

Irena Kosi-Ulbl

IDENTITIES WITH TWO AUTOMORPHISMS ON SEMIPRIME RINGS

Abstract. In this paper we investigate identities with two automorphisms on semiprime rings. We prove the following result: Let $T, S : R \rightarrow R$ be automorphisms where R is a 2-torsion free semiprime ring satisfying the relation $T(x)x = xS(x)$ for all $x \in R$. In this case the mapping $x \mapsto T(x) - x$ maps R into its center and $T = S$.

1. Preliminaries

Throughout, R will represent an associative ring with center $Z(R)$. A ring R is n -torsion free, where $n > 1$ is an integer, in case $nx = 0$, $x \in R$ implies $x = 0$. As usual the commutator $xy - yx$ will be denoted by $[x, y]$. We shall frequently use the commutator identities $[xy, z] = [x, z]y + x[y, z]$ and $[x, yz] = [x, y]z + y[x, z]$. We denote by I the identity mapping on a ring R . Recall that R is prime if $aRb = (0)$ implies $a = 0$ or $b = 0$, and is semiprime if $aRa = (0)$ implies $a = 0$. An additive mapping $D : R \rightarrow R$, where R is an arbitrary ring, is called a derivation if $D(xy) = D(x)y + xD(y)$ holds for all pairs $x, y \in R$. We denote by C the extended centroid of a semiprime ring R and by Q Martindale ring of quotients. For the explanation of the extended centroid of a semiprime ring R and the Martindale ring of quotients we refer the reader to [1]. A mapping $f : R \rightarrow R$ is called centralizing on R if $[f(x), x] \in Z(R)$ holds for all $x \in R$; in the special case when $[f(x), x] = 0$ holds for all $x \in R$, the mapping f is said to be commuting on R . The history of commuting and centralizing mappings goes back to 1955 when Divinsky [6] proved that a simple Artinian ring is commutative if it has a commuting nontrivial automorphism. Two years later Posner [9] has proved that the existence of a nonzero centralizing derivation on a prime ring forces the ring

2000 *Mathematics Subject Classification*: 16E99, 08A35.

Key words and phrases: prime ring, semiprime ring, additive mapping, derivation, automorphism, commuting mapping, centralizing mapping, skew-commuting mapping, skew-centralizing mapping.

This research has been supported by the Research Council of Slovenia.

to be commutative. Luh [7] generalized the Divinsky result, we have just mentioned above, to arbitrary prime rings. Mayne [8] has proved that in case there exists a nontrivial centralizing automorphism on a prime ring, then the ring is commutative. A result of Brešar [2], which states that every additive commuting mapping of prime ring R is of the form $x \mapsto \lambda x + \zeta(x)$ where λ is an element of C and $\zeta : R \rightarrow C$ is an additive mapping, should be mentioned. A mapping $f : R \rightarrow R$ is called skew-centralizing if $f(x)x + xf(x) \in Z(R)$ holds for all $x \in R$; in particular, if $f(x)x + xf(x) = 0$ holds for all $x \in R$, then it is called skew-commuting on R . Brešar [3] has proved that if R is a 2-torsion free semiprime ring and $f : R \rightarrow R$ is an additive skew-commuting mapping on R , then $f = 0$.

2. Results

Let us start with the following result proved by Brešar [4].

THEOREM A ([4], Corollary 4.9). *Let R be a prime ring and let $f, g : R \rightarrow R$ be additive mappings satisfying the relation*

$$(1) \quad f(x)x + xg(x) = 0$$

for all $x \in R$. In this case there exist $a \in Q$ and an additive mapping $\zeta : R \rightarrow C$ such that $f(x) = xa + \zeta(x)$, $g(x) = -ax - \zeta(x)$ holds for all $x \in R$.

Let us point out that the identity (1) generalizes both concepts, the concept of commuting and the concept of skew-commuting mappings.

Theorem A was the inspiration for Theorem 1 below.

THEOREM 1. *Let R be a 2-torsion free semiprime ring. Suppose there exist automorphisms $T, S : R \rightarrow R$ such that $T(x)x = xS(x)$ holds for all $x \in R$. In this case $T - I$ maps R into $Z(R)$ and $T = S$.*

For the proof of Theorem 1 we need the result below.

PROPOSITION. *Let R be a 2-torsion free semiprime ring and let $T : R \rightarrow R$ be an automorphism. If either $x[T(x), x] = 0$ or $[T(x), x]x = 0$ holds for all $x \in R$ then $T - I$ maps R into $Z(R)$.*

For the proof of Proposition we shall need two lemmas. Lemma 2 will also be needed in the proof of Theorem 2.

LEMMA 1 ([11], Lemma 1.3). *Let R be a semiprime ring. Suppose there exists $a \in R$ such that $a[x, y] = 0$ holds for all pairs $x, y \in R$. In this case $a \in Z(R)$.*

LEMMA 2 ([10], Lemma 3). *Let R be a semiprime ring and let $f : R \rightarrow R$ be an additive mapping. If either $f(x)x = 0$ or $xf(x) = 0$ holds for all $x \in R$, then $f = 0$.*

Brešar and Hvala [5] have proved the following result.

THEOREM B. *Let R be a prime ring of characteristic different from two and let $f : R \rightarrow R$ be an additive mapping satisfying the relation $f(x)^2 = x^2$ for all $x \in R$, then either $f = I$ or $f = -I$. The result, we have just mentioned, was the inspiration for our second theorem.*

THEOREM 2. *Let $T, S : R \rightarrow R$ be automorphisms where R is a 2-torsion free semiprime ring. Suppose that $T(x)S(x) = x^2$ holds for all $x \in R$. In this case $T = S = I$.*

3. Proofs

Proof of Proposition. The linearization of the relation below

$$(2) \quad x [T(x), x] = 0, \quad x \in R.$$

gives

$$(3) \quad x [T(y), y] + y [T(x), x] + x([T(x), y] + [T(y), x]) + y([T(y), x] + [T(x), y]) = 0, \quad x, y \in R.$$

Putting in the relation (3) $-x$ for x and comparing the relation so obtained with the relation (3) we obtain

$$(4) \quad x [T(x), y] + x [T(y), x] + y [T(x), x] = 0 \quad x, y \in R.$$

The substitution xy for y in the above relation gives

$$\begin{aligned} 0 &= x [T(x), xy] + x [T(x)T(y), x] + xy [T(x), x] = \\ &= x^2 [T(x), y] + xT(x) [T(y), x] + xy [T(x), x], \quad x, y \in R. \end{aligned}$$

We have therefore

$$x^2 [T(x), y] + xT(x) [T(y), x] + xy [T(x), x] = 0, \quad x, y \in R.$$

Multiplying the relation (4) from the left side by x and subtracting the relation so obtained from the above relation we obtain $xD(x) [T(y), x] = 0$, $x, y \in R$, where $D(x)$ denotes $T(x) - x$, which means that we have

$$(5) \quad xD(x) [y, x] = 0 \quad x, y \in R.$$

Putting in the above relation yz for y , we arrive at

$$(6) \quad xD(x)y [z, x] = 0 \quad x, y, z \in R.$$

From the above relation one obtains easily

$$xD(x)y [z, w] + xD(w)y [z, x] + wD(x)y [z, x] = 0 \quad x, y, z, w \in R.$$

Putting in the above relation $[z, w] yxD(x)$ for y and applying the relation (5) we obtain $(xD(x) [z, w])y(xD(x) [z, w]) = 0$, $x, y, z, w \in R$ whence it follows

$$xD(x) [z, w] = 0 \quad x, z, w \in R.$$

For fixed z and w we have an additive mapping $x \mapsto xD(x)[z, w]$ on R . Therefore, from the above relation it follows according to Lemma 2 that $D(x)[z, w] = 0$, $x, z, w \in R$ which makes it possible to conclude, according to Lemma 1, that $D(x) \in Z(R)$ for any $x \in R$. In other words, $T - I$ maps R into $Z(R)$. Similarly, one obtains that $T - I$ maps R into $Z(R)$ also in case $[T(x), x]x = 0$ holds for all $x \in R$. The proof of Proposition is complete.

Proof of Theorem 1. We have the relation

$$(7) \quad T(x)x - xS(x) = 0, \quad x \in R.$$

From the relation (7) one obtains $0 = [T(x)x - xS(x), x] = [T(x), x]x - x[S(x), x]$. We have therefore

$$(8) \quad [T(x), x]x - x[S(x), x] = 0, \quad x \in R.$$

Linearization of the relation (7) gives

$$(9) \quad T(x)y + T(y)x - xS(y) - yS(x) = 0, \quad x, y \in R.$$

Putting yx for y in the above relation we obtain

$$(10) \quad T(x)yx + T(y)T(x)x - xS(y)S(x) - yxS(x) = 0, \quad x, y \in R.$$

Right multiplication of the relation (9) by $S(x)$ gives

$$(11) \quad T(x)yS(x) + T(y)xS(x) - xS(y)S(x) - yS(x)^2 = 0, \quad x, y \in R.$$

Subtracting (10) from (11) and applying (7) we obtain

$$(12) \quad T(x)y(S(x) - x) - y(S(x) - x)S(x) = 0, \quad x, y \in R.$$

The substitution xy for y in the above relation gives

$$(13) \quad T(x)xy(S(x) - x) - xy(S(x) - x)S(x) = 0, \quad x, y \in R.$$

Left multiplication of the relation (12) by x leads to

$$(14) \quad xT(x)y(S(x) - x) - xy(S(x) - x)S(x) = 0, \quad x, y \in R.$$

Subtracting (14) from (13) we obtain

$$(15) \quad [T(x), x]y(S(x) - x) = 0, \quad x, y \in R.$$

The substitution yx for y in the above relation gives

$$(16) \quad [T(x), x]y(xS(x) - x^2) = 0, \quad x, y \in R.$$

Right multiplication of the relation (15) by x gives

$$(17) \quad [T(x), x]y(S(x)x - x^2) = 0, \quad x, y \in R.$$

Subtracting (16) from (17) we arrive at

$$(18) \quad [T(x), x]y[S(x), x] = 0, \quad x, y \in R.$$

Putting in the above relation first xyx for y and using (8) we obtain

$$[T(x), x]xy[T(x), x]x = 0, \quad x, y \in R.$$

Since R is semiprime it follows from the above relation

$$[T(x), x] = 0, \quad x \in R.$$

Using (8) again we obtain $x[S(x), x] = 0$, $x \in R$ as well.

Applying Proposition one can conclude that both mappings $T - I$ and $S - I$ map R into $Z(R)$. In a special case

$$(T(x) - x)x = x(T(x) - x), \quad x \in R.$$

It follows from the above relation $T(x)x = xT(x) = xS(x)$, $x \in R$. From this relation one obtains

$$x(T(x) - S(x)) = 0, \quad x \in R.$$

Applying Lemma 2 one can conclude that $S = T$, which completes the proof of the theorem.

Proof Theorem 2. We have the relation

$$(19) \quad T(x)S(x) = x^2, \quad x \in R.$$

From the relation above one obtains

$$(20) \quad T(x)S(y) + T(y)S(x) = xy + yx, \quad x, y \in R.$$

Replacing y with yx in the above relation we obtain

$$(21) \quad T(x)S(y)S(x) + T(y)T(x)S(x) = xyx + yx^2, \quad x, y \in R.$$

Using the relations (19) and (20) we obtain from the above relation

$$(xy + yx - T(y)S(x))S(x) + T(y)x^2 = xyx + yx^2, \quad x, y \in R.$$

Rearranging the above relation gives

$$(22) \quad xyD(x) + yxD(x) - T(y)(S(x)^2 - x^2) = 0, \quad x, y \in R,$$

where $D(x)$ stands for $S(x) - x$. In particular for $y = x$ the above relation reduces to

$$(23) \quad 2x^2D(x) - T(x)(S(x)^2 - x^2) = 0, \quad x \in R.$$

Putting xy for y in the relation (22) we obtain

$$(24) \quad x^2yD(x) + xyxD(x) - T(x)T(y)(S(x)^2 - x^2) = 0, \quad x, y \in R.$$

Multiplying the relation (22) from the left side by x and subtracting the relation so obtained from the above relation we obtain $G(x)T(y)(S(x)^2 - x^2) = 0$, $x, y \in R$, where $G(x)$ denotes $T(x) - x$, which means that we have

$$G(x)y(S(x)^2 - x^2) = 0, \quad x, y \in R.$$

Putting in the above relation $S(x)yT(x)$ for y we obtain using relations (19) and (23) $xD(x)yx^2D(x) = 0$, $x, y \in R$, and then $x^2D(x)yx^2D(x) = 0$, $x, y \in R$, whence it follows

$$(25) \quad x^2 D(x) = 0, \quad x \in R.$$

Because of the relation above the relation (23) reduces to

$$(26) \quad T(x)(S(x)^2 - x^2) = 0, \quad x \in R.$$

Putting yx for y in the relation (22) we obtain according to (25) and (26)

$$0 = xyxD(x) + yx^2D(x) - T(y)T(x)(S(x)^2 - x^2) = xyxD(x) \quad x, y \in R.$$

Thus we have $xyxD(x) = 0$, $x, y \in R$, which means that $xD(x)yx = 0$, $x, y \in R$, whence it follows $xD(x) = 0$, $x \in R$.

From the relation above it follows according to Lemma 2 $D(x) = 0$, $x \in R$. In other words, $S = I$. Now the relation (19) reduces to $T(x)x = x^2$, $x \in R$, which means that $G(x)x = 0$, $x \in R$, whence it follows using Lemma 2 again that $G = 0$. We have therefore $T = I$, which completes the proof of the theorem.

References

- [1] K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, *Rings with Generalized Identities*, Marcel Dekker, Inc. New York 1996.
- [2] M. Brešar, *Centralizing mappings and derivations in prime rings*, J. Algebra 156 (1993), 385–394.
- [3] M. Brešar, *On skew-commuting mappings of rings*, Bull. Austral. Math. Soc. 47 (1993), 291–296.
- [4] M. Brešar, *On generalized biderivations and related maps*, J. Algebra 172 (1995), 764–786.
- [5] M. Brešar, B. Hvala, *On additive maps of prime rings*, Bull. Austral. Math. Soc. 51 (1995), 377–381.
- [6] I. N. Divinsky, *On commuting automorphisms of rings*, Trans. Roy. Canada Sect. III, 49 (1955), 19–22.
- [7] J. Luh, *A note on commuting automorphisms of rings*, Amer. Math. Monthly 77 (1970), 61–62.
- [8] J. H. Mayne, *Centralizing automorphisms of prime rings*, Canad. Mat. Bull. 19 (1976), 113–115.
- [9] E. C. Posner, *Derivations in prime rings*, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [10] J. Vukman, *Identities with derivations and automorphisms on semiprime rings*, Int. J. Math. Math. Sci. 7 (2005), 1031–1038.
- [11] B. Zalar, *On centralizers of semiprime rings*, Comment. Math. Univ. Carolinae 32 (1991), 609–614.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARIBOR
 PEF, Koroška 160
 2000 MARIBOR, SLOVENIA
 e-mail: irena.kosi@uni-mb.si

Received January 16, 2006.