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SAI-LATTICES AND RINGOIDS

Abstract. The natural bijective correspondence between Boolean algebras and
Boolean rings is generalized from Boolean algebras to lattices with 0 every principal ideal
of which has an antitone involution. The corresponding ring-like structures are called ring-
oids. Among them orthorings are characterized by a simple axiom. It is shown that con-
gruences on ringoids are determined by their kernels and that ringoids are permutable at 0.

There is a long series of papers generalizing the natural bijective cor-
respondence between Boolean algebras and Boolean rings (see [1]) to more
general structures (cf. [2], [3], [5]-[11] and [13]). The aim of this paper is
to generalize this correspondence from Boolean algebras to lattices with 0
every principal ideal of which has an antitone involution. First we define
this class of lattice-like structures.

An antitone involution on an interval [0, a] of a poset with 0 is a mapping
z — z* from [0,a] to itself such that (z*)® = z as well as z < y implies
y® <z for all z,y € [0, q.

DEFINITION 1. A lattice with sectionally antitone involutions (SAl-lattice,
for short) is an algebra (L,V, A, (%;a € L),0) where (L,V,A,0) is a lattice
with 0 and for each a € L, ® is an antitone involution on ({0, a}, <).

EXAMPLE 2. The lattice with the Hasse diagram
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where z¥ is given by the following table

z\y|{0 a b ¢c d 1
0 |]0abdbcdl
a 0 b d
b 0abdbc
c 0 b
d 0 a
1 0

is a distributive SAl-lattice which is not complemented.

REMARK 3. If (L, V, A, (%;a € L),0) is an SAl-lattice and a € L then the de
Morgan laws hold in ([0, a], V,A,*,0,a), i. e. for all b, ¢ € [0, a]

(bve) =b"Ac® and
bAc)=b"Vv
Now we define the ring-like structures corresponding to SAl-lattices.

DEFINITION 4. A ringoid is an algebra (R, +, -, 0) of type (2, 2,0) having the
property that for all z,y € R there exists a z € R with xz =z and yz2 =y
and satisfying the following axioms:

(zy)z = z(yz),

Ty = yzx,
T =z,
z0 =0,

(zy+y)y=zy+y,

(zyz + z)(yz + 2) + z = yz and

zyz+ ((xz + 2)(yz + 2) + 2) = xz + y=.
REMARK 5. Since for every ringoid R = (R, +,-,0), (R,-,0) is a semilattice
with 0, R may be considered as a partially ordered set (R, <,0) with smallest
element 0 where for every z,y € R, x < y is defined by zy = x.

LEMMA 6. Let (R,+,-,0) be a ringoid, a,b,c € R and a,b € [0,c]. Then
T — T+ c s an antitone involution on ([0,c], <) and (a+c)(b+c) +c is the
supremum aV b of a and b in (R, <).

Proof. If d,e € [0,c] and d < e then
(d+c)e=(dc+c)c=dc+c=d+c,
(d+c)+c=(d+c)(d+c)+c=(ddc+ c)(dc+c) + c=dc=d and
(e+c)(d+c)=((dec+c)ec+c)+c)+c=ec+c=e+c.
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This shows that z +—  + ¢ is an antitone involution on ([0,¢], <). Hence
f = (a+¢)(b+c)+ cis the supremum of a and b in ([0,¢],<). Let g be
an upper bound of @ and b in (R,<). Then a < f and a < g and hence
a < fAg. Analogously, b < fAg. Since fAg< f<e¢ fAgisan
upper bound of a and b in ([0, ], <). Since f is the supremum of a and b in
([0,¢], <), we obtain f < f A g < g. This shows that f is the supremum of
aand bin (R,<). m

Now we are ready to formulate and prove the fact that there exists a
natural bijective correspondence between SAl-lattices and ringoids.
THEOREM 7. On every set A the formulas

T+y:=(xAy)*VY
zYy:=zT Ay
and
zVy:=(z+2)(y+2)+=z
TAY:=2zxY
i=zx+y
(where z is an arbitrary element of A satisfying xz = ¢ and yz = y) induce

mutually inverse bijections between the set of all SAl-lattices on A and the
set of all ringoids on A.

Proof. Let b,c,d € A. First assume (A, V,A, (% a € A),0) to be an SAI-
lattice and define

z+y:=(xAy)*Y and
Ty:=T Ay
for all z,y € A. Then
bbve)=bA(bVec)=b,
ebve)=cA(bVe) =c,
(bo)d=(bAc)ANd=DbA (cAd) = bcd),
bc=bAc=cAb=cb,
bb=>bAb=0b,
b0=bA0=0,
(bc+c)e=(bAc) =bc+ec,
(bed+d)(cd+d)+d=(bAcAd)iA(cAd)D)? = ((cAd)?)® =cAd=cd,
bed + ((bd + d)(cd + d) + d)
=®BAcAdA((bA d)d A (e /\d)d)d)(b/\c/\d)V((b/\d)d/\(c/\d)d)d
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=(bAcAdA((BAA)V (cAd)))ErerDVErdViend)
= (bAcAd)OIVEND) — pd 4 cd.
Moreover, if bd = b and ¢d = ¢ then b, ¢ < d and hence
b+d)(c+d)+d= b AcH) =bVcand
b+d=bs
Conversely, assume (A4, +, -,0) to be a ringoid and define
zVy:=(z+2z)(y+2)+z
T Ay :=xy and
vi=x+y
for all z,y € A where 2 is an arbitrary element of A satisfying z2z = =
and yz = y. Then (4,-,0) = (A,A,0) is a meet-semilattice with 0 the
corresponding partial order relation < of which is defined by z < y if zy = x
(z,y € A). According to Lemma 6, ¢ is an antitone involution on ([0, a}, <)

for every a € A and bV c is the supremum of b and ¢ in (A4, <). Finally, if
bd = b and cd = ¢ then

(bAC)®V =be+ ((b+ d)(c+d) + d)
=bed+ ((bd+ d)(cd+d) +d) =bd+cd=b+c. »

ExXAMPLE 8. The operation tables of the ringoid corresponding to the SAI-
lattice defined in Example 2 look as follows:

+10a b cd1l 0abcdl
0|0 a becdl 0|0 00000
ala 0 ¢c b1 d a|l0 a 0a0a
blb c0abdc and b|0 O b bbb
clc ba0cbd ¢c|0abcbdec
dld 1 bcO0a d|0 0 bbdd
1{1dcbalo 110 a b cdl
LEMMA 9. Every ringoid R = (R, +,-,0) satisfies the identities

rt+y=y+tuz,

z+z =0,

z+0=2x and

(zy + z) + = = zy.

Moreover, x = y is equivalent to z +y = 0.



SAl-lattices and ringoids 487

Proof. In the SAl-lattice corresponding to R we have
zty=(@Ay"™V=@EyAr2)""" =y+u,
z+z=z"=0,
z+0=0" =z and
(zy+z)+z=(yz+z)+z=(yz+z)(lyr+2z)+=x
= (yyz + z)(yz + z) + ¢ = yr = Y.
Moreover, the following are equivalent:
z+y=0,
(z Ay)™¥ =0,
rAy=xVyand
T=y. =
In [6] ring-like structures were introduced corresponding in a natural bi-
jective way to lattices with 0 every principal ideal of which is an ortholattice.
DEFINITION 10 (cf.[6]). An orthoringis an algebra (R, +, -, 0) of type (2,2,0)
satisfying the following identities:
tt+y=y+uz,
z+0=rz,
Ty = yx,
(zy)z = z(y2),
T =,
z0 =0,
(zy + ) + z = zy,
(e+y)+azy)+tzy=2z+y,
(zy+ z)r = 2y + =,
(z+y)zy =0,
((z+y) +ay)z ==z,
((zy + z2) + zyz)z = (zy + zz) + zyz and
(zyz + z)(zy +7) =2y + 2.
According to Theorem 2.1 of [6] every orthoring is a ringoid. Hence the
natural question arises when a ringoid becomes an orthoring.
THEOREM 11. A ringoid (R, +,-,0) is an orthoring if and only if it satisfies
the identity (z + y)xy = 0.
Proof. Let R = (R,+,,0) be a ringoid satisfying the identity (z + y)zy
= 0. Then in the SAl-lattice corresponding to R the identity
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Ay AzAYy=0

holds. In case z < y this yields z¥ A z = 0 showing that ([0, a], V,A,*,0,a)
is an ortholattice for every a € R. From Theorem 2.1 of [6] it now follows
that (R, +,-,0) is an orthoring. =

In every ringoid we can define another addition which has similar prop-
erties as the usual one:

DEFINITION 12. For every ringoid (R, +, -,0) with corresponding SAl-lattice
(R,V, A, (% a € R),0) we define a binary operation & by

z®y:=(xAy™Y)V (™Y Ay)
for all z,y € R.
Some properties of @ are summarized in the following lemma:

LEMMA 13. If (R,+,-,0) is a ringoid, (R,V, A, (*;a € R),0) its correspond-
ing SAl-lattice and b,c € R then (i)—(vi) hold:

(i) b®c=cab,
(i) b+ec=bPc=bifb<c
(i) bdc=(bA(c+ (V) V(b+(bVc)) Ac),
(iv) b+ec=(bAc)d (V)
(v) (R,®,-,0) satisfies all axioms of a ringoid except the last one and
(vi) (R, ®,-,0) satisfies the last axiom of a ringoid if and only if & = +.

Proof Let d € R.
Q) b@c=BAL)V(BVeAC) = (cABVO)V (VP AD) =cDb.
(i) Ifb<cthenb+c=bandb®c=(bAc)V (b°Ac)=b".
In the sequel we make frequent use of (ii).
(iil) b®c= (bAVE)V (B Ae) = (A (c+ (bVe)) V((b+ (bVe)) Ac).
(iv)b+c=(bAc)®V=(bAc)® (bVc).
(v) (bedc)e=(bAc)*Ac=(bAc)* =becdc
(bed®d)(cd®d)®d = (bAcAd)EA(cAd))E = ((cAd)D)? = cAd = cd.
(vi) bed @ ((bd®d)(cdDd) D d) = bed® ((bd)? A (cd)?)? = bed® (bdV cd) =
(bd A cd)?3V? = bd + cd. =

Next we observe that principal filters of ringoids are ringoids, too.
LEMMA 4. If R = (R,+,-,0) is a ringoid and a € R then ([0,qa],+,-,0) s
a ringoid, too.

Proof. If b,c € [0,a] then in the SAlI-lattice corresponding to R it holds
b+c= (bAc)Ve €[0,bVc C [0,a],bVc € [0,a], b(bVc) =band c(bVc) = c.
The rest of the proof is clear. »
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Next we show some congruence properties of ringoids. First we prove
that in a ringoid (R, +,-,0) every congruence © is uniquely determined by
its kernel [0]©, i. e. ringoids are weakly regular (see [4]).

THEOREM 15. If R = (R, +,-,0) is a ringoid, a,b € R and © € ConR then
a®b if and only if ab+ a,ab+ b € [0]O.

Proof. Using Lemma 9 we obtain that if a © b then
ab+a,ab+ b€ [aa+al® =[a+a]© = [0]0
and if, conversely, ab + a,ab+ b € [0]© then
a=0+aO(ab+a)+a=ab=(ab+b)+bO0+b=0b.m

Finally, we want to show that ringoids satisfy a certain congruence condi-
tion. For an overview concerning congruence conditions in universal algebra
see the monograph [4].

DEFINITION 16 (cf. [4]). An algebra A with element 0 is called permutable
at 0 if [0](© o ®) = [0](® o ©) for all congruences ©,® on A. A class K of
algebras of the same type with an equational constant 0 is called permutable
at 0 if each member of K has this property.

Though the class of all ringoids does not form a variety this class turns
out to be permutable at 0.

THEOREM 17. The class of all ringoids is permutable at 0.

Proof. Let K denote the class of all ringoids and V the variety of all algebras
(R, +,-,0) of type (2,2,0) satisfying the identities z + z =0 and z + 0 = z.
According to a theorem by H. P. Gumm and A. Ursini ([12]) V is permutable
at 0 if and only if there exists a binary term ¢(z,y) with ¢(z,z2) = 0 and
t(z,0) = z (a so-called subtractive term). Obviously, t(z,y) := z + y is
a subtractive term of V and hence V is permutable at 0. According to
Lemma 9, X is a subclass of V. Hence also K is permutable at 0. =
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