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ON SOME N E W INEQUALITIES OF 
HERMITE-HADAMARD-FEJER T Y P E 

INVOLVING CONVEX F U N C T I O N S 

Abstract. In this paper, we establish some inequalities of Hermite-Hadamard-Fejér 
type for m-convex functions and s-convex functions. 

1. Introduction 
If / : [a, 6] —• R is a convex function then 

<"> / ( ^ ¿ J ^ M + M v ' a 
is known as Hermite-Hadamard inequality. 

Fejér [14] gave a generalization of the inequalities (1.1) as the following: 
If / : [a, 6] —> R is a convex function, and g : [a, 6] —• R is nonnegative, 

integrable and symmetric about then 

(1.2) / \g(x)dx < \f(x)g(x)dx < f { a ) + m\g(x)dx. 
^ ' a a a 

For some results which generalize, improve, and extend the inequalities 
(1.1) a n d (1.2) see [1]—[12], [14]—[16], [19]-[23]. 

D E F I N I T I O N 1 (see [6, 13, 18]). A function f : [0,6] —> R is said to be 
m-convex, where m 6 [0,1], if for every x, y G [0,6] and t G [0,1] we have: 
(1.3) f(tx + m(l - t)y) < t f ( x ) + m( 1 - t)f(y). 
We denote the set of all m-convex functions on [0,6] by Km(b). 

Dragomir and Toader [13] (see also [6]) proved the following two the-
orems: 
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functions in the first and second senses. 
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THEOREM 1. Let f : [0, oo) —> R be an m-convex function with m £ (0,1]. If 
0 < a < b < oo and f £ L\ [0, b] then 

b 

(1.4) \ f(x)dx < (b - a) min 
/ ( a ) + m / ( A ) f(b) + mf(%) 

THEOREM 2. Let f,m,a and b be defined as in Theorem 1. If f is also 
differentiable on (0, oo) then 

b 

(1.5) 
f(mb) b_af/{mb) 

m (6 - a) < j f{x)dx 

<-[(b-ma)f{b)-(a-mb)f(a)]. 

The following two theorems are due to Dragomir [6]: 

THEOREM 3. Let f be defined as in Theorem 1. Then 

(1-6) / 
a + b 

(b-a)<\ dx 

< 

a 

b — a 

+ m z 

m" 

THEOREM 4. Let f : [0, oo) —> R be an m—convex function with m G (0,1]. 
If f E L\[am,b], where 0 < a < b, then 

m + 1 

mb 

5 f(x)dx + 
mb — a 

\ f{x)dx < (mb — a) m+m 
b — ma ma 

REMARK 1. A misprint of (1.6) in the original paper has been corrected here. 

DEFINITION 2 (see [9, 10, 17]). Let 0 < s < 1. A funct ion / : [0, oo) —> R is 
said to be s-convex in the first sense, if for every x,y £ [0, oo) and a,(3 > 0 
with as + (3s = 1, we have: 

(1.7) f(ax + (3y)<a
sf(x) + f3sf(y). 

We denote the set of all s-convex functions in the first sense by K\. 

DEFINITION 3 (see [9, 10, 17]). Let 0 < s < 1. A funct ion / : [0, oo) —• R 
is said to be s—convex in the second sense, if for every x,y £ [0, oo) and 
a, P > 0 with a + ¡3 = 1 we have the inequality (1.7). The set of all s-convex 
functions in the second sense is denoted by Kg. 

Dragomir and Fitzpatrick [9, 10] proved the following two theorems: 



Hermite-Hadamard-Fejer type inequalities 

THEOREM 5. Let f e K] and a,be [0, oo) with a <b. Then 

53 

(1.8) 

and 

(1.9) 

(6 - a)f [2-i (a + 6)1 < \ f(x)dx 
a 

<\f(a¿+b(l-t)ls)dt<fia) + m . 

THEOREM 6. Let f e K2S and a,b e [0,00) with a<b. Then 

, , 1 0 ) 2 - . ( 6 - a ) / ( £ + i ) < \ m d x < ( > - ) ( / M + / W ) . 

In this paper, we shall establish some generalizations of Theorems 1 - 6 . 

2. Main results 

Throughout this section, let g : [a, 6] —> R be nonnegative, integrable and 
symmetric about 

THEOREM 7. Let f,m,a and b be defined as in Theorem 1. Then 

(2.1) s / ( » ) i W * < \g{x)dx. 

P r o o f . Since / is m-convex and g is nonnegative, integrable and symmetric 
about we have 

(2.2) \f(x)g(x)dx = 
b b 
J f{x)g(x)dx + J /(a + b — x)g(a + b — x)dx 
a a 

1 6 
= ^\{f(x) + f(a + b-x)}g(x)dx 

9 J 
. . b — x x — a b 

J I a + m-b — a b — a m 
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6 — X b . x — a + J 7 a + m 

b — a b — a m 
g(x)dx 

- 0 J 
b — x . x — a „ / b 
7 f(a) + m- / -b — a b — a \m 

x — a ,, . b — x , ( b 
+ i f(a) + m-—-/ b — a' b — a V m 

On the other hand, 

g(x)dx 

(2.3) J f(x)g(x)dx = - J [f{x) + f(a + b- x)] g(x)dx 

a L v 

b — x a x — a 
m- + b 

b — a m b — a 

< 1 
- o J 

m 

, . x — a a b — x, 
+f rn- + b 

b — a m b — a 

m b — a \mJ b — a 
x — 

+m- — a \mJ 

g(x)dx 

+ r^/w b — a 
g(x)dx 

m f + m 
\ 9(x)d: x. 

The inequality (2.1) follows immediately from (2.2) and (2.3). • 

R E M A R K 2. If we choose g(x) = 1, then Theorem 7 reduces to Theorem 1. 

R E M A R K 3. If m = 1, then the inequality (2.1) reduces to the second inequ-
ality of (1.2) where 0 < a < b < oo. 

In order to prove our second theorem, we need the following lemma: 

L E M M A 1 (see [6] or [13]). Let f is differentiable on [0,6]. Then f € Km(b) 
if and only if 

(2.4) 

for x, ye [0,6]. 

f(x) - mf(y) < f\x)(x - my) 
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T H E O R E M 8. Let f , m, a and b be defined as in Theorem 2. Then 

f(mb) b — a , 

m 
f { m b ) \g(x)dx < \ f { x ) g ( x ) d x 

(2.5) < J [(x — ma)f'(x) + mf(a)]g(x)dx. 

P r o o f . By Lemma 1, for x G [a,b], we have 

f(mb) — m f ( x ) < f'(mb)(mb — mx) 

and 
f(mb) — m f ( a + b — x) < f'(mb)[mb — m(a + b — x)], 

so that 

(2.6) 

and 

(2.7) 

f(mb) 

m 
- ( b - x ) f ' ( m b ) < f ( x ) 

f(mb) 

m 
- ( x - a)f'(mb) < f ( a + b - x). 

If we add the inequalities (2.6) and (2.7) then 

2 f(mb) 
(2.8) 

m 
- (b - a)f'(mb) < f ( x ) + f ( a + b - x ) 

for all x € [a, 6]. Since g is nonnegative, integrable and symmetric about ^ ^ , 
multiplying (2.8) by and integrating the resulting inequalities on [a, 6] 
yields 

6 
\g{x)dx 

f(mb) b — a , 
(mb) m 

1 b 

< - \ [ f ( x ) g ( x ) + f { a + b - x)g(x)]dx 

b b 

j f(x)g(x)dx + j f ( a + b — x)g(a + b — x)dx 

= \ f { x ) g { x ) d x . 

This proves the first inequality in (2.5). Putting in (2.4) y = a, we have for 
x > ma 

(2.9) (x - ma)f'(x) + m f ( a ) > f ( x ) . 
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Multiplying (2.9) by g(x) and integrating over x on [a, 6], we obtain the 
second inequality in (2.5). This completes the proof. • 

REMARK 4. If we choose g{x) = 1 then Theorem 8 reduces to Theorem 2. 

THEOREM 9. Let f,m,a and b be defined as in Theorem 1. Then 

b b 

1 < - /( a) + / (6) + 2 r o ( , ( £ ) + / ( ± ) ) 

< \g(x)da 

P r o o f . Since / is m—convex, / € Li[a,b) and g is nonnegtive, integrable 
and symmetric about we have 

(2-11) J *(*)<* x 

= \f -(a + 6 — x) + — • — g(x)dx 
a L 

<\ \\f(a + b-x) + j f (^j\g(x)dx 
a L 

6 1 X 

= f(a + b-x)g(a + b-x)+ mf ( — ) g(x) 
i ¿ \mJ 

~b b 
\ f(x)g{x)dx + \ mf (J^j g(x)dx 

dx 

= ^ — — g ( i ) ( i a ; , 

S f{x)g{x)dx + j /(a + b — x)g{a + b — x)dx 

+ / x \ 
\mf (—J g(x)dx + \mf 

a + b — x 
m 

g(a + b — x)dx 
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' b b 
2 \ f(x)g(x)dx + 2 \f(a + b - x)g(x)dx 

+ 2 

•b 

\ m f ^ ) 9 ( x ) d x + 2 \ m f i ^ ± ^ - ) g ( x 
a a ^ 

f f b - x a + \/ t m— J \b — a m 

a v 

a x> 

K x — a a 

m -
b — a m K b - x a 

b — am, 

x — a b , . 
+ m— Jg(x)ax 

6 — a m 

x — a + 

+ 

+ 

b — a 

b — x b 

b ) g(x)dx 

b — a m 

b — x + 

m— 1 g(x)dx 
~n J 

b ) g{x)dx 
m b — a 

x — a b , 
+ t m ^ g[x)dx 

b — a m1 ' 

+ b — x a x — a b > 
7 m — j + ^ ( x j c t e 
o — a b — am 

+ K x — a a 

b — a m 

b — x b , , . , 
+ t m • —k) g(x)dx 

b — a mÂ ' 

K x — a a b — x b \ , . , 

7 m—+ 7 g{x)dx b — a m* b — a m J 

g(x)dx I l ^ / « O + m ^ i / l f b — a b — a \m 

+ 5 
a 
b + s 
a 
b + S 
a 
b + s 

J ^ J H f f « ) + 
b — a \ m b — a' 

x — a . b — x „ ( b 
f(a) + m - / ' 

b — a' b — a \m 

g(x)dx 

g(x)dx 

m x - a f + b - x f { b ) 

m 

b — a \ m > 

6 — x , ( a 

b — a \m 

b — a 

x — a 

g(x)dx 

+ m / b — a \rh 
g(x)dx 
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r T b — x , ( a \ x — a , / b 
+ m m- / — + - / -

J b — a \m¿/ b — a \m 

a 
b 

+ s 

m 
X — a 

b — a iJ b — a 
f 

7 7 T 

(2-12) = -

x — a , ( a \ b — x , ( b \ 
/ ( — ) + / -b—a Irav b—a \mJ 

'/( . ) + /(») + a m ( / ( ¿ ) + / ( £ ) ) 

g(x)dx 

g(x)dx 

+ m - — ) + f ( o - b + m- — 
mJ \ m 

+ 2m \f(o- — + m- + f (0 • — + m 
\ m mz J \ m m i 

\m) 

\ag{x)dx 
\mf (O • — + mA,) + mf (0 • — + 
[ \ m m¿ J \ m 

m-

+ 

a 

The inequalities (2.10) follow from (2.11), (2.12) and (2.13). • 

R E M A R K 5 . If we choose g(x) = 1, then Theorem 9 reduces to Theorem 3 . 

R E M A R K 6. If m = 1, then the inequalities (2.10) reduce to the inequalities 
(1.2) when 0 < a < b < oo. 

T H E O R E M 10 . Suppose that f : [0, o o ) —» R is an m—convex function with 

f G L\[ma, b] and k : [ma, b] —> R is nonnegative, integrable and symmetric 

about ^ ^ with k{x)dx > 0 , where m G [ 0 , 1 ] and 0 < a < b. 

( a ) If a < mb and h : [a, mb] —» R is nonnegative, integrable and symmetric 

about With \™b h(x)dx > 0 , then 
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Ç f ( x ) h ( x ) d x | l°maf(x)k(x)dx' 
(2.14) 

m + 1 l f h ( x ) d x 
< f ( a ) + f(b) 

Sma k(^)dx 

( b ) If mb < a and h : [mb, a] —> R is nonnegative, integrable and symmetric 
about ^ w i t h \a

mb h(x)dx > 0 then the inequality (2.14) also holds. 

P r o o f , (a) Since / is m—convex, / G L\[ma,6], k is nonnegative, integrable, 
symmetric about ma^~b with k{x)dx > 0, we have 

fma f{x)k{x)dx + lb
ma f(ma + b - x)k(ma + b - x)dx 

(2.15) 

\ f(x)k(x)dx = 
n a 

S L { f ( x ) + f ( m a + b-x)}k(x)<h: 

= M O J 

< M — o J 

/ 
b — x x — ma. ^ 

: ma + b 
ma ma 

, . x — ma b — x , 
+7 I ma + i b 

ma ma 
k{x)dx 

b — x . . . x — ma 
m- f ( a ) + - r ^ m 

b — ma 

x — ma 

ma 

+ m 
b — ma 

b 

/ ( « ) + I b - ^ - J ( b ) b — ma" 
k(x)dx 

_ ml(a) + m J k { x ) i x 

Similarly, we have 
mb 

(2.16) \ f { x ) h { x ) d x < /(") + mf(b) m \ h { x ) d x 

The inequality (2.14) follows immediately from (2.15) and (2.16). 
The proof of part (b) is similar to that of part (a). • 

REMARK 7. If we choose h(x) = 1 and k(x) = 1 then Theorem 10 reduces 
to Theorem 4. 

REMARK 8. If m = 1 and h(x) = k(x) = g(x) on [a, 6] then the inequality 
(2.14) reduces to the second inequality of (1.2) when 0 < a < b < oo. 

In order to prove our next theorem, we need the following lemma: 

LEMMA 2 ([17]) . 7 / 0 < s < 1 and f € , then f is nondecreasing on [0, o o ) . 
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THEOREM 11. Let f,a and b be defined as in Theorem 5. Then 
b b 

(2 .17) / [ 2 - 1 {a + 6)] J g{x)dx < \ f(x)g(x)dx 
a a 

and 

(2.18) f [ ^ y \ g ( x ) d x 

1 b ~ x 

2 ' b-a 
1 

b — x b 
<\f 

1 x — a 
+ 1 2' b — a 

(a + b) i g(x)dx 

b — a 

b 

+ b 
n 

x — a \ s 

b — a 
g(x)dx 

<m+ml9{x)ix. 

P r o o f . Since / € and g is nonnegative, integrable and symmetric about 
then we have 

6 b 
f 2~s(a + b) \g(x)dx = \f\2-sx + 2-$(a + b-x)]g(x)dx 

a a 

j [•\f(x) + \f(a + b-x)\9(x)dx 

~b b 
5 f(x)g(x)dx + j f(a + b- x)g(x)dx 
a a 
~b b 
$ f{x)g(x)dx + j f(a + b — x)g(a + b — x)dx 

< 

= \ f(x)g(x)dx. 
a 

This proves (2.17). 
Next, if s = 1 then (2.18) is (1.2). Let 0 < s < 1, and a , / 3 > 0 then 

a + P < i ( a U ^ ) . 

Now, by Lemma 2, / is nondecreasing on [0,00). Since g is nonnegative 
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integrable and symmetric about we have 

(2.19) / \g(x)dx 
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= 1/ 
a 
b 

<\f 
a 
b 

= \f 
a 
b 

= \f 

1 b — x 1 x — a + -
2 2(6 — a) 2 2(6 — a) 

2 (a + 6) 

b — x 
2 1̂ 2 ( 6 - a ) J + 2 1^2(6-a) 

x — a 
2(6 + a ) g(x)dx 

b — x 
2(6 - a) + x — a 

2(6 - a) 
(a+ 6) g(x)dx 

„ i 
1\ • b — x\3 f x — a • , 

a + I - 1 6 

+ 5 

6 — a 

x — a 
b — a 

a + 

6 — a 

b — x 
b — a 

• g(x)dx 

/ 
b — x \ 3 I x — a . , 

a + I 1 6 
6 — a 6 — a 

x — a \ 3 ( 6 — 3 , n 

a + I I 6 
b — a 

1 0 b — x\3 ( x — a . , 
a + I ) 6 

6 — a 
6 

6 — a 
1 

b — a 
1 

g(x)dx 

' g(x)da 

• s i ' 
<7(0 + 6 — 

b 
(2.20) = J / 

Kb — a) ' \b — a 

On the other hand, using (1.7), we have 

1 -1 
b — x \ 3 ( x — a . , 

0 + I ) 6 g(x)dx. 

(2.21) S / 
b — x\3 fx — a , , 

a + ( ) 6 
6 — a 6 — a 

1 

6 — a b — a 

1 -1 
x — a\s / 6 — x . , 

a + I 1 6 • g(x)dx 
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i b 
- 5 S 

b x ., v iZ/ 0/ _ x. v 
t — r / ( a ) + 1 — r / & 

b — a b — a 
b 

2 + 9$ 

g{x)dx 

iH CL ., , Í) <1/ . « 
b — a' b — a" 

g(x)dx 

m+m \ g(x)dx. 

The inequalities (2.18) follow from (2.19), (2.20) and (2.21). • 

R E M A R K 9. If we choose g(x) = 1 then Theorem 11 reduces to Theorem 5. 

R E M A R K 1 0 . If s = 1 then the inequality ( 2 . 1 7 ) reduces to the first inequality 
of (1.2) when 0 < a < b < 00. 

T H E O R E M 12. Let f , a and b be defined as in Theorem 6. Then 

(2 .22) 2 + 6 \g{x)dx 

< \ f(x)g(x)dx 

< / ( « O + m 
— o J 

b — x \ / x — 
b — a 

\ SI 
x — a\ 
b - a ) 

g(x)dx. 

P r o o f . Since / 6 Kg, g is nonnegative, integrable and symmetric about 
we have 

(2.23) 2 s " 1 / 
a + b 

\g(x)d x 

x a + b — x 
g{x)dx 

< 2 S _ 1 j g(x)dx 

= - \ [ f ( x ) + f(a + b-x)]g(x)dx 
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b b 
$ f(x)9(x)dx + \ f(a + b — x)g(a + b — x)dx 

= \f(x)g{x)dx. 
a 

On the other hand, using (1.7) we have 

1 R6 

i \[f(x) + f(a + b-x)]g(x)dx (2.24) 

1 6 

o J 
a 

— 9 J 

„ , 6 — x x — a, . 
f ï « + T b ) + f 

b — x . fx — a 
/(<*) + 

x — a b — x, 
a + b b — a 

m 

+ 
x — a 
b — a 
b 

x 

I \ b - a 
+ x — a 

m 

g(x)dx. 

g(x)dx 

g(x)dx 

2 J \b — a J \b — a 
a l \ / \ , 

The inequalities (2.22) follow from (2.23) and (2.24). • 

REMARK 11. If we choose g(x) = 1, then Theorem 12 reduces to Theorem 6. 

REMARK 12. If s = 1, then the inequalities (2.22) reduce to the inequalities 
(1.2), when 0 < a < b < oo. 
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