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SUBMONOIDS OF GENERALIZED HYPERSUBSTITUTIONS

Abstract. In this paper we define the operation ©¢ on the set of all generalized
hypersubstitutions and investigate some algebraic-structural properties of the set of all
generalized hypersubstitutions and of some submonoids M of the set of all generalized
hypersubstitutions, respectively.

1. Introduction

The concept of a hypersubstitution was introduced by K. Denecke,
D. Lau, R. Poschel and D. Schweigert in [2]. In {7], the author and K. De-
necke generalized the concept of a hypersubstitution to a generalized hy-
persubstitution. This is useful for several applications, such as, to solve the
hyperunification problem means to decide whether any two given terms ¢, t’
of the same type are hyperunifiable or not. In a corresponding way we can
formulate the generalized hyperunification problems. Our results can be used
to solve the hyperunification problem and the generalized hyperunification
problem for the type 7 = (2) (see [7]). A generalized hypersubstitution is a
mapping from the set of all fundamental operations into the set of all terms
of the same language which does not necessarily preserve the arity. Genera-
lized hypersubstitutions can be extended to mappings defined on the set of
all terms of the given type. This extension is uniquely determined and allows
us to define a multiplication denoted by og, on the set Hypg (1) of all gene-
ralized hypersubstitutions of type 7. The multiplication og is an example of
operation on generalized hypersubstitutions. In [6], the author defined the
other binary operation +¢ on Hypg(7) and proved that (Hypg(7); +¢, o)
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is a left seminear-ring but it is not a right seminear-ring. In this paper we
will define another operation on Hypg(7) and give some algebraic-structural
properties of the set of all generalized hypersubstitutions and of some sub-
monoids M of the set of all generalized hypersubstitutions.

2. Generalized hypersubstitutions

In this section, we want to briefly recall some basic concepts of generalized
hypersubstitutions that will be referred to the following sections. For more
details on generalized hypersubstitutions see [8].

Let {fi | ¢ € I'} be an indexed set of operation symbols of type 7 where
fi is ns-ary, n; € N\ {0}, and let W, (X) be the set of all terms built up
by elements of the alphabet X = {z1,z2,...,Zn,...} and operation symbols
from {f; | i € I'}. Generalized hypersubstitutions of type 7 are mappings
o:{fi|i€ I} — W,(X) which do not necessarily preserve the arities.
To define the extension & of o to a mapping defined on the set W, (X) of
all terms of type 7, we defined inductively the concept of superposition of
terms S™ : W, (X)™*+! — W,(X) by the following steps:

(i) Ift =2;,1 < j < m, then
S™xj,t1,...,tm) :=t; where t1,...,t, € W (X).
(ii) If t = z5,m < j € N, then
Sm(l‘j,tl, ‘e ,tm) =Zj.
(iii) Ift= fi(sl, ceey Sni), then
Sm(t, tl, cen ,tm) = fi(Sm(sl, tl, .. ,tm), . ,Sm(sni,tl, cen ,tm)).
Then we have the following proposition.
PROPOSITION 2.1 ([6]). For arbitrary terms t,t1,...,tm € W (X),
Sni(t, Sm(sl, tl, . ,tm), ey Sm(sni, tl, . ,tm))
= Sm(Sni(t,Sl, ey Sni),tl, fae ,tm). [ ]
The generalized hypersubstitution o can be extended to a mapping & :
W (X) — W;(X) on the set of all terms of type 7 by the following steps:

(i) o[zk) := z € X,
(ii) 6(fi(t1,---,tn,)] :==S™(0(fi),6[t1],---,6[tn,]), for an n;-ary operation
symbol f; where 6[t;], 1 < j < n; are already known.

Let Hypg(7) be the set of all generalized hypersubstitutions of type 7 and
let Hyp(7) be the set of all usual hypersubstitutions of type 7. We define
a binary operation og on Hypg(T) by 01 og 02 := 1 0 02 where o denotes
the usual composition of mappings and 01,02 € Hypg(T) . Let g;q be the
identity hypersubstitution which maps each n;-ary operation symbol f; to
the term fi(z1,...,2n,). Then we have the following proposition.
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PROPOSITION 2.2 ([8]). For arbitrary terms t,t1,...,tn, € W, (X) and for
arbitrary generalized hypersubstitutions a,01,02 we have

(i) S™(6[t],6[t1],-.-,0[ta]) = a[S™(t, t1, ..., tn)],
(ii) (b1002)=061062. =
Now, we can prove the following theorem.

THEOREM 2.3 ([8]). Hypa(r) = (Hypc(T);0G,0id) is a monoid and the
monoid Hyp(t) = (Hyp(7); on, 03q) of all arity-preserving hypersubstitutions
of type T forms a submonoid of Hypg(r). =

3. An algebraic-structural property of generalized hypersubstitu-
tions
In this section, we investigate an algebraic-structural property of the set
of all generalized hypersubstitutions. We first recall from [6] the definition
of a left (right) seminear-ring.

DEFINITION 3.1. A nonempty set R together with two binary operations,
denoted by + and -, respectively, is said to be a left (right) seminear-ring
if (R;+) and (R;-) are semigroups and satisfies the left (right) distributive
law, i.e., for all a,b,c € R,a-(b+c¢c)=a-b+a-c ((a+b)-c=a-c+b-c).

In [6], the author defined the binary operation +¢ on Hypg(7) by
(01 +¢ 02)(fi) := §™(02(fi), 01(fi), - - -, 01 (fi)), Vi € I

n; times

Then we have the following propositions.

PROPOSITION 3.2 ([6]). For arbitrary generalized hypersubstitutions o1, 09
and o3,

(01 +¢ 02) +c 03)(fi) = (01 +c (02 +Gc 03))(fi), Vi€ L. =

PROPOSITION 3.3 ([6]). For arbitrary generalized hypersubstitutions 01,02
and o3,

(010G (02 +G 03))(fs) = ((01 0G 02) +¢ (010G 03))(f), Vi€ I. u

So (Hypa(T); +a,0¢) is a left seminear-ring. But it is not a right semi-
near-ring because it does not satisfy the right distributive law. As a co-
unterexample, we consider the type 7 = (2), i.e., there is one binary ope-
ration symbol f. Let o1 : f — f(z2,23),02 : f — f(z1,22) and o3 : f —
f(f($1,$1)7x3)‘ Then we have ((01+G02)OGU3)(f) = f(f(x3’w3)a f(.’L‘g,IE?,))
and ((01 o¢ 03) +¢ (02 og 03))(f) = f(f(f(zs,23), f(z3,23)),23). Thus
(01 +¢ 02) oG 03 # (01 0G 03) +¢ (02 °G 03).
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Now, we define another binary operation &g on Hypg(7) by

(01 ®¢ 02)(fi) := S™(01(fi), 02(fi), - - -, 02(f3)),

N\ —

n; times
then we can prove the following propositions.
PROPOSITION 3.4. For arbitrary generalized hypersubstitutions o1, 02 and o3,
((01 ®c 02) ¢ 03)(fi) = (01 ®G (02 B 03))(fi), Vi € L.
Proof.

(o1 ¢ 02) & 03)(f:)
= Sni((Ul S+Te; U2)(fi)7g3(fi)a sy a3(f1)1)

"

n; times

= §™(8™(01(fi), 02(fi), -;Uz(fil),gS(fi), » ,03(fi))
n; times n; times
= 5" (01(fi), 5™ (02(fi), 93(fs), > ,03(fi))s -+,
ni times
Sni(02(fi),g3(fiu a3(fs))
n; times

= S™(01(f:), (02 D¢ 03)(fi), o (02 B¢ 03)(f:))

n; times

= (01 &¢ (02 B¢ 03))(fi). =
PROPOSITION 3.5. For arbitrary generalized hypersubstitutions o1, 02 and o3,
(0106 (02 ®g 03))(fi) = ((01 0G 02) B¢ (01 oG 03))(fi), Vi € I.
Proof.
(01 0¢ (02 ®¢ 03))(fi)
= (610 (02 ®¢ 03))(fi)
= 61[S™ (02( 1), 93(fi), o a3(fi))l

n; times
= §™(G1lo2(fi)), qulos(£i)), - -, Suloa(£)
n; times
= 5™((01 o6 02)(f), (91 96 03)(fi), - -, (91 o 93) ()

- v
v

n; times

= ((01 06 02) ®G (0106 03))(fi). =
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Thus (Hypg(7); ®g, o) is also a left seminear-ring. However, it still does
not satisfy the right distributive law. As a counterexample, we consider the
type 7 = (2). So there is one binary operation symbol, say f. Let o1 : f

f(za,z3),00: f— f(z3,x2),03: f — f(f(z2,21),z3). Then we have
((01 &G 02) oG 03)(f)
= (01 ®g 02)"[o3(f)]

= (01 ®¢ 02)"[f (f (22, 71), 3)]
= 5%((01 ®¢ 02)(), (01 Bc 02)"[f (22, 21)], 23)

= §2(S%(01(f), 02(f), 02(1)), $*((01 ®c 02)(f), 3, 71), 73)

= S%(S2(f (m2, ©3), f (23, T2), f (3, T2)),
S*(S%(f (w2, 3), (23, x2), f(23,22)), T2, 71), T3)

= S*(f(f(=3,z2),x3), S*(f(f (23, T2), T3), T2, 1), 23)

= S2(f(f(x3,22), z3), f(f (23, 71),%3),73)

= f(f(z3,23),23),

and

({01 0¢ 03) B (02 0 03))(f)
= S%((a1 06 93)(f), (02 oG 03)(£), (02 °G 73)(f))

= §%(81(o3(/)], 62[03(f)], 62[o3(F)])
= §2(81[F (f (22, 1), 23)], 62[f (F (w2, 21), 23)], 62 F (f (w2, 1), 73)])
= §2(S*(01(f), 1[f (22, 21)), 23), S*(02(F), 62[f (2, 1)), 73),
S%(oa(f), 62l f (x2, 71)], 3))
= 5%(S*(f(z2, x3), S*(f (22, T3), T2, 71), T3),
(
(
(S

S%(f(xs,x2), S?(f(z3,22), T2, 71), T3),
2

W

f(z3,22), S%(f(x3, 22), 20, 21), 3))
= 5%(S*(f(z2, x3), f(x1,3), T3), S(f (3, 22), f (T3, 1), T3),
S*(f(x3,22), f (3, 71), T3))

= S*(f(x3,23), f (23, 23), f(z3,23))

= f(z3,23)-

Thus, (01 ®¢ 02) oG 03 # (01 0G 03) B¢ (02 °G 03).
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4. Algebraic-structural properties of some submonoids

In [3], K. Denecke and Sh. L. Wismath study on M-hyperidentities and
M-solid varieties based on submonoids M of the monoid Hyp(7). They de-
fined a number of natural such submonoids based on various properties of
hypersubstitutions. Now, we will extend these concepts to generalized hy-
persubstitutions and investigate some algebraic-structural properties of some
submonoids M of the set of all generalized hypersubstitutions.

DEFINITION 4.1. Let 7 = (n;)ier,ni € N\ {0}, be a type with an operation
symbol f;, of the arity n; for each i € I.

A generalized hypersubstitution o of type 7 is called a projection gene-
ralized hypersubstitution if the term o(f;) is a variable for each ¢ € I. Let
Pg(7) be the set of all projection generalized hypersubstitutions of type 7.

A generalized hypersubstitution o of type 7 is said to be leftmost if for
every i € I, the first variable in &[fi(z1,...,Zn,)] is 1. Let Leftg(7) be the
set, of all leftmost generalized hypersubstitutions of type 7.

A generalized hypersubstitution ¢ of type 7 is said to be rightmost if for
every i € I, the last variable in &[fi(x1,...,%n,)] is Zn,. Let Rightg(r) be
the set of all rightmost generalized hypersubstitutions of type 7.

A generalized hypersubstitution o of type T is said to be outermost if for
every i € I, the first variable in &[f;(z1,...,Zn;)] is 21 and the last variable is
Tn,. Let Outg(7) be the set of all outermost generalized hypersubstitutions
of type 7. Note that Outg(7) = Leftg(r) N Rightg(r).

A generalized hypersubstitution o of type 7 is called regular if for eve-
ry i € I, each of the variables z1,...,zy, occurs in &[fi(z1,...,2Zn,)]. Let
Rega(7) be the set of all regular generalized hypersubstitutions of type 7.

A generalized hypersubstitution o of type 7 is called a pre-generalized
hypersubstitution if for every i € I, the term o(f;) is not a variable. Let
Preg(7) be the set of all pre-generalized hypersubstitutions of type 7.

PROPOSITION 4.2. For any type T, the sets Pg(t) U {0ia}, Leftg(7),
Rightg(1), Outg(T), Regg(T), and Preg(t) are submonoids of Hypg(T).
Proof. It is clear that the identity hypersubstitution o;4 belongs to all of the-
se sets, Po(T)U{0a}, Lefta(T), Rightc(T), Outg(T), Regg(T), and Preg(T).
Let 01,02 € Pg(1)U{0iq}. We have to prove that 01002 € Pg(1)U{0i4}.
We consider the four cases.
Case 1. If 01 € Pg(7) and o3 = 044, then

(0106 0ia)(fi) = 61[oia(fi)]
= 01[fi(z1, ..., Tn,)]
= Sm(o'l(fi),zl’ T ’Ini)
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_{xj; o1(fi) = zj,1 < j < ny,
zk;  o1(fi) = zk, k > ny.

Case 2. If 07 = 0;4 and o2 € Pg(7), then
(0id og 02)(fi) = Gialo2(fi)] = Gialrn] = Tn € X.
Case 3. If 01 = 02 = 044, then

(0ia oG 0ia)(fi) = Fidloia(fi)]
= Gialfi(z1,. - -, Tny)]
= Sni(aid(fi)7m17 s ’wni)
= f(z1,...,Zn;)
= 0id(fi)-
Case 4. If neither o1 nor oy is 044, then both o1(f;) and o2(f;) are variables
for each 7 € I. Thus (071 og 02)(fi) = 61[o2(fi)] = F1[zn] = zn € X.

Hence 07 0g 09 € Pg(T) U {Uid}-

Let 0 € Outg(7) and t € W, (X). We will prove by induction on the
complexity of the term ¢ that the first and the last variable occurring in t]
agree with the first and the last variable, respectively, occurring in ¢. If ¢t = z
is a variable, then §[t] = 6[z] = z. If t = fi(t1,...,tn;) is & composed term
where the first and the last variable occurring in &[t;] agree with the first and
the last variable, respectively, occurring in ¢;,1 < j < n;. Suppose that the
first variable in &(¢;] is 1 and the last variable in 6(t,,] is p,. Then the first
and the last variable in t is 1 and ,,, respectively. Since o € Outg(7), the
first and the last variable in 6(t] = S™ (o (f;),d[t1],...,8(tn,]) is 21 and z,,,
respectively.

Let 0 € Regg(7) and t € W, (X). We will prove by induction on the
complexity of the term ¢ that the variables occurring in ¢ and &[t] are the
same. If t = z is a variable, then 6(t] = o[z] = z. If t = fi(t1,...,tn,) is
a composed term where the variables occurring in t; and 6[t;],1 < j < n;
are the same. Since §[t]| = S™(o(fi),d[t1],...,0[tn,]) and o € Regg(7), the
variables occurring in ¢ and §[t] are the same.

Now, we can show that the sets Leftg(7), Rightg(T),Outg(r) and
Regg(7) are closed under the composition operation og. Let o1 and o9 be
two generalized hypersubstitutions, both either leftmost, rightmost, outer-
most or regular. Then (01 og 02)°[fi(x1,...,Zn,)] = 61(02[fi(x1, ..., Zn,)]],
and it follows from the previous reasons that this product has the correspon-
ding property.

Finally, it is clear that the composition of two pre-generalized hypersub-
stitutions is again a pre-generalized hypersubstitution.
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Hence the sets Pg(7) U {04}, Leftg(r), Rightg(r), Oute(7), Rega(T)
and Preg(r) are submonoids of Hypg(7). =

The next proposition are relationships between submonoids of Hypg (7).

PROPOSITION 4.3. Let T be any type which does not contain a unary operation
symbol. The following proper inclusions hold:

(i) Regg(r) C Preg(t),
(ii) Outg(T) C Preg(r).

Proof. The proof is straightforward. =

THEOREM 4.4. For any type 7, the sets Po(1), Lefta(T), Rightg(7), Outg(T),
Regc (1), and Preg(t) form sub-left seminear-rings of (Hypa(7); +a,0q)-

Proof. We will prove that the sets Pg(7), Lefte(r), Righta(r), Oute(r),
Regg(7), and Preg(7) are closed under the operation +¢.

Let 01,02 € Pg(7). Then both o1(f;) and o2(f;) are variables for each
1 € I. Since (0’1 +c 0’2)(fi) = Sni(dz(fi),gl(fi), . ,Ul(fi)) and the terms

n; times
o1(fi),o2(fi) are variables, (01 +¢g 02)(fi) is a variable. Thus o1 +¢ 02 €
Pg(1).
Let o1 and o9 be two generalized hypersubstitutions, both either leftmost,
rightmost, outermost or regular. Consider

(0'1 +G 0'2)A[fi(l‘1v oo ,Im)]
= Sni((O'l +a 0'2)(fi)7x17 ER 7:177%)
= 8™ (8™ (0a(fi), 01(fi), - - -, 01(fi), 21, - s Tny)

n; times
= S"i(ag(fi),:gni(al(fi),:cl, ey Tny)y e, S (01(f), x1, - - x"’l)
nit;mes
= Sni(UQ(fi),é'l[fi(ml, . ,l‘ni)], . ,6’1[fi(.’L‘1, . ,:L'M)J).
n,; times

Then it follows from Definition 4.1 that o1 +¢q o2 is both either leftmost,
rightmost, outermost or regular.
Let 01,02 € Preg(r). Then both o1(f;) and o2(f;) are not variables. Sin-
ce (o1+go2)(fi) = S™ (ag(fi),gl(fi), ceey 01 (f’),) and the terms o1(f;), o2(fi)
n; times
are not variables, (01 +go2)(fi) is not a variable. Thus o1 +g o2 € Preg(r).
Hence the sets Pg(7), Leftg(r), Rightg(r), Outg(r), Rege(r), and
Preg(7) form sub-left seminear-rings of (Hypg(7); +¢,°¢). =
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We can prove in the same manner that these sets form sub-left seminear-
rings of (Hypg(7); ®¢a, o¢). Now, we consider another algebraic-structural
property of some submonoids M of (Hypg(7);+a,oc). We first recall from
[5] the definition of a left (right, two sided) ideal.

DEFINITION 4.5. Let (S;-) be a semigroup. A nonempty subset A of S is
called a left ideal if SA C A, a right ideal if AS C A, and a (two sided) ideal
if it is both a left and a right ideal.

PROPOSITION 4.6. For any type 7, Pa(7) \ Hyp(7) is a left ideal of Pg(T).
Proof. Let 01 € Pg(7)\ Hyp(7) and o2 € Pg(7). Then o1(f;) = x;,3j > ny
and o2(f;) = zn, € X. Consider (02 og 01)(fi) = 62[01(fi)] = d2(z;] = z;.
Thus o20¢ 01 € Pa(7)\ Hyp(7). So Pa(7)\ Hyp(7) is a left ideal of Pg(7). =
PROPOSITION 4.7. For any type 7,0utg(t) \ Hyp(7) is a right ideal of
Outg(T).

Proof. Let o1 € Outg(r) \ Hyp(7) and o2 € Outg(7). Then the first
and the last variable in 61[fi(z1,...,2n,)], 62[fi(z1,...,2pn;)] is 21 and zp,,
respectively, and there exists at least one variable z;,3j > n; occurring in
a1(fi(z1, . .-, zn,)]- Consider

(o106 02)[fi(Z1, . . ., T0,)] = G1[G2[fi(T1, - - -, T0,)]-
Thus the first and the last variable in (010G02)"[fi(z1,. .., Zn,;)] is 1 and z,,,
respectively, and x; also occurs in (01 og 02)"[fi(21, . - ., Zn;)]. Hence

01 og 02 € Outg(1) \ Hyp(1).

So Outg(r) \ Hyp(7) is a right ideal of Outg(7). =
PROPOSITION 4.8. For any type T, Regg(t) \ Hyp(7) is a right ideal of
Regg(T).
Proof. Let o1 € Regg(r) \ Hyp(r) and o2 € Regg(7). Then for every
i € I, each of the variables z,...,&p, occurs in 61[fi(z1,. .., zn,)], 02[fi(z1,
...,Zp;)| and there exists at least one variable z;,3j > n; occurring in
G1(fi(z1, ..., zn,)]. Consider

(0’1 oG (72)A[fi(a?1, e ,SL‘ni)] = 51 [62[]2‘(11)1, N ,:L‘ni)].
Thus each of the variables zi,...,zn, and z; occur in (01 og 02)"(fi(1,
..., Zn,;)]. Hence o1 og 02 € Regg(T) \ Hyp(7). So Regg(7) \ Hyp(T) is a
right ideal of Regg(r). =

PROPOSITION 4.9. For any type T, Preg(7) \ Hyp(7) is a right ideal of
Preg(r).

Proof. Let 01 € Preg(r) \ Hyp(t) and o2 € Preg(r). Then the term
o1(f;) is not a variable and non-arity preserving and o3(f;) is not a variable
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and does not necessarily preserve arity. So there exists at least one variable
z;j,3j > n,; occurring in the term o1(f;). Since (o1 og 02)(fi) = 1lo2(fi)]-
Then the term (0106 02)(f;) is not a variable and z; occurs in (o1 0g o2)( f;).
Hence (o1 0¢ 02)(fi) € Preg(r)\ Hyp(t). Thus Preg(r)\ Hyp(7) is a right
ideal of Preg(r). m
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