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NEW INEQUALITIES OF CEBYSEV TYPE 
FOR DOUBLE INTEGRALS 

Abstract. In this paper, we establish new inequalities of Cebysev type involving 
functions of two independent variables by using certain integral identities. 

1. Introduction 
In 1882, P. L. Cebysev [2] proved the following classical inequality 

6 / - . b \ / i b 
( 1 . 1 ) j f(x)g(x)dx - ( $ f(x)dx j f \ g(x)d: 

a ^ a ' \ a 
X 

) — a J"" ' a 

provided / , g are absolutely continuous functions defined on [a, 6] and / ' , g' € 
Loo [a, b]. 

Since the publication of [2], a number of researchers have given various 
generalizations, extensions and variants of the above inequality, see [4] and 
also some of the recent papers appeared in RGMIA Research Report Collec-
tion. The main purpose of this paper is to establish new inequalities similar 
to the inequality (1.1), involving functions of two independent variables and 
their partial derivatives and double integrals. The analysis used in the proofs 
is based on the integral identities proved in [1] and [3]. 

2. Statement of results 
Let R denotes the set of real numbers and A = [a, b] x [c, d], a, b, c, d 

G R. The partial derivatives of a function z(x, y) defined on A are de-
noted by Diz{x,y) = J^z(x,y), D2z(x,y) = J^z(x,y), D2Diz{x,y) = 

(x, y). We denote by C (A) the class of continuous functions 2 : A —> R 
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for which D\z (x, y), D2z (x, y), D2D\z (x, y) exist and are continuous on 
A and belong to La0 (A). For any function z (x, y) 6 Loo (A) we define 
ll-^lloo = s u P (x ,y )eA \z ( x ) v)\ • For convenience, we introduce the following 
notations to simplify the details of presentation : 

k = (b — a) (d — c), 

H2(y)=\\(d-cf+(y-C-±l 

2i 

b d bd 
F (x, y) = (d-c)\f (t, y)dt + (b-a)\f (x, s)ds-\\f (t, s) dsdt, 

a c ac 
b d bd 

G (x, y) = (d- c)\g (t, y) dt + (b - a) \ g (x, s)ds-\\g (t, s) dsdt, 
a c a c 

A(x,y)= WDxfW^d-^H^x) 

+ \\D2f\L (b - a) H2 (y) + HD2A/II00 Hi (x) H2 (y), 
B (x, y) = IIA^II^ (d - c) Hi (x) + WDzgW^ (b - a) H2 (y) 

+ \\D2D1g\\00H1(x)H2(y), 

for /, g € Ci (A) and p : [a, 6]2 —> R, q : [c, d]2 —> i? are Peano kernels given 
by 

t — a if t G [a, x] 
p(x, i ) = 

Q (V, s) = 

t - b if t E (x,b], 

s-c if s e [c,y] 
s-d if s e (y,d\, 

and set 
6d 6d 

L [/i (x,y)] = ^p(x,t) D\h (t, s) dsdi + j j q (y, s) D2h (t, s) dsdt 

bd 
+ \\p(x,t) q (y , s ) D2D\h (t, s ) dsd i , 

M[/i(x,y)] = \\p{x,t)q(y,s)D2D1h{t,s)dsdt, 

for some suitable function h defined on A. 
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The proofs of our results are based on the following integral identities 
proved in [3] and [1]. 

LEMMA 1 (3, p. 7 8 3 ) . Let h : A —* R be such that the partial derivatives 
D\h(x,y), D2h (x, y), D2D\h(x,y) exist and are continuous on A . Then 
for all (x, y) G A, we have the representation 

bd 
(2 .1 ) kh (x,y)-\\h (t , s) dsdt = L[h (x, y)]. 

a c 

P r o o f . We use the following identity, which can be easily proved by inte-
gration by parts, 

1 0 1 P 
(2.2) g («) = j g (z) dz + \ e (u, z) g' (z) dz, 

p — a J p — a J 
^ a n a 

where e : [a, /3]2 —> R is given by 

f z — a if z £ [a, u] 
e(u,z) = < , 

\ z - f 3 i f zeiu^y 

and g is absolutely continuous on [a,/?]. 
Now, write the identity (2.2) for the partial map h(.,y),y € [c,d] to 

obtain 

1 b 1 b 
(2.3) h (x, y) = J h (t, y) dt + —— J p (x, t) Dxh (t, y) dt, 

b — a J b — a J 

a a 

for all (x, y) € A. Also, if we write (2.2) for any map h(t,.) we get 
d ^ d (2.4) h (t, y) = — - j h (t, s) ds + — - J q (y, s) D2h (t, s) ds, 
c c 

for all (t, y) € A. The same formula (2.2) applied for the partial derivative 
Dih( . ,y ) will produce 

^ d 1 ^ 
(2 .5 ) Dih (t , y) = j — J Dih {t, s) ds + j — j q (y, s) D2Dxh (t, s) ds, 

c c 

for all (t,y) G A. Substituting (2.4) and (2.5) in (2.3), and using the Fubini's 
theorem, we get 

b r d n d 
dt ( 2 . 6 ) h(x,y) = - ^ \ j^—\h{t,s)ds+j^\q(y,s)D2h(t,s)ds 

a L c c 

1 ^ 
— \ p (x, t) —— 5 D\h (t, s) ds + — - 5 g (y, s ) D2Dih (t, s) ds 

b — a 3 d — c J ' d — c a L c c 
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rbd bd 1 
\\h(t, s) dsdt + $ $ q (y, s) D2h (t, s) dsdt 

{b — a)(d — c) 

+ \\p(x,t)Dih (t, s) dsdt + \\p(x,t)q (y, s) D2Dih (i, s) dsdt 

<-a c a c 

bd bd 

a c ac 

Rewriting (2.6), we get the required identity in (2.1). 

L E M M A 2 ( 1 , p . 1 7 ) . Let h : A —> R be a continuous mapping on A and 

D2D\h(x,y) exists on (a,b) x ( c , d). Then we have the identity 

( 2 . 7 ) kh(x,y)-H(x,y) = M[h(x,y)], 

where 

b d bd 

H (x, y) = (d — (t, y)dt + (b — a)^h (x, s) ds — \ (t, s) dsdt. 
a c ac 

P r o o f . Integrating by parts twice we can state : 
x y 

( 2 . 8 ) j j (a - a) (t - c) A ^ i / i ( s , t) dtds 
a c 

x 

= ( y - c ) { x - a ) h (x, y) - {y - c) \ h (s, y) ds 
a 

y xy 

— (x — a)^h(x,t) dt + ^ h (s, t) dtds, 
c ac 

x d 

( 2 . 9 ) j j (s - a) (t - d) D2Dih ( s , t) dtds 

x 

= ( x - a ) ( d - y ) h (x, y) - (d-y)\h (s, y) ds 
a 

d x d 

— (x — a )\h(x,t)dt + \\h(s,t)dtds, 
y ay 

ay 

(2.10) \ \(s - b) (t - d) D2£>I/I (S, t) dtds 

xy 

b 

= (d — y)(b — x)h (x, y) - {d-y)\h {s, y) ds 
X 

d bd 

- (b-x)\h(x,t)dt + \\h (s, t) dtds, 
xy 
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by 

( 2 . 1 1 ) \ \ (s - b) (t - c) D2Dih (s, t) dtds 
X c 

b 

= (y-c)(b-x)h (x, y) - {y - c)\h {s, y) ds 
X 

y by 

-(b-x)\h (x, t)dt + \\h (s, t) dtds. 
C X c 

Adding (2.8)-(2.11) and rewriting we easily deduce (2.7). 

Our main results are given in the following theorems. 

T H E O R E M 1. Let f , g 6 C ( A ) . Then 

b d / i b d \ / i b d 

( 2 . 1 2 ) 
| D a / 1 \ / 1 

£ S S V)9{x, y)dydx - I - j J f{x, y)dydx )(-\\g(x, y)dydx 
a c \ a c ' \ a c 

^ bd 

- p S S ^ ^ f ) 5 (®> y) dydx-

T H E O R E M 2 . Let f , g E C (A). Then 

bd 1 bd 

(2.13) 
| vu ^ u u, 

1 \ I y)g(x, y)dydx - \ j[/(x, y)G(x, y) + g(x, y)F(x, y) 

dydx 

k i i J V " k2 
a c a c 

-^F(x,y)G(x,y) 

bd 

< ± \\D2D1f\\00 \\D2D1g\\00 \ \ \H\ ( x ) H2 (y)]2 dydx. 

3. Proofs of Theorems 1 and 2 
From the hypotheses of Theorem 1, we have the following identities (see 

Lemma 1) : 

bd 

( 3 . 1 ) kf(x,y)-\\f (t, s) dsdt = L[f (x, y)}, 
a c 
bd 

( 3 . 2 ) kg(x,y)-\\g (t, s) dsdt = L[g (x, y)}, 
a c 

for (x, y) € A . Multiplying the left sides and right sides of (3.1) and (3.2) 
we have 
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bd bd 

( 3 . 3 ) k 2 f (X, y) g (x,y) — k f (x, y) \\ g ( t , s ) dsdt - k g ( x , y ) \ \ f (t, s) dsdt 

ac ac 

/b d \ /b d \ 

+ ( j j / ( M ) dsdt \(\\g(t,s) dsdt ) = L [ f (x, y)} L [g (x, y)}. 
VIC ' F̂LC ' 

Rewriting (3.3) and integrating on A and using the properties of modulus 
we observe that 

I r e / I f f \ / l r r 
(3-4) j ; \ \ f ( x , y ) 9 ( x , y ) - ( r J 3 / ( x > v ) d v d x J ( r J ] 9 { x , y ) d y d x 

ac ^ ac ' * ac 
bd 

<^\\\L[f(x,y)}\\L[g(x,y)]\dydx. 
a c 

It is easy to observe that 
bd bd 

( 3 . 5 ) | L { f ( x , y ) ] | < j J |p Or, t)\ (t, s ) | dsdt + j j | 9 ( y , s)\ \D2f (t, s)\dsdt 

ac ac 
bd 

+ \\\p(x,t)Wq(y,s)\\D2D1f (t, s) \ dsdt 

a c 

bd bd 

< LL^I/LLOO I ! IP + W I L S S K (2/, «)L DSDT 

ac ac 

bd 
+ \\D2D1f\\00\\\p(x,t)\\q(y,s)\dsdt 

a c 

= I I A / I l o o (d - C) H, (x) + ||Z?2/lloo (6 - a ) H2 (y) 

+ \\D2D1f\\00H1(x)H2(y) 

= A (x, y). 

Similarly, we have 

( 3 . 6 ) \L[g(x,y)]\<B(x,y). 

Using (3.5) and (3.6) in (3.4) we get the desired inequality in (2.12). 

REMARK 1. From (3.3) and using the properties of modulus it is easy to see 
that the following inequality 

f ( x , y ) g ( x , y ) 

^ r b d b d 

f(x,y)\\g (t, s) dsdt + g(x,y)\\f (t, s) dsdt 



CebySev type inequalities for double integrals 49 

^ /b d \ /b d 

-l\\f(t,s)dsdt)(\\g(t,s) dsdt 

*ac ' ^o c 
- p A ( x i y ) B ( x > y ) i 

holds for (x,y) 6 A. 

Prom the hypotheses of Theorem 2, we have the following identities ( see 
Lemma 2) : 

(3 .7 ) k f ( x , y ) - F ( x , y ) = M [ f ( x , y ) } , 

(3 .8 ) kg(x,y)-G(x,y) = M\g{x,y)], 

for (x,y) G A. Multiplying the left sides and right sides of (3.7) and (3.8) 
we have 

(3 .9 ) k2f (x, y) g (x,y) — k f (x, y) G{x,y)~ kg (x, y) F ( x , y) 

+F (x, y) G Or, y) = M [ f (x, y)} M [g (x, y)}. 

Rewriting (3.9) and integrating on A and using the properties of modulus, 
we have 

(3.10) 
bd 1 bd 

k \ \ f ( x , y)g{x, y)dydx ~ [ f ( x , y)G{x, y) + g(x, y)F(x, y) 
a c a c 

1 
k 

F(x,y)G(x,y) dydx 

1 bd 

<Ts\\\M[f(x,y)}\\M[g(x,y)]\dydx. 

bd 

k3 
a c 

It is easy to observe that 

(3.11) |M [f (x, y)]| < I P 2 A / I L J SIP (x, t)| \q (y, s)| dsdt 

a c 

= \\D2D1f\\00H1(x)H2(y). 

Similarly, we get 

(3.12) \M[g(x,y)}\ < H ^ i i / I L ( x ) H2 (y) • 

Using (3.11) and (3.12) in (3.10) we get the required inequality in (2.13). 

REMARK 2. Prom (3.9) one can very easily observe that the following ine-
quality 

f(x,y)g(x,y) - - /(:r, y)G(x, y) + g(x, y)F(x, y) - - F ( x , y)G(x, y) 

< ^ ll^^i/IL \\D2D1g\\00 [Hi (x) H2 {yf 

holds for (x, y) € A. 
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