

Zbigniew Jelonek

ON EFFECTIVE NON-AMPLE DIVISORS

Abstract. Let X be a smooth complete algebraic variety. Let $f : X \rightarrow Y$ be a morphism from X to another algebraic variety Y , which is neither finite nor constant. Then X admits an effective non-ample divisor. In particular, if X is a smooth complete variety with Picard number one, then every non-constant morphism $f : X \rightarrow Y$ is finite and the variety $f(X)$ is projective.

1. Main result

Let X be a smooth complete algebraic variety defined over algebraically closed field k (of arbitrary characteristic). In general we can find algebraic morphisms $f : X \rightarrow Y$, which are far from being finite. In particular, even if X is a projective variety, then it is possible that the variety $f(X)$ is not projective. J. Włodarczyk noted (using theory of algebraic groups) that for $X = \mathbb{P}^N$ a morphism $f : X \rightarrow Y$ is either finite or constant, in particular (what is interesting here) the variety $f(X)$ is always projective. The aim of this simple note is to generalize this result to the class of all smooth varieties with Picard number one. We start with the following:

THEOREM 1. *Let X be a smooth complete algebraic variety. Let $f : X \rightarrow Y$ be a morphism from X to another algebraic variety Y , which is neither finite nor constant. Then X admits an effective, non-ample divisor.*

Proof. We can assume that $f : X \rightarrow Y$ is a surjective morphism and Y is not a point. Since the variety X is proper and the morphism f is not finite, there exists a point $y \in Y$ such that the fiber $L = f^{-1}(y)$ has a positive dimension (see [2], Theorem 2.27, p. 142). Let U be an affine open neighborhood of y . Let $R \subset U$ be a non-zero effective divisor in U , which

Key words and phrases: algebraic variety, morphism of algebraic varieties, small contraction.

1991 *Mathematics Subject Classification:* 14 E.

The author was partially supported by the grant of Polish Ministry of Education 2006–2009.

is described by a global function $r \in k[U]$ and which does not contain the point y (to construct R it is enough to embed U in some affine space k^N and now to take a sufficiently general hyperplane section). Now let us consider a rational function $f^*(r) \in k(X)$. This function is regular on the set $f^{-1}(U)$ and non-zero on the fiber L . This means that the fiber L is disjoint with the support of a divisor $(f^*(r))$. Note that $H := \text{Supp } (f^*(r))$ is a non-zero effective divisor. The divisor H cannot be ample, because its support is disjoint with a complete subvariety L of positive dimension. ■

Now we pass to some application of Theorem 1. Let X be an algebraic variety. Let \equiv denote the numerical equivalence (two Cartier divisors D, D' are called numerically equivalent if $D.C = D'.C$ for every curve $C \subset X$). Let $N(X) = \text{Pic}(X)/\equiv$. The Theorem of the Base of Néron-Severi asserts that $N(X)$ is of finite rank. By the Picard number of X we mean the rank of $N(X)$. In this note we will deal mainly with varieties with Picard number one. The simplest examples of such varieties are: projective spaces \mathbb{P}^n , Grassmannians $G(k, n)$, complete intersections $X \subset \mathbb{P}^n$, where $\dim X \geq 3$. First we recall the following result of Kleiman [3] (for the sake of a completeness we give a simple proof):

LEMMA 2. *Let X be a smooth complete algebraic variety with rank $N(X) = 1$. Then X is a projective variety.*

P r o o f. First of all, let us note that every effective divisor has infinite order in $N(X)$. Let us fix an effective divisor $D \in N(X)$. For every effective divisor $Z \in N(X)$, there are numbers $a, b >> 0$, such that $aZ = bD$.

Let U_1, \dots, U_r be a finite covering of X by affine open subsets. For every $i = 1, \dots, r$, there is a number n_i such that $U_i \subset k^{n_i}$. In particular we have birational mappings $f_i : X \rightarrow \mathbb{P}^{n_i}$, $i = 1, \dots, r$. Let $Z_i = (f_i)^*(O(1))$. Then Z_i is effective and there are positive numbers a_i, b_i , such that $a_i Z_i = b_i D$.

Take $\alpha = \min_{i=1, \dots, r} \{a_i/b_i\}$. For every integral curve $C \subset X$ let $m_P(C)$ be the multiplicity of a point P on C and let $m(C) = \sup_{P \in C} \{m_P(C)\}$. Now we have $(D.C) \geq \alpha m(C)$ (we check this locally in U_i) and by the Seshadri criterion (see [1], Th. 7.1, p.37), we obtain that the divisor D is ample. Hence the variety X is projective. ■

Now we are in a position to prove our main result:

THEOREM 3. *Let X be a smooth complete algebraic variety with rank $N(X) = 1$. Let $f : X \rightarrow Y$ be a surjective morphism from X onto another algebraic variety Y . Then either Y is a point or $\dim Y = \dim X$ and f is a finite morphism.*

P r o o f. By Lemma 2 the variety X is projective. In particular it contains an effective ample divisor D . Since rank $N(X) = 1$ we have that every

effective divisor on X is ample (for every effective divisor $Z \in N(X)$, there are numbers $a, b >> 0$, such that $aZ = bD$). Now the result follows directly from Theorem 1. ■

COROLLARY 4. *Let X be a smooth complete algebraic variety with rank $N(X) = 1$. Let $f : X \rightarrow Y$ be a surjective morphism from X onto another algebraic variety Y . Then the variety Y is projective.*

P r o o f. From Lemma 2 we have that X is projective and every effective divisor on X is ample (see the proof of Theorem 3). By Theorem 3 either the morphism f is finite or Y is a point. In the second case there is nothing to prove. In the first case Corollary 4 follows from [1], Proposition 4.4, p.25. ■

REMARK 5. (a) There is an example of a complete normal variety X with $\text{Pic}(X) = \mathbb{Z}$, which is not projective.

(b) There is a normal complete algebraic variety with $\text{Pic}(X) = \mathbb{Z}$ and a morphism $f : X \rightarrow Y$ from X onto another algebraic variety Y , which is neither finite nor constant.

At the end of these note we give an application of our result. Lazarsfeld (see [4]) proved in 1984 the following theorem:

THEOREM 6. *Let X be a smooth projective variety of dimension n . Assume that there is a surjective and separable morphism $p : \mathbb{P}^n \rightarrow X$. Then $X \cong \mathbb{P}^n$.*

From our result it follows that the assumption about projectivity of X can be removed.

Acknowledgements. The author wishes to express his thanks to Professor Jarosław Włodarczyk from Purdue University (West Lafayette) for stating the problem.

References

- [1] R. Hartshorne, *Ample Subvarieties of Algebraic Varieties*, Springer Verlag 1986.
- [2] S. Iitaka, *Algebraic Geometry*, Springer Verlag 1982.
- [3] S. Kleiman, *Toward a numerical theory of ampleness*, Annals of Math. 84 (1966), 293–344.
- [4] R. Lazarsfeld, *Some application of the theory of positive vector bundles*, Lecture Notes in Mathematics 1092 (1984), 29–61.

MATHEMATICAL INSTITUTE
POLISH ACADEMY OF SCIENCES
Św. Tomasza 30
31-027 KRAKÓW, POLAND
e-mail:najelone@cyf-kr.edu.pl

Received June 28, 2006.

