Ivan Chajda, Helmut Länger

SAI-LATTICES AND RINGOIDS

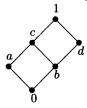
Abstract. The natural bijective correspondence between Boolean algebras and Boolean rings is generalized from Boolean algebras to lattices with 0 every principal ideal of which has an antitone involution. The corresponding ring-like structures are called ring-oids. Among them orthorings are characterized by a simple axiom. It is shown that congruences on ringoids are determined by their kernels and that ringoids are permutable at 0.

There is a long series of papers generalizing the natural bijective correspondence between Boolean algebras and Boolean rings (see [1]) to more general structures (cf. [2], [3], [5]–[11] and [13]). The aim of this paper is to generalize this correspondence from Boolean algebras to lattices with 0 every principal ideal of which has an antitone involution. First we define this class of lattice-like structures.

An antitone involution on an interval [0,a] of a poset with 0 is a mapping $x \mapsto x^a$ from [0,a] to itself such that $(x^a)^a = x$ as well as $x \leq y$ implies $y^a \leq x^a$ for all $x, y \in [0,a]$.

DEFINITION 1. A lattice with sectionally antitone involutions (SAI-lattice, for short) is an algebra $(L,\vee,\wedge,(^a;a\in L),0)$ where $(L,\vee,\wedge,0)$ is a lattice with 0 and for each $a\in L$, a is an antitone involution on $([0,a],\leq)$.

Example 2. The lattice with the Hasse diagram



Research of both authors supported by ÖAD, Cooperation between Austria and Czech Republic in Science and Technology, grant No.2005/3.

Key words and phrases: SAI-lattice, ringoid, orthoring, congruence kernel, permutable at 0, subtractive term.

¹⁹⁹¹ Mathematics Subject Classification: 06B99, 08A62, 08A30.

where x^y is given by the following table

is a distributive SAI-lattice which is not complemented.

REMARK 3. If $(L, \vee, \wedge, (^a; a \in L), 0)$ is an SAI-lattice and $a \in L$ then the de Morgan laws hold in $([0, a], \vee, \wedge, ^a, 0, a)$, i. e. for all $b, c \in [0, a]$

$$(b \lor c)^a = b^a \land c^a$$
 and
 $(b \land c)^a = b^a \lor c^a$.

Now we define the ring-like structures corresponding to SAI-lattices.

DEFINITION 4. A *ringoid* is an algebra $(R, +, \cdot, 0)$ of type (2, 2, 0) having the property that for all $x, y \in R$ there exists a $z \in R$ with xz = x and yz = y and satisfying the following axioms:

$$(xy)z = x(yz),$$

 $xy = yx,$
 $xx = x,$
 $x0 = 0,$
 $(xy + y)y = xy + y,$
 $(xyz + z)(yz + z) + z = yz$ and
 $xyz + ((xz + z)(yz + z) + z) = xz + yz.$

REMARK 5. Since for every ringoid $\mathcal{R} = (R, +, \cdot, 0)$, $(R, \cdot, 0)$ is a semilattice with 0, \mathcal{R} may be considered as a partially ordered set $(R, \leq, 0)$ with smallest element 0 where for every $x, y \in R$, $x \leq y$ is defined by xy = x.

LEMMA 6. Let $(R, +, \cdot, 0)$ be a ringoid, $a, b, c \in R$ and $a, b \in [0, c]$. Then $x \mapsto x + c$ is an antitone involution on $([0, c], \leq)$ and (a + c)(b + c) + c is the supremum $a \vee b$ of a and b in (R, \leq) .

Proof. If $d, e \in [0, c]$ and $d \le e$ then

$$(d+c)c = (dc+c)c = dc + c = d+c,$$

$$(d+c) + c = (d+c)(d+c) + c = (ddc+c)(dc+c) + c = dc = d \text{ and}$$

$$(e+c)(d+c) = ((dec+c)(ec+c) + c) + c = ec + c = e+c.$$

This shows that $x \mapsto x + c$ is an antitone involution on $([0,c], \leq)$. Hence f := (a+c)(b+c) + c is the supremum of a and b in $([0,c], \leq)$. Let g be an upper bound of a and b in (R, \leq) . Then $a \leq f$ and $a \leq g$ and hence $a \leq f \wedge g$. Analogously, $b \leq f \wedge g$. Since $f \wedge g \leq f \leq c$, $f \wedge g$ is an upper bound of a and b in $([0,c], \leq)$. Since f is the supremum of a and b in $([0,c], \leq)$, we obtain $f \leq f \wedge g \leq g$. This shows that f is the supremum of a and b in (R, \leq) .

Now we are ready to formulate and prove the fact that there exists a natural bijective correspondence between SAI-lattices and ringoids.

THEOREM 7. On every set A the formulas

$$x + y := (x \land y)^{x \lor y}$$
$$xy := x \land y$$

and

$$x \lor y := (x+z)(y+z) + z$$
$$x \land y := xy$$
$$x^{y} := x + y$$

(where z is an arbitrary element of A satisfying xz = x and yz = y) induce mutually inverse bijections between the set of all SAI-lattices on A and the set of all ringoids on A.

Proof. Let $b, c, d \in A$. First assume $(A, \vee, \wedge, (a; a \in A), 0)$ to be an SAI-lattice and define

$$x + y := (x \wedge y)^{x \vee y}$$
 and $xy := x \wedge y$

for all $x, y \in A$. Then

$$b(b \lor c) = b \land (b \lor c) = b,$$

$$c(b \lor c) = c \land (b \lor c) = c,$$

$$(bc)d = (b \land c) \land d = b \land (c \land d) = b(cd),$$

$$bc = b \land c = c \land b = cb,$$

$$bb = b \land b = b,$$

$$b0 = b \land 0 = 0,$$

$$(bc + c)c = (b \land c)^c = bc + c,$$

$$(bcd + d)(cd + d) + d = ((b \land c \land d)^d \land (c \land d)^d)^d = ((c \land d)^d)^d = c \land d = cd,$$

$$bcd + ((bd + d)(cd + d) + d)$$

$$= (b \land c \land d \land ((b \land d)^d \land (c \land d)^d)^d)^{(b \land c \land d) \lor ((b \land d)^d \land (c \land d)^d)^d}$$

$$= (b \wedge c \wedge d \wedge ((b \wedge d) \vee (c \wedge d)))^{(b \wedge c \wedge d) \vee (b \wedge d) \vee (c \wedge d)}$$
$$= (b \wedge c \wedge d)^{(b \wedge d) \vee (c \wedge d)} = bd + cd.$$

Moreover, if bd = b and cd = c then $b, c \le d$ and hence

$$(b+d)(c+d)+d=(b^d\wedge c^d)^d=b\vee c$$
 and $b+d=b^d$.

Conversely, assume $(A, +, \cdot, 0)$ to be a ringoid and define

$$x \lor y := (x+z)(y+z) + z,$$

 $x \land y := xy \text{ and}$
 $x^y := x + y$

for all $x,y\in A$ where z is an arbitrary element of A satisfying xz=x and yz=y. Then $(A,\cdot,0)=(A,\wedge,0)$ is a meet-semilattice with 0 the corresponding partial order relation \leq of which is defined by $x\leq y$ if xy=x $(x,y\in A)$. According to Lemma 6, a is an antitone involution on $([0,a],\leq)$ for every $a\in A$ and $b\vee c$ is the supremum of b and c in (A,\leq) . Finally, if bd=b and cd=c then

$$(b \wedge c)^{b \vee c} = bc + ((b+d)(c+d) + d)$$

= $bcd + ((bd+d)(cd+d) + d) = bd + cd = b + c$.

EXAMPLE 8. The operation tables of the ringoid corresponding to the SAI-lattice defined in Example 2 look as follows:

+	0	\boldsymbol{a}	\boldsymbol{b}	c	d	1			0	\boldsymbol{a}	\boldsymbol{b}	c	d	1
0	0	\overline{a}	b	c	d	1		0	0	0	0	0	0	0
a	a	0	c	\boldsymbol{b}	1	d		\boldsymbol{a}	0	\boldsymbol{a}	0	\boldsymbol{a}	0	\boldsymbol{a}
b	b	c	0	\boldsymbol{a}	b	c	and	b	0	0	\boldsymbol{b}	\boldsymbol{b}	\boldsymbol{b}	\boldsymbol{b}
c	c	\boldsymbol{b}	\boldsymbol{a}	0	c	b		c	0	\boldsymbol{a}	\boldsymbol{b}	c	\boldsymbol{b}	c
d	d	1	\boldsymbol{b}	c	0	\boldsymbol{a}		d	0	0	\boldsymbol{b}	\boldsymbol{b}	d	d
1	1	d	c	\boldsymbol{b}	\boldsymbol{a}	0		1	0	\boldsymbol{a}	\boldsymbol{b}	c	d	1

LEMMA 9. Every ringoid $\mathcal{R} = (R, +, \cdot, 0)$ satisfies the identities

$$x + y = y + x,$$

$$x + x = 0,$$

$$x + 0 = x \text{ and}$$

$$(xy + x) + x = xy.$$

Moreover, x = y is equivalent to x + y = 0.

Proof. In the SAI-lattice corresponding to \mathcal{R} we have

$$x + y = (x \wedge y)^{x \vee y} = (y \wedge x)^{y \vee x} = y + x,$$

$$x + x = x^{x} = 0,$$

$$x + 0 = 0^{x} = x \text{ and}$$

$$(xy + x) + x = (yx + x) + x = (yx + x)(yx + x) + x$$

$$= (yyx + x)(yx + x) + x = yx = xy.$$

Moreover, the following are equivalent:

$$x + y = 0,$$

 $(x \wedge y)^{x \vee y} = 0,$
 $x \wedge y = x \vee y \text{ and }$
 $x = y. \blacksquare$

In [6] ring-like structures were introduced corresponding in a natural bijective way to lattices with 0 every principal ideal of which is an ortholattice.

DEFINITION 10 (cf.[6]). An orthoring is an algebra $(R, +, \cdot, 0)$ of type (2, 2, 0) satisfying the following identities:

$$x + y = y + x,$$

 $x + 0 = x,$
 $xy = yx,$
 $(xy)z = x(yz),$
 $xx = x,$
 $x0 = 0,$
 $(xy + x) + x = xy,$
 $((x + y) + xy) + xy = x + y,$
 $(xy + x)x = xy + x,$
 $(x + y)xy = 0,$
 $((x + y) + xy)x = x,$
 $((xy + xz) + xyz)x = (xy + xz) + xyz$ and $(xyz + x)(xy + x) = xy + x.$

According to Theorem 2.1 of [6] every orthoring is a ringoid. Hence the natural question arises when a ringoid becomes an orthoring.

THEOREM 11. A ringoid $(R, +, \cdot, 0)$ is an orthoring if and only if it satisfies the identity (x + y)xy = 0.

Proof. Let $\mathcal{R} = (R, +, \cdot, 0)$ be a ringoid satisfying the identity (x + y)xy = 0. Then in the SAI-lattice corresponding to \mathcal{R} the identity

$$(x \wedge y)^{x \vee y} \wedge x \wedge y = 0$$

holds. In case $x \leq y$ this yields $x^y \wedge x = 0$ showing that $([0, a], \vee, \wedge, ^a, 0, a)$ is an ortholattice for every $a \in R$. From Theorem 2.1 of [6] it now follows that $(R, +, \cdot, 0)$ is an orthoring.

In every ringoid we can define another addition which has similar properties as the usual one:

DEFINITION 12. For every ringoid $(R, +, \cdot, 0)$ with corresponding SAI-lattice $(R, \vee, \wedge, (^a; a \in R), 0)$ we define a binary operation \oplus by

$$x \oplus y := (x \wedge y^{x \vee y}) \vee (x^{x \vee y} \wedge y)$$

for all $x, y \in R$.

Some properties of \oplus are summarized in the following lemma:

LEMMA 13. If $(R, +, \cdot, 0)$ is a ringoid, $(R, \vee, \wedge, (a; a \in R), 0)$ its corresponding SAI-lattice and $b, c \in R$ then (i)-(vi) hold:

- (i) $b \oplus c = c \oplus b$,
- (ii) $b+c=b\oplus c=b^c$ if $b\leq c$,
- (iii) $b \oplus c = (b \land (c + (b \lor c))) \lor ((b + (b \lor c)) \land c),$
- (iv) $b + c = (b \land c) \oplus (b \lor c)$,
- (v) $(R, \oplus, \cdot, 0)$ satisfies all axioms of a ringoid except the last one and
- (vi) $(R, \oplus, \cdot, 0)$ satisfies the last axiom of a ringoid if and only if $\oplus = +$.

Proof. Let $d \in R$.

- (i) $b \oplus c = (b \wedge c^{b \vee c}) \vee (b^{b \vee c} \wedge c) = (c \wedge b^{c \vee b}) \vee (c^{c \vee b} \wedge b) = c \oplus b$.
- (ii) If $b \le c$ then $b + c = b^c$ and $b \oplus c = (b \land c^c) \lor (b^c \land c) = b^c$.

In the sequel we make frequent use of (ii).

(iii)
$$b \oplus c = (b \wedge c^{b \vee c}) \vee (b^{b \vee c} \wedge c) = (b \wedge (c + (b \vee c))) \vee ((b + (b \vee c)) \wedge c).$$

- (iv) $b + c = (b \wedge c)^{b \vee c} = (b \wedge c) \oplus (b \vee c)$.
- (v) $(bc \oplus c)c = (b \wedge c)^c \wedge c = (b \wedge c)^c = bc \oplus c$.

$$(bcd \oplus d)(cd \oplus d) \oplus d = ((b \wedge c \wedge d)^d \wedge (c \wedge d)^d)^d = ((c \wedge d)^d)^d = c \wedge d = cd.$$

(vi) $bcd \oplus ((bd \oplus d)(cd \oplus d) \oplus d) = bcd \oplus ((bd)^d \wedge (cd)^d)^d = bcd \oplus (bd \vee cd) = (bd \wedge cd)^{bd \vee cd} = bd + cd.$

Next we observe that principal filters of ringoids are ringoids, too.

LEMMA 14. If $\mathcal{R} = (R, +, \cdot, 0)$ is a ringoid and $a \in R$ then $([0, a], +, \cdot, 0)$ is a ringoid, too.

Proof. If $b, c \in [0, a]$ then in the SAI-lattice corresponding to \mathcal{R} it holds $b+c=(b \wedge c)^{b \vee c} \in [0, b \vee c] \subseteq [0, a], \ b \vee c \in [0, a], \ b(b \vee c)=b \ \text{and} \ c(b \vee c)=c$. The rest of the proof is clear. \blacksquare

Next we show some congruence properties of ringoids. First we prove that in a ringoid $(R, +, \cdot, 0)$ every congruence Θ is uniquely determined by its kernel $[0]\Theta$, i. e. ringoids are weakly regular (see [4]).

THEOREM 15. If $\mathcal{R} = (R, +, \cdot, 0)$ is a ringoid, $a, b \in R$ and $\Theta \in \text{Con}\mathcal{R}$ then $a \Theta b$ if and only if ab + a, $ab + b \in [0]\Theta$.

Proof. Using Lemma 9 we obtain that if $a \Theta b$ then

$$ab + a, ab + b \in [aa + a]\Theta = [a + a]\Theta = [0]\Theta$$

and if, conversely, ab + a, $ab + b \in [0]\Theta$ then

$$a = 0 + a\Theta(ab + a) + a = ab = (ab + b) + b\Theta + b = b$$
.

Finally, we want to show that ringoids satisfy a certain congruence condition. For an overview concerning congruence conditions in universal algebra see the monograph [4].

DEFINITION 16 (cf. [4]). An algebra \mathcal{A} with element 0 is called permutable at 0 if $[0](\Theta \circ \Phi) = [0](\Phi \circ \Theta)$ for all congruences Θ, Φ on \mathcal{A} . A class \mathcal{K} of algebras of the same type with an equational constant 0 is called permutable at 0 if each member of \mathcal{K} has this property.

Though the class of all ringoids does not form a variety this class turns out to be permutable at 0.

THEOREM 17. The class of all ringoids is permutable at 0.

Proof. Let \mathcal{K} denote the class of all ringoids and \mathcal{V} the variety of all algebras $(R, +, \cdot, 0)$ of type (2, 2, 0) satisfying the identities x + x = 0 and x + 0 = x. According to a theorem by H. P. Gumm and A. Ursini ([12]) \mathcal{V} is permutable at 0 if and only if there exists a binary term t(x, y) with t(x, x) = 0 and t(x, 0) = x (a so-called *subtractive term*). Obviously, t(x, y) := x + y is a subtractive term of \mathcal{V} and hence \mathcal{V} is permutable at 0. According to Lemma 9, \mathcal{K} is a subclass of \mathcal{V} . Hence also \mathcal{K} is permutable at 0.

References

- [1] G. Birkhoff, *Lattice Theory*, Corrected reprint of the third edition, Amer. Math. Soc., Providence, R.I., 1979.
- [2] I. Chajda, Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (1996), 405-411.
- [3] I. Chajda and G. Eigenthaler, A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83-94.
- [4] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann, Lemgo 2003.
- [5] I. Chajda and H. Länger, Ring-like operations in pseudocomplemented semilattices, Discuss. Math. General Algebra Appl. 20 (2000), 87-95.

- [6] I. Chajda and H. Länger, Orthorings, Discuss. Math. General Algebra Appl. 24 (2004), 137-147.
- [7] I. Chajda and H. Länger, Ring-like structures corresponding to MV-algebras via symmetric difference, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 213 (2004), 33-41.
- [8] I. Chajda, H. Länger and M. Mączyński, Ring-like structures corresponding to generalized orthomodular lattices, Math. Slovaca 54 (2004), 143-150.
- [9] G. Dorfer, A. Dvurečenskij and H. Länger, Symmetric difference in orthomodular lattices, Math. Slovaca 46 (1996), 435-444.
- [10] D. Dorninger, H. Länger and M. Mączyński, The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232.
- [11] D. Dorninger, H. Länger and M. Mączyński, On ring-like structures occurring in axiomatic quantum mechanics, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279-289.
- [12] H. P. Gumm and A. Ursini, Ideals in universal algebras, Algebra Universalis 19 (1984), 45-54.
- [13] H. Länger, Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97-105.

Ivan Chajda
PALACKÝ UNIVERSITY OLOMOUC
DEPARTMENT OF ALGEBRA AND GEOMETRY
Tomkova 40
77900 OLOMOUC, CZECH REPUBLIC
e-mail: chajda@inf.upol.cz

Helmut Länger
VIENNA UNIVERSITY OF TECHNOLOGY
INSTITUTE OF DISCRETE MATHEMATICS AND GEOMETRY
Wiedner Hauptstrasse 8-10
1040 VIENNA, AUSTRIA
e-mail: h.laenger@tuwien.ac.at

Received July 14, 2005.