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ON SOME NEW INEQUALITIES OF
HERMITE-HADAMARD-FEJER TYPE
INVOLVING CONVEX FUNCTIONS

Abstract. In this paper, we establish some inequalities of Hermite-Hadamard-Fejér
type for m-convex functions and s-convex functions.

1. Introduction
If f:[a,b] — R is a convex function then

b
at+b 1 fla)+ f(b)
1.1 < <=t 7
(1.1) 1(557) < 5o Mriwas < 105
is known as Hermite-Hadamard inequality.
Fejér [14] gave a generalization of the inequalities (1.1) as the following:
If f:[a,b] — R is a convex function, and g : [a,b] — R is nonnegative,

integrable and symmetric about 5;—", then

b b b
19 () fe@as < [ f@ie < L0 {0

For some results which generalize, improve, and extend the inequalities
(1.1) and (1.2) see [1]-[12], [14]-[16], [19}-[23].
DEFINITION 1 (see [6, 13, 18]). A function f : [0,b] — R is said to be
m-convez, where m € [0,1], if for every z,y € [0,b] and t € [0, 1] we have:
(1.3) fltz + m(1 - t)y) < tf(z) + m(1 - ) f(y).
We denote the set of all m-conver functions on [0,b] by Kp,(b).

Dragomir and Toader [13]| (see also [6]) proved the following two the-
orems:
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functions in the first and second senses.
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THEOREM 1. Let f : [0,00) — R be an m-convez function with m € (0,1]. If
0<a<b<ooand f € L1]0,b] then

b 5 a
(14)  [fx)dz < (b—a) min{f(a) +2mf("‘), 1) +;nf () } .

a

THEOREM 2. Let f,m,a and b be defined as in Theorem 1. If f is also
differentiable on (0,00) then

f(mb) b—a
m 2

b

f'(mb)] (b-a) < | f(x)da

a

a5 |

1
< 5l(b—ma)f(b) — (a —mb)f(a)}.
The following two theorems are due to Dragomir [6]:

THEOREM 3. Let f be defined as in Theorem 1. Then
b

16 f (aTw) 6-a) < f(z) +;nf (&) 4,

<t @ e (s(5) s (5))

et (1(2) 41 (%))

THEOREM 4. Let f : [0,00) — R be an m—convez function with m € (0, 1].
If f € Li[am, b}, where 0 < a < b, then

m_a dw] <m0y FOT1O)

ma

REMARK 1. A misprint of (1.6) in the original paper has been corrected here.

DEFINITION 2 (see [9, 10, 17]). Let 0 < s < 1. A function f : [0,00) — R is
said to be s-convex in the first sense, if for every z,y € [0,00) and «,3 > 0
with o® + 8° = 1, we have:
(1.7) flaz + By) < &’ f(z) + B°f(y).

We denote the set of all s-convex functions in the first sense by K}.
DEFINITION 3 (see [9, 10, 17]). Let 0 < s < 1. A function f : [0,00) — R
is said to be s—convex in the second sense, if for every z,y € [0,00) and

a, 3 > 0 with o+ 8 = 1 we have the inequality (1.7). The set of all s-convex
functions in the second sense is denoted by K2.

Dragomir and Fitzpatrick [9, 10] proved the following two theorems:
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THEOREM 5. Let f € K} and a,b € [0,00) with a < b. Then

b
(1.8) (b—a)f [2-%(a + b)] < | f(@)dz

and

(1.9) (a_’L_i’)

IA

f(a+b [ +(1—t)§]>dt
fla) + £(8)

<|flats +b(1 —t)%)dt < .

1
§
1
)
THEOREM 6. Let f € K2 and a,b € [0,00) with a < b. Then

b
(1.10) 27 1(b— a)f (a ;“ b) < | f(z)dz < (b~ a)((;‘giz)l;- F0)

In this paper, we shall establish some generalizations of Theorems 1-6.

2. Main results

Throughout this section, let g : [a, b] — R be nonnegative, integrable and
symmetric about %£°.

THEOREM 7. Let f,m,a and b be defined as in Theorem 1. Then

f@)+mf(L) f(b)+mf (L) } v

b
(2.1) gf(:r)g(:v)dm < min{ 5 , 5 (Slg(:v)dz.

Proof. Since f is m-convex and g is nonnegative, integrable and symmetric

about “T‘H’, we have

b

(22) | f(z)g(z)dz

a

wlv—*
I_I

b
Sf(x) (z )d$+8f(a+b—x)g(a+b—x)dx]

[f(z) + f(a+ b — z)lg(x)dx

f b—:v(H_mz—a.ﬁ
b—a b—a m

N =

RN o O D ey O

1
2
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+f(x—aa+ z x-r—l:l-)]g(w)dw

a

%S[ @ +mizer(2)
o= af(a) +mi=f ()] ataris

On the other hand,

[f(z) + f(a+b—x)] g(z)dx

[f( o a4 5 )
+f(mb 2.2y ::2b)]g(x)dx

<3i[ 2 77 (2) + £2250

mE21 (2) 4 5210)] o

_ ()+f(b)§

b
23) [ flz)g(x

D e O R e O

g(z)dz.

The inequality (2.1) follows immediately from (2.2) and (2.3). m
REMARK 2. If we choose g(z) =1, then Theorem 7 reduces to Theorem 1.

REMARK 3. If m = 1, then the inequality (2.1) reduces to the second inequ-
ality of (1.2) where 0 < a < b < oo.

In order to prove our second theorem, we need the following lemma:

LEMMA 1 (see [6] or [13]). Let f is differentiable on [0,b]. Then f € Kn(b)
if and only if

(2.4) f(z) =mf(y) < f(z)(z — my)
for z,y € [0,b)].
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THEOREM 8. Let f,m,a and b be defined as in Theorem 2. Then

b b
TmB) 52 1t | { gz} < | (@ola)az

o

(2.5) < \l(z — ma)f'(z) + mf(a)lg(x)de

a

Proof. By Lemma 1, for z € [a, b], we have
f(mb) — mf(z) < f'(mb)(mb— mzx)

and
f(mb) —mf(a+b—z) < f/(mb)[mb—m(a+b— 1),
so that
(26) 1) (b~ )7/ (mb) < f(a)
and
(2.7) ﬁ:—b) —(z—a)f'(mb) < fla+b—1z).

If we add the inequalities (2.6) and (2.7) then
2 (b a) ') < (&) + S+ b—2)

2.8
(28) -
for all z € [a, b]. Since g is nonnegative, integrable and symmetric abou

t a.+b

multiplying (2.8) by £ J—) and integrating the resulting inequalities on [a b]
yields

£z ’“—“f'(mb)} Sy(z)dx

m

This proves the first inequality in (2.5). Putting in (2.4) y = a, we have for
T > ma

(2.9) (z —ma)f'(z) + mf(a) > f(x).
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Multiplying (2.9) by g(z) and integrating over x on [a,b], we obtain the
second inequality in (2.5). This completes the proof. =

REMARK 4. If we choose g(z) = 1 then Theorem 8 reduces to Theorem 2.

THEOREM 9. Let f,m,a and b be defined as in Theorem 1. Then

(z.1o>f(“;b)§g( Si DS () g(o)io
<3 l@+so+om (5 (2)+1(2))
(1 <%>+f<zi—2>>]§g<w>dw

G G

Proof. Since f is m—convex, f € Li[a,b] and g is nonnegtive, integrable
and symmetric about %’9, we have

(211) f <“"2”’) Igg(m)d:v

a

IA
R O D b O R e O

f [%(a+b—x)+ % : ;n—] 9(z)dz

2

| — |
N =

fla+b—2x)+ T—f (%)] g(z)dx

[f(a+b—$)g(a+b—a:) +mf (%) g(x)] dzr

mf ()9t ‘ jS:f V2l ) g0y,

N | =

DN =

Dt O~ IQ g’-ocj

e
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b b
[2 S f(x)g(z)dz + 2 S fla+b—1z)g(z)dz
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eim iz () 52 (7)ot
eimfimar () emi=as () oo
i ezt () + 5251 (3)] oo}
s[f@+ o vam(1(2) 41 (%))
e (1) 41 () B
b g(x)dz a

8 m
+2m[f 0 %+m-%)+f(0
ot |1 (7) +1 (7))

Lole)dr {7 (2) +m (2

SZg(Sw)dw {mf (0. %-&-m%
1) o (2
2[f () + f ()] lig(q;)dz

The inequalities (2.10) follow from (2.11), (2.12) and (2.13). =

REMARK 5. If we choose g(z) = 1, then Theorem 9 reduces to Theorem 3.

REMARK 6. If m = 1, then the inequalities (2.10) reduce to the inequalities

(1.2) when 0 < a < b < o0.

THEOREM 10. Suppose that f : [0,00) — R is an m—-convez function with
f € Li[ma,b] andk : [ma,b] — R is nonnegative, integrable and symmetric

about ML with Sfm k(z)dz > 0, where m € [0,1] and 0 < a < b.

(a) Ifa <mb and h : [a,mb] — R is nonnegative, integrable and symmetric

about M8 with S;”b h(z)dz > 0, then
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(219) — (S?bf (””)"(m)d%ﬁ’naf(w)k(w)dw) L f@+70)

m+1\ (™ h(z)dz o k(z)dz 2

(b) Ifmb < a and h : [mb, a] — R is nonnegative, integrable and symmetric
about & with §2 . h(z)dz > 0 then the inequality (2.14) also holds.

Proof. (a) Since f is m—convex, f € Li[ma, b}, k is nonnegative, integrable,
symmetric about 2%t with ana k(z)dz > 0, we have

b b b
_ Sma f(@)k(z)da + §,, f(ma + b — z)k(ma + b - z)dz
"§a f(z)k(z)dz = >

Sb [f(z)+ f(ma + b — z)]k(z)dx

[ (b ma™ _Z:Zb)

+f (m—mama+ b-w b)] k(z)dz

(2.15) =

b—ma b—ma

<Ly [m % fa)+ M4y
—2m a b—

ma

+mT—" f(a) + bb__n;”a f(b)] k(z)dz
b
Similarly, we have
mb mb
(2.16) | f(@)h(z)ds < w [ h(z)da

The inequality (2.14) follows immediately from (2.15) and (2.16).
The proof of part (b) is similar to that of part (a). =

REMARK 7. If we choose h(z) = 1 and k(z) = 1 then Theorem 10 reduces
to Theorem 4.

REMARK 8. If m = 1 and h(x) = k(z) = g(x) on [a,b] then the inequality
(2.14) reduces to the second inequality of (1.2) when 0 < a < b < oo.

In order to prove our next theorem, we need the following lemma:

LEMMA 2 ([17]). If0 < s < 1 and f € K, then f is nondecreasing on [0, c0).
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THEOREM 11. Let f,a and b be defined as in Theorem 5. Then

(2.17) fl2ia+b) § g(z)de < § He)o(o)ds

and

(2.18) f (;;f) I§g(x)da:
s?{f[(éijj)i(% =) @) }g@c)dm
< fo(822) 4 (2=2) [stere
< L@ +10) S“’(’”) iz,

Proof. Since f € K! and g is nonnegative, integrable and symmetric about

“T"'b, then we have

f [2‘% (a+ b)] §g(a:)dw

a

[2"%:1: + 2'%((1 +b- a:)] g(z)dz

IA
N | - R e O R G O~
= ~
N} =

@)+ 3fa+b-2)| gloda

f(z)g(z)dx +

| r—
(SIS R

fla+b- I)g(m)dl‘]

f(z)g(z)dz +

N[ =

| ue—
[~

D e O D e O

fla+b—2x)g(a+b— a:)d:c]

b
= | f(z)g(z)dz.

This proves (2.17).
Next, if s = 1 then (2.18) is (1.2). Let 0 < s < 1, and &, 8 > 0 then

(422) <1 (ot 4st).

Now, by Lemma 2, f is nondecreasing on [0,00). Since g is nonnegative
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integrable and symmetric about “—2+-13, we have

b

(2.19) f (;:'_f) {9(z)dz

[ /1 b—zx 1 z-a :
f (5'2(b—a)+§'2(b—a)) 2Aa+b)

b
{
ng %(2(1)_—2) 8 (2?11——(;))%) 2(b+a)
§
b
§

g(z)dz

g(z)dz

(o) + (%) e

) [(50) e (12) o

(2.20) =§f [(::z)%‘” (::2) b] 9(z)dz.

On the other hand, using (1.7), we have

(2.21) S{%f[cz:z)%cu.(::;l)%bJ
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b —a
<31 |ar@ + F=0) stwas

b
| [Fas@ s 0] o
){

The inequalities (2.18) follow from (2.19), (2.20) and (2.21). =
REMARK 9. If we choose g(z) =1 then Theorem 11 reduces to Theorem 5.

REMARK 10. If s = 1 then the inequality (2.17) reduces to the first inequality
of (1.2) when 0 < a < b < o0.

THEOREM 12. Let f,a and b be defined as in Theorem 6. Then

(2.22) 9s-1f (“ ;L b) § g(z)dz

b
< { f(z)g(z)dz

a

A=) () Jooe

a

Proof. Since f € K2, g is nonnegative, integrable and symmetric about

“T“Lb, we have

[\™)

(2.23) 951y (a + b) S g9(z)dz

T a+tb—=x
§+-————2———)g(z)dx
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b b
= % [S f(@)g(z)dz+ | f(a+b—z)g(a+b— m)dm]

a

b
= | f(2)g(z)dz.

On the other hand, using (1.7) we have

b
CENIE lg[ f(@)+ fla+b- x)]g(w)dx]

BPGRY 0 ’§ [(2:2) N (i:z)] o(2)ds.

The inequalities (2.22) follow from (2.23) and (2.24). =
REMARK 11. If we choose g(z) = 1, then Theorem 12 reduces to Theorem 6.

REMARK 12. If s = 1, then the inequalities (2.22) reduce to the inequalities
(1.2), when 0 < a < b < o0.
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