
DEMONSTRATIO MATHEMATICA 
Vol. XXXIX No 3 2006 

Ivan Chajda, Helmut Länger 

SAI-LATTICES AND RINGOIDS 

Abstract . The natural bijective correspondence between Boolean algebras and 
Boolean rings is generalized from Boolean algebras to lattices with 0 every principal ideal 
of which has an antitone involution. The corresponding ring-like structures are called ring-
oids. Among them orthorings are characterized by a simple axiom. It is shown that con-
gruences on ringoids are determined by their kernels and that ringoids are permutable at 0. 

There is a long series of papers generalizing the natural bijective cor-
respondence between Boolean algebras and Boolean rings (see [1]) to more 
general structures (cf. [2], [3], [5]-[ll] and [13]). The aim of this paper is 
to generalize this correspondence from Boolean algebras to lattices with 0 
every principal ideal of which has an antitone involution. First we define 
this class of lattice-like structures. 

An antitone involution on an interval [0, a] of a poset with 0 is a mapping 
x i—> xa from [0,a] to itself such that (xa)a = x as well as x < y implies 
ya < xa for all x,y G [0,a]. 

DEFINITION 1. A lattice with sectionally antitone involutions (SAI-lattice, 
for short) is an algebra (L, V,A, (a;a € L), 0) where (L, V,A,0) is a lattice 
with 0 and for each a G L, a is an antitone involution on ([0, a], <) . 

EXAMPLE 2. The lattice with the Hasse diagram 
1 
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where xy is given by the following table 

x\y 0 a b c d 1 
0 0 a b c d 1 
a 0 b d 
b 0 a b c 
c 0 b 
d 0 a 
1 0 

is a distributive SAI-lattice which is not complemented. 

REMARK 3. If (L, V, A, (a; a G L), 0) is an SAI-lattice and a G L then the de 
Morgan laws hold in ([0, a], V, A,A , 0, a), i. e. for all b, c G [0, a] 

(b V c)a = ba A ca and 

0b A c)a = ba V ca. 
Now we define the ring-like structures corresponding to SAI-lattices. 

DEFINITION 4. A ringoid is an algebra (R, + , •, 0) of type ( 2 , 2 , 0 ) having the 
property that for all x,y G R there exists a z G R with xz = x and yz = y 
and satisfying the following axioms: 

{xy)z = x(yz), 
xy = yx, 
CCCC «Z/̂  
xO = o, 

(xy + y)y = xy + y, 
(xyz + z)(yz + z) + z = yz and 
xyz + ((xz + z)(yz + z) + z) = xz + yz. 

REMARK 5. Since for every ringoid 1Z = (R, +,-,()), (R, 0) is a semilattice 
with 0,1Z may be considered as a partially ordered set (R, <, 0) with smallest 
element 0 where for every x, y G -R, x < y is defined by xy = x. 
LEMMA 6. Let (R, + , - , 0 ) be a ringoid, a,b,c G R and a,b G [0, c]. Then 
x i—• x + c is an antitone involution on ([0,c],<) and (a + c)(b + c) + c is the 
supremum a V b of a and b in (R, <). 

P r o o f . If d, e G [0, c] and d < e then 

(d + c)c = (dc + c)c = dc + c = d + c, 
(d + c) + c = (d + c)(d + c) + c = (ddc + c)(dc + c) + c — dc = d and 
(e + c)(d + c) = ((dec + c)(ec + c) + c) + c = ec + c = e + c. 
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This shows that x y-> x + c is an antitone involution on ([0, c], < ) . Hence 
f (a + c)(b + c) + c is the supremum of a and b in ([0, c], < ) . Let g be 
an upper bound of a and b in (R,<). Then a < / and a < g and hence 
a < / A j . Analogously, b < / A g. Since / A j < / < c, / A y is an 
upper bound of a and b in ([0, c], < ) . Since / is the supremum of a and b in 
([0, c], < ) , we obtain / < / A g < g. This shows that / is the supremum of 
a and b in (R, <). • 

Now we are ready to formulate and prove the fact that there exists a 
natural bijective correspondence between SAI-lattices and ringoids. 

THEOREM 7. On every set A the formulas 

x + y:={x A y)xS/y 

xy := x Ay 

and 

x V y := (x + z)(y + z) + z 

x Ay :— xy 

xy := x + y 

(where z is an arbitrary element of A satisfying xz = x and yz = y) induce 

mutually inverse bijections between the set of all SAI-lattices on A and the 

set of all ringoids on A. 

P r o o f . Let b,c,d 6 A. First assume {A, V,A, ( a ;a G A ) ,0 ) to be an SAI-
lattice and define 

x + y :— {x A y)xVy and 

xy := x Ay 

for all x, y G A. Then 

b(b V c) = b A (b V c) = b, 

c(b V c) = c A (b V c) = c, 

(bc)d = (b A c) A d = b A (c A d) = b(cd), 

be = b A c = c A b = cb, 

bb = bAb = b, 

b0 = b A O = 0, 

{be + c)c = (b A c)c = be-he, 

(bed + d)(cd + d) + d = ((b A c A d)d A (c A d)d)d = ((c A d)d)d = cAd = cd, 

bed + ((bd + d)(cd + d) + d) 

= (b A c A d A ((b A d)d A (c A Y ) ^ ^ « 6 ^ * ^ ^ 
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= (b A c A d A ((b A d) V (c A d)))^bAcAd)v(6Ad)v(cAd) 

= (6 A c A =bd + cd. 

Moreover, if bd = b and cd = c then b,c < d and hence 

(ib + d)(c + d) + d = (bd A cd)d = 6 V c and 
6 + d = 

Conversely, assume (̂ 4, +, - ,0) to be a ringoid and define 

x V y := (x + + z) + z, 
x Ay := xy and 
xy :— x + y 

for all x,y € A where z is an arbitrary element of A satisfying xz = x 
and yz = y. Then (̂ 4, 0) = (v4, A,0) is a meet-semilattice with 0 the 
corresponding partial order relation < of which is defined by x < y if xy = x 
(x, y € A). According to Lemma 6, a is an antitone involution on ([0, a], <) 
for every a € A and b V c is the supremum of b and c in (A, <). Finally, if 
bd = b and cd = c then 

(b A c)bVc = be + ((b + d)(c + d) + d) 
= bed + ((bd + d)(cd + d) + d) = bd + cd = b + c. • 

EXAMPLE 8. The operation tables of the ringoid corresponding to the SAI-
lattice defined in Example 2 look as follows: 

+ 0 a b c d 1 0 a b c d 1 
0 0 a b c d 1 0 0 0 0 0 0 0 
a a 0 c b 1 d a 0 a 0 a 0 a 
b b c 0 a b c and b 0 0 b b b b 
c c b a 0 c b c 0 a b c b c 
d d 1 b c 0 a d 0 0 b b d d 
1 1 d c b a 0 1 0 a b c d 1 

LEMMA 9. Every ringoid TZ = (R, + , •, 0 ) satisfies the identities 

x + y = y + x, 
x + x = 0, 

x + 0 = x and 
(xy + x) + x — xy. 

Moreover, x = y is equivalent to x + y = 0. 
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P r o o f . In the SAl-lattice corresponding to 1Z we have 

x + y = (x A y)xVy = (y A x)yVx = y + x, 
x + x = xx = 0, 

x + 0 = 0X = x and 
(xy + x) + x = (yx + x) + x = (yx + x)(yx + x) + x 

= (yyx + x)(yx + x) + x = yx = xy. 
Moreover, the following are equivalent: 

x + y = 0, 

{x A y)xWy = 0, 

x Ay — xy y and 
x = y. m 

In [6] ring-like structures were introduced corresponding in a natural bi-
jective way to lattices with 0 every principal ideal of which is an ortholattice. 

DEFINITION 10 (cf.[6]). An orthoring is an algebra ( i 2 , + , - , 0 ) of type ( 2 , 2 , 0 ) 
satisfying the following identities: 

x + y = y + x, 
x + 0 = x, 
xy = yx, 
(;xy)z = x(yz), 
XCC ~~~ X ̂  
xO = o, 
(xy + x) + x = xy, 
((x + y) + xy) + xy = x + y, 
(xy + x)x = xy + x, 
(x + y)xy = 0, 

((x + y) +xy)x = x, 
((xy + xz) + xyz)x = (xy + xz) + xyz and 
(xyz + x)(xy + x) = xy + x. 

According to Theorem 2.1 of [6] every orthoring is a ringoid. Hence the 
natural question arises when a ringoid becomes an orthoring. 

THEOREM 11. A ringoid, (R, + , - , 0 ) is an orthoring if and only if it satisfies 
the identity (x + y)xy — 0. 

P r o o f . Let 71 = (R, +, -,0) be a ringoid satisfying the identity (x + y)xy 
= 0. Then in the SAI-lattice corresponding to 1Z the identity 
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(x A y)xVy A x A y = 0 

holds. In case x < y this yields xy A x = 0 showing that ([0, a], V, A,a , 0, a) 
is an ortholattice for every a G R. Prom Theorem 2.1 of [6] it now follows 
that (R, +, •, 0) is an orthoring. • 

In every ringoid we can define another addition which has similar prop-
erties as the usual one: 

DEFINITION 12. For every ringoid (R, +, 0) with corresponding SAI-lattice 
(R, V, A, (a; a 6 R), 0) we define a binary operation © by 

x (By := (x A yxVy) V (xx V y A y) 

for all x,y 6 R. 

Some properties of © are summarized in the following lemma: 

LEMMA 13. If(R, + , 0 ) is a ringoid, (R, V, A, ( A ;A G Ä ) , 0 ) its correspond-
ing SAI-lattice and b,c G R then (i)-(vi) hold: 

(i) b © c = c © b, 
(ii) b + c = b®c = bc if b<c, 

(iii) b © c = (6 A (c + (b V c))) V ((b + (b V c)) A c), 
(iv) b + c= (&Ac)©(6Vc), 
(v) (R, ©, -,0) satisfies all axioms of a ringoid except the last one and 

(vi) (R, ©, 0) satisfies the last axiom of a ringoid if and only if® = +. 

Proof . Let d G R. 
(i) b © c = (6 A c6Vc) V (&6Vc A c) = (c A bcVb) V (ccVb A b) = c © b. 
(ii) If b < c then b + c = bc and b © c = (b A c°) V (bc A c) = bc. 
In the sequel we make frequent use of (ii). 
(iii) 6 © c = (6Ac6Vc) V(6bVcAc) = (6 A (c+ (6 V c))) V ((b+ (bVc)) Ac). 
(iv) b + c = (b A c)bVe = ( b A c ) e ( b V c). 
(v) (bc © c)c = (ft A c)c Ac = (b A c)c = ftc © c. 
(bed © d) (cd © d) © d = ((6 A c A d)d A (c A d)d)d = ((cA d)d)d = c Ad = cd. 
(vi) ftcdffi((6d©d)(cd©d)©d) = bcd®({bd)dA(cd)d)d = bcd®{bdVcd) = 

(ibd A cd)bdWcd = bd + cd. m 

Next we observe that principal filters of ringoids are ringoids, too. 

LEMMA 14. IflZ= (R, +, •, 0) is a ringoid and a € R then ([0, a], +, •, 0) is 
a ringoid, too. 

Proof . If b, c G [0, a] then in the SAI-lattice corresponding to TZ it holds 
b + c = (bAc)bVc G [0,6Vc] C [0,a], byc G [0,a], 6(6Vc) = 6andc(6Vc) = c. 
The rest of the proof is clear. • 
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Next we show some congruence properties of ringoids. First we prove 
that in a ringoid (R, +, -,0) every congruence 0 is uniquely determined by 
its kernel [0]@, i. e. ringoids are weakly regular (see [4]). 

T H E O R E M 15. If 71= ( R , + , 0 ) is a ringoid, a,b G R and © G ConTZ then 
a@b if and only if ab + a, ab + 6 G [0]©. 

P r o o f . Using Lemma 9 we obtain that if a © b then 

ab + a, ab + b G [aa + a ] © = [a + a ] © = [0]© 

a n d if, converse ly , ab + a,ab + b G [0]© t h e n 

a = 0 + a © (ab + a) + a = ab = (ab + 6 ) + 6 0 0 + 6 = 6. • 

Finally, we want to show that ringoids satisfy a certain congruence condi-
tion. For an overview concerning congruence conditions in universal algebra 
see the monograph [4], 
D E F I N I T I O N 16 (cf. [4]). An algebra A with element 0 is called permutable 
at 0 if [0](© o $ ) = [0]($ o ©) for all congruences 0 , $ on A. A class K. of 
algebras of the same type with an equational constant 0 is called permutable 
at 0 if each member of JC has this property. 

Though the class of all ringoids does not form a variety this class turns 
out to be permutable at 0. 

T H E O R E M 17. The class of all ringoids is permutable at 0 . 

P r o o f . Let K. denote the class of all ringoids and V the variety of all algebras 
(R, +, •, 0) of type (2,2,0) satisfying the identities x + x = 0 and x + 0 = x. 
According to a theorem by H. P. Gumm and A. Ursini ([12]) V is permutable 
at 0 if and only if there exists a binary term t(x, y) with t(x, x) = 0 and 
t(x, 0) = x (a so-called subtractive term). Obviously, t(x,y) := x + y is 
a subtractive term of V and hence V is permutable at 0. According to 
Lemma 9, K, is a subclass of V. Hence also K, is permutable at 0. • 
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