the following integral representation 

2F1(a,b-,c-,z) = ffO _ m ) c - 6 - i ( 1 _ uz)-adu 

Using the incomplete Beta function <f>p(a,c;z) defined by 

(f>p(a, c ; z) = zp 2Fi(a,c; z), 

Carlson and Shaffer [2] consider a linear operator 

Hr^Qi^ C) . ^ 

defined by the convolution: 

C(a,c)f(z) = <f>p(a,c;z)* f(z), f E Ap. 

The Carlson-Shaffer operator maps Ap into itself. If a ̂  0, —1, —2,. . . , then 
£(a, c) has a continuous inverse C(c, a) and C(c,a) maps Ap into Ap injec-
tively. Also, if c > a > 0, then 

C(a,c)f(z) = j n C - 2 ( 1 _ u)c-a-lf{uz)du, r ( a ) r ( c - a) £ 

We observe that, for a function / of the form (1), we have 

(a, n - p) ̂  

(c,n — p)' 

n \ti \ r, C(a,c)f(z) = ^ - — — a n z 

n=p 

Thus, after some calculations, we obtain 

( 3 ) a£(a + 1 , c)f(z) = z {C{a, c)f(z)}' - (p - a) £(a, c)f(z). 

In particular, we denote 

Vxf(z) = C(\ + p,p) ( A >-p), 
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which implies that 

( 4 ) * • / < » > - , ( * - y 

The linear operator T>xf(z) (p = 1) was introduced by Ruscheweyh [16]. Mo-
reover, the Carlson-Shaffer operator includes other linear operators, which 
were considered in earlier works, as (for example) the linear operators intro-
duced by Bernardi-Libera-Livingston ( [1], [12], and [13]), Owa [15] (see also 
[19]), and Srivastava and Owa [18]. 

Let Vp(a, c; a) denote the class of functions / G Ap such that 

(5) 

Moreover, by Wp(a, c; a) we denote the class of functions / G Av such that 
z f ' ( z ) e V„(a,c;a). 

In particular, we have 

Wp ( p - l , p ; a ) = V p (p,p; a) = S*(a). 

Classes Vi(a, c; a) , Wi(a, c; a) were investigated by Kim and Srivastava 
[11]. Classes of functions defined by some linear operators were also investi-
gated by (among others) Srivastava et al. [6], [7], [8] and [17] (see also [3], 
[4] and [5]). 

In this paper we present inclusions with respect to the parameter a for 
the classes defined above. Also some relations including the Carlson-Shaffer 
operator and the Ruscheweyh operator are given. 

2. Main results 
We shall need the following lemma due to Jack [10]. 

LEMMA 1. Let w be a nonconstant function analytic in U(r) with U;(0) = 0 . 

If 

Mzo) | = max{|w(z) | ; |z| < |z0 |} (¿o € U(r)), 

then there exists a real number k (k > 1), such that 

Z Q W ' ( Z O ) = kw(zo). 
Making use of Jack's Lemma, Eenigenburg, Miller, Mocanu and Reade 

[9] (see also [14]) proved the following result. 
LEMMA 2. If q is an analytic function in U{r), q(0) = p and 

Re (q(z) + Z . q \ >a (z G U(r), 0 < a < p, Re7 > - a ) , 
V + 

then 
Req(z) > a (z G U(r)). 
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Making use of the above lemma, we get the following theorem. 

THEOREM 1. / /Reo >p — a, then 
Vp(a + 1, c; a) C Vp(a, c; a). 

Proof . Let a function / belong to the class Vp (a + 1, c; a). It is sufficient to 
verify condition (5). If we put 

R = sup {r : £(a, c)f(z) ± 0, z G U{r)} , 
then the function 

^ Q(z) = a r( \ fi\ + p — a £(o, c)f(z) 
is an analytic in U(R) and q(0) = p. Taking the logarithmic derivative of (6) 
we get 

z[C(a+l,c)f(z)}' z[£(a,c)f(z)}' zg'(z) (^1J(ms 
C(a + l,c)f(z) £(a, c)f(z) q(z) + a - p { 

Applying (3) and (6) we obtain 

(7)(.+ l)ffai?'»M+'-"'=«">+ ,ftW (^U(R)). C(a + 1, c)f(z) q(z) + a — p 

Since / G Vp(a + 1 ,c;a), we have 

Lemma 2 now yields 
(8) Reg(z) > a (z e U(R)). 
By (6) it suffices to verify that R = 1. From (8), (6) and (3) we conclude that 
C(a,c)f(z) is p—valently starlike in U(R) and consequently it is p—valent 
in U(R). Thus we see that £(a,c)f(z) cannot vanish on \z\ = R if R < 1. 
Hence R = 1 and this proves the Theorem 1. 
THEOREM 2. If a function f E Ap satisfies the following inequality: 

2 (p - a)2 + 3 (jp - a) - a 
(9) 

jC(a + 2,c)f(z) _i 
< 

2 (a + 1) (p - a) C(a + l,c)f(z) 
(2 £ W, 0 < a < p, p — a < a < 3(p — a)), 

then f belongs to the class Vp(a,c;a). 
Proof . Let a function / belong to the class Ap. Putting 

NO) ^ - " - f r , ^ ( 2 € w ( f l ) ) 1 — w(z) 
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in (7) we obtain 

. C(a + 2, c ) f ( z ) p - ( 2 a - p ) w ( z ) 
(a + 1) i ^ + p — a — 1 = 

£(a + l , c ) / ( z ) 

Consequently, we have 

zw'(z) 

1 —10(2) 
( 2 p — 2 a — a) zw'(z) ^ zw'(z) 

(11) F(z) = w(z) 

where 

a + ( 2 p — 2a — a)w(z) ' 1— w(z)' 

2p — 2a — a 

w(z) a + (2p — 2a — a) w(z) 

C(a + 2 , c ) f ( z ) 

+ 
+ 2p-2a^ w(z) r 

1 — w(z) 

F(z) = (a + 1) o - l . 
C(a + l , c ) f { z ) 

By (3), (6) and (10) it is sufficient to verify that w is analytic in U and 

M * ) | < i ( z e M ) . 

Now, suppose that there exists a point zq G U(R), such that 

Hzo)| = 1, |w(z)| < 1 (\z\ < |z0|)-

Then, applying Jack's Lemma, we can write 

zow'(zo) = kw(zo), w(z0) = e%6 (k > 1). 

Combining these with (11) , we obtain 

> Re 

( 2 p - 2 a - a)k + k + 2p-2a 

1 - e% a + ( 2 p - 2 a - a) ei6 

( 2 p - 2 a - a ) k + k + 2p-2a 

a + ( 2 p - 2 a - a) eie 1 - e i0 

> p - a + fc3(p~Q)~a>2(p~Q)2
/
+3(p"Q)~Q. 

~ 2 (p - a ) ~ 2 (p - a) 

Since this result contradicts (9) we conclude that w is the analytic function 
in U(R) and 

K * ) | < 1 ( z e U ( R ) ) . 

Applying the same methods as in the proof of Theorem 1 we obtain R = 1, 
which completes the proof of Theorem 2. 

THEOREM 3. If a function f G Ap satisfies the following inequality: 

C(a + 2 , c ) f ( z ) 

C(a + 1, c ) f ( z ) 
- 1 < 

(p - a)2 + (p - a) (a + 1) 

(a + p - a) (a + 1) 
(z eU, a > p — a), 
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then 

aC(a+l,c)f(z) 

£{a,c)f(z) 
< p — a (zeU). 

P r o o f . After putting q(z) = p + (a — p) w(z) in (10), the proof is analogous 
to the proof of Theorem 2 and we omits details. 

By Theorem 1, 2 and 3 we obtain following three corollaries: 

COROLLARY 1. IfRea>p — a and b — a is positive integer, then 

Wp{b,c; a ) C W p ( a , c ;a ) . 

COROLLARY 2. If a function / £ Ap satisfies the following inequality: 

(a + 2) £(a + 3, c)f(z) + {p-a-2)£(a + 2, c)f(z) 

(a + 1) £{a + 2, c)f(z) + (p-a-l)£(a + 1, c )/ (z ) 

< 
2 (p - a f + 3 (p - a ) 

2 (a + 1) (p - a ) 

( z e U , 0 < a < p, p - a < a < 3 ( p - a ) ) , 

i/ien / belongs to the class Wp(a,c;a). 

COROLLARY 3. If a function f G Ap satisfies the following inequality: 

(a + 2) C(a + 3, c)f(z) + (p - a - 2) £(a + 2, c )/ (z ) 

(a + 1) £(a + 2, c )/ (z ) + {p-a-l)£{a + 1, c )/ (z ) 

(p - a ) 2 + (p - a ) (a + 1) 

( . a + p - a ) (a + 1) 
(z GU, a>p — a), 

< 

then 
£'(a+l,c)f(z) 

Q £'(a,c)f(z) a 
<P {zeu). 

Putting c = p, a = A + p in Theorem 1, 2 and 3 we obtain following three 
corollaries: 

COROLLARY 4. If a function f belongs to the class Ap and 

then 

Re | (A + p) 

- A - l | > a, (z e U, 0 < a < p, ReA > -a), 

VX+1f(z) 

V*f(z) 
- A ^ > a, (z G U). 
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COROLLARY 5. If a function f belongs to the class Ap and 

Vx+2f(z) 
Vx^f(z) 

- 1 < 
2 (p - af + 2 (p - a) - a - A 

2 ( A + p + l ) ( p - a ) 

then 

(zeU, 0<a<p, — a < \ <2p — 3a), 

COROLLARY 6. If a function f belongs to the class Ap and 

Vx+2f(z) 
V ^ f ( z ) 

< C p - a ) 2 + ( p - a ) (A + p + 1 ) 

(2p + A - a ) (A + p + 1 ) 

then 

(A + P) 

( z S W , 0 < a < p, A > - a ) , 

Vx+1f(z) 
- 1 < p — a (zeli). 

Vxf(z) 
P u t t i n g A = 0 in Corollary 5 and 6 we obtain the sufficient conditions 

for starlikeness. 

COROLLARY 7. If a function f belongs to the class Ap and 
zf'(z) 

- p + 1 <p-a + l - ——- (z eU, 0 < a < | p ) , 
2(p — a) o m 

then f belongs to the class S p(a). 

COROLLARY 8. If a function f belongs to the class Ap and 

zf'(z) 
f'(z) 

p + 1 < 
(p - a)2 + (p-a)(p+ 1) 

then 
zf'(z) 
m 

2p — a 

p < p — a (z e li). 

(zeU, 0 < a < p ) , 
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