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AUTONOMOUS DIFFERENTIAL INCLUSIONS SHARING 
THE FAMILIES OF TRAJECTORIES 

Abstract. We give a sufficient condition for equality of sets of trajectories of two 
differential inclusions with right-hand sides Borel measurable with respect to the state 
variable, not necessarily bounded and possibly containing the origin. 

1. Introduction and a lemma on eliminating the set where the 
derivative of an absolutely continuous function is zero 
The change of variables in ordinary differential equations is usually one 

of the first topics treated in standard textbooks on the subject. It has also 
been done for differential inclusions (see [3], Chapter 2, par. 9). 

By a solution of a differential inclusion 

(1) x € F{x) 

where x € Rd, F(x) C Rd, we mean an absolutely continuous map x : 
[a, b] —> Rd for which x(t) G F(x(t)) a.e. in [a, 6]. Trajectory corresponding 
to such solution is the set {x(t) : t € [a, 6]} C Rd. We shall speak of it also 
as of a trajectory of differential inclusion. In fact the definition of trajectory 
is valid for any map x : [a, 6] —• Rd, not only for solutions. While speaking 
of maps we shall usually write x(-) reserving the symbol x(t) for the value 
of that map at t. 

We are interested in the following problem - given two differential inclu-
sions (1) and y € G(y) under what possibly weak assumptions they have the 
same families of trajectories. Our attempts are focused on the following ob-
jectives. First, the regularity of F and G as weak as possible - we treat the 
case of Borel measurability. Next, the sets F(x), G(x) can be unbounded. 
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And last, the origin does not have to be separated from those sets, it may 
belong to any of them (or none). 

If two absolutely continuous and injective maps x(-) and y{) have the 
same trajectories, x(t) = y(s) for a pair t, s and x(t), y(s) exist none of 
them equal 0 then y(s) = Ax(t) for some A / 0. When x(-) and y(-) follow 
the trajectory in the same direction then A > 0. This suggests that the 
right-hand sides of differential inclusions should generate the same cones (or 
opposite) if they are to generate the same trajectories. However, even for 
differential equations x = f(x), y = g(y) with continuous right-hand sides 
which generate the same cones (half-lines in that case) the sets of trajectories 
may be different as shows the following simple example. 

EXAMPLE 1.1. Consider differential equations in R 1 

x = \x\, y=V\y\-
The interval [—1,1] is a trajectory of the second equation but not of the first 
one. 

The example given above suggests that the behavior of F(-) is important 
near to arguments x for which 0 G F(x) or 0 is very close to F(x). This 
may be omitted by assuming, as in [3], that 0 is separated from F(x). We 
want, on the contrary, to allow 0 not to be separated. 

If 0 is in F(x) we will have solutions x(-) with x(t) = 0 on sets of 
positive measure. We give now a lemma which shows that it is possible 
then to eliminate this set without disturbing the trajectory. This property 
is essentially known however the proof requires some subtle tools from the 
theory of real functions and we sketch it for completness. The operation 
consists in "squeezing" in some sense the interval on which this absolutely 
continuous function is defined so that the points where its derivative is 0 are 
eliminated. The method is similar to those used in [4] and references given 
therein but applied in a different manner. 

LEMMA 1.1. Let X : [a, 6] —> Md be a nonconstant, absolutely continuous map 
and 7 C its trajectory. There is a > 0 and a strictly increasing function 
T : [0,o:] —> [a, 6] such that the map y(s) = x(r(s)) is absolutely continuous, 
its trajectory coincides with 7 and 

y(s) = x(r(s)) 0 a.e. in [0, a]. 

Before sketching the proof we remark that as a rule the function r(-) 
is not absolutely continuous and may be discontinuous. Nevertheless the 
composition y(r(-)) will be absolutely continuous. 

The proof would be obvious if the set 
A = {te [o, b] : x{t) = 0} 
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was composed of a finite family of intervals (up to a set of measure zero, 
of course). It may happen, however, that A contains an infinite family of 
disjoint intervals or even a set of positive measure such that for every interval 
[a, 6] C [a, 6] the measure of [a, 6] \ A is strictly positive - like the Cantor set 
with positive measure. 

P r o o f of L e m m a 1.1. Put a ( t ) = m([a,t} \ A) for t € [a,6] and let 
a = cr(b). We define a new function r : [0, a] —> R. 

. , f sup{i € [a, b] : cr(t) < s} for 0 < s < a 
T(S) = < 

[ 0 for s = 0 

t(-) is strictly increasing, left continuous on (0, a] and right continuous at 
0. Note also that a(r(s)) = s for all s € [0,a]. 

We prove first that the trajectory of function y(-) defined by y(s) = 
X(T(S)) is 7. Take some t € [0, a]. Let u = x(t) € 7, s = A(t) and 

t _ = i n f { t ' < t : m([t',t] \ A ) = 0 } . 

A s cr(t) = <r(t-) = s , x = 0 o n [£_ , i ] a n d T ( S ) = t - s o w e g e t 

y(s) = X(T(S)) = x ( t _ ) = x ( t ) = u . 

We prove now the absolute continuity of y( ). Remark first that the 
function ||i(-)|| is the density of an absolutely continuous measure on [0, a]. 

Fix e > 0 and let ó > 0 be such that for any T c [0, o] with m(T) < S 
we have fT \\x(t)\\ dm(t) < e. Let now [a¿,/3¿] C [0, a], for % = be 
pairwise disjoint with XXA — ai) — F° r every interval [a¿,/3¿] we have 
F3I-AI = <T(T(PÍ)) - <r(r(ai)) = M([T(AI),T((3I)\ \ A) and 

k k 

m ( ( J d ^ ) . ^ A ) ] ) \ A ) = E " » ( W o i ) , r ( f t ) ] \ A) 
¿=1 

k 
i=l i—1 

k 

¿=1 
which in turn permits to write 

k k 

E M&) ~ = E ll®(r(Ä) - s(r(ai)|| < J ||x(i)|| dm(t) < e. 
i = 1 i = 1 (U(r(a<),r(ft)])\A 

To end we prove that Y(s) = X(T(S)) ^ 0 a.e. in [0,a]. Let T be the 
set of density points of {t € [0,a] : x(t) exists} \ A. The function <r(-) is 
injective on T and m(a(T)) — a. 
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We fix so £ cr(T). The inclusion r(so) G T implies that r(-) is continuous 
at so- For s € [0, a] we have s = m([0, r(s)} \ A) so taking any si > so we 
we may write 

si - s0 = m([r(s0), T(SI)] \ A) = (r(si) - T(S0))( 1 - e) 

where e —> 0 when si —> so+ and so 

lim T ( 5 l ) " T ( S 0 ) = 1. 
SL—>S0+ SI — So 

The same reasoning is valid for si < so and thus f(s) = 1 for all s 6 <r(T). 
The assertion follows from the fact that x(-) has derivative different than 0 
at T(SO) and, of course, f(so) = 1. 

We recall now the definition of measurability of multifunctions in the 
simple case we need. 

DEFINITION 1.1. A multifunction F : M Cl(Rd) is called measurable 
with respect to a a—field M. in M if the set {x € M : F(x) fl O} belongs 
to M for every open O C 

We use in the sequel measurability in two cases. First, when M is the 
Borel a—field in M = Rd. Second, when M. is the Lebesgue a—field in R. 

The important feature of a Borel measurable multifunction F : Rd —• 
Cl(Rd) is that the composition F(x(t)), for x : [a, b] —• Rd continuous, 
defines also a Borel measurable multifunction (in fact it is enough for x(-) 
to be Borel measurable). This composition need not be Lebesgue measurable 
if F(-) is only Lebesgue measurable. 

We refer to [2] for detailed discussion of various aspects and consequences 
of measurability of multifunctions - [1] can also be consulted. 

2. Finding a solution with prescribed trajectory 
For K C Rd by SK we denote the cone it generates (with 0 included). 

The following function defined for p ^ 0 will be of use 

w(K,p) = S U P ^ | A > 0 : A - € U { 0 } ^ . 

Remark that w(K,p) = 0 means that either KC\S{p} contains only the origin 
or is empty. 

Q below will be an open subset of Rd. 

LEMMA 2 .1 . If x : [0, A] —> Rd is absolutely continuous with values in Q, 
x(t) ^ 0 a.e. and F : Q —» Cl(Rd) is Borel measurable then the function 
(j)(t) = w(F(x(t)),x(t)) is measurable. 
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P r o o f . The multifunction F(x(-)) is Borel measurable as composition of 
Borel measurable maps. S^. )} is measurable (can be easily proved using, 
for example, Castaing representation theorem, see Theorem III.9 in [2]). 
The intersection F(x(-)) fl S{x(.)} is thus a measurable multifunction and 
this implies that for any 7 > 0 the set at the right-hand side of 

{t G [0 ,<z] : w(F(x(t)),x(t)) < 7 } = { t € [0, a] : F(x(t)) n S { i ( t ) } C 7S1} 

is measurable which proves our assertion. 

THEOREM 2.1. Assume that x : [0, a] —> Rd is absolutely continuous with 
values in i) and F . Q Cl(Rd) is Borel measurable. If 

(2) [ , J 1 * , ^ 1 1 . , ^ dm(t) < +00 
r 

where F = {t 6 [0, a] : x(t) ^ 0}, then there is a solution of differential 
inclusion 
(3) y G F(y) 

whose trajectory is equal to that of x(-). 
P r o o f . Thanks to Lemma 1.1 we may assume that the original absolutely 
continuous map has already been replaced with one having the same trajec-
tory and a.e. nonzero derivative. Together with assumption (2) this means 
that 0 7£ x(t) € SF(x(t)) a-e- i n [0, a.]. 

We define in a special way a measurable selection l(t) € F(x(t))DS^i^y 
Split first [0,a] into T^ = {t G [0,a] : w(F(x{t)),x{t)) = +00} and its 
complement - both are measurable. 

1. For t G [0,a] \Too put 

I F W I I 

2. For t G ^ put l(t) = 2, where 2 G F(x(t)) n S{ i ( t ) } , \\z\\ > | |i(i)|| and 
there is no z' G F(x(t)) n S { i ( t ) } with ||s(t)|| < ||2'|| < ||z||. 

In the first case we choose an element in F(x(t)) fl S{£(t)} with the greatest 
norm. In the second case this is not possible so we choose the point with 
the smallest norm which is greater than or equal ||x(t)||. The measurability 
of /(•) is proved using standard techniques. 

We have the inequalities 

[0,a] [0,a]\Too 
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The function 

[ o , t ] 

has thus finite values. It is absolutely continuous and 4>(t) > 0 a.e. so its 
inverse r(-) is also absolutely continuous (see Lemma 4.1 in the Appendix). 

Let a = <j){a) and put y(s) = x(r(s)) for s € [0, a]. The composition 
x o T is absolutely continuous, the trajectories of x(-) and y(-) are the same 
and 

y(s) = X(T(S)) • T(s) = x(r(s)) • "!(r(j))l' = l(r(s)) € F(x(R(s))) = F(y(s)) 
\\X{T{S))\\ 

which ends the proof. 

Before describing in the next section some consequences of this theorem 
let us remark that assumption (2) is automatically satisfied if there is r > 0 
such that (rB\ ) fl F(x(t)) = 0 for all t € [0, a]. This is true, for example, 
when F(-) is upper semicontinuous and 0 ^ F(x(t)) for t € [0,a]. 

3. Relations between families of trajectories of differential inclu-
sions 
Theorem 2.1 permits to formulate a sufficient condition for the set of tra-

jectories of one differential inclusion to be contained in the set of trajectories 
of another one. 

COROLLARY 3.1. Suppose F, G : Q Cl(Rd) are Borel measurable. If for 
some positive constant c, all x G fi and p ^ 0 the following inequality holds 

w(F(x),p) < c • w(G(x),p) 

then every trajectory of differential inclusion x E F(x) is also a trajectory 
of differential inclusion x € G(x). 

P r o o f . If x(t) G F{x(t)) a.e. then for all t for which ±{t) ± 0 

\\x(t)\\<w(F(x(t)),x(t))<c-w(G(x(t)),x(t)). 

Condition (2) is thus satisfied for absolutely continuous function a;(-) and 
multifunction G(-) which due to Theorem 2.1 proves our assertion. 

DEFINITION 3.1. We say that two differential inclusions are equivalent if 
their families of trajectories coincide. 

Corollary 3.1 permits in an evident way to formulate a sufficient condi-
tion for equivalence of two differential inclusions. 
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THEOREM 3 .1 . If F, G : Q —> Cl(Rd) are Borel measurable and there are 
positive constants c\, such that 
(4) w{F(x),p)<Cl-w{G(x),p) , w(G(x),p)<c2-w(F(x),p) 
for all x € fi and p / 0 then differential inclusions x £ F(x) and x G G(x) 
are equivalent. 

Condition given in the above theorem is not necessary for the equality of 
families of trajectories of two differential inclusions as shows the following 
example in which it is enough to use ordinary differential equations. 

EXAMPLE 3 .1 . The families of trajectories of differential equations in R 

coincide but 

X = 2yfe\ , X=^îM 

l i m B g = + o c . 
•O 2 7 M 

Remark that condition (4) implies the equality of cones SF(x) and Sc(x). 
Moreover, the values w(F(x),p) and w(G(x),p) for every x and p ^ 0 are 
either both finite or infinite which means that the sets F(x) D S{p} and 
G(x) H S{p} are either both bounded or both unbounded. We shall give 
now a stronger version of sufficient condition for equivalence of differential 
inclusions where for certain x and p ^ 0 one of these sets may be bounded 
and another not. 

THEOREM 3 .2 . Suppose F,G : Q Cl(Md) are Borel measurable and there 
are positive constants c\, c2 such that if w(F(x),p), w(G(x),p) < +00 then 
(4) holds. Assume also existence of r) > 0 such that 

if w(F(x),p) = +00 then w(G(x),p) > rj, 
if w(G(x),p) = +00 then w(F(x),p) > 77. 

Differential inclusions x G F(x) and x G G(x) are then equivalent. 
P r o o f . Let x(-) be a solution of (1). As before we may assume that x(t) ^ 0 
a.e. We check whether condition (2) is satisfied - the function 

,b(t\ = H¿(¿)ll 
w(G(x(t)),x(t)) 

should be integrable. Put 
Ti = {t: w(G(x(t)),x(t)) = +00}, 

T2 = {t : w(G(x(t)),x(t)) < +00, w(F{x{t)),x(t) < +00}, 
T 3 = {t : w(G(x{t)),x(t)) < + 0 0 , U > ( F ( X ( Í ) ) , I ( Í ) ) = 

These sets are measurable, disjoint and their union is the domain of x(-) (up 
to a set of measure zero, of course). 
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1. For t £ Ti is V( i ) = 0. 
2. For t £ T2 is ¿ ( i ) < ci. 

3. For t £ r 3 is ^ ( f ) < 

This means that (2) is satisfied and the trajectory of x(-) is also a trajectory 
of differential inclusion x £ G(x). The opposite inclusion of families of 
trajectories requires, of course, the same reasoning. 

Theorems 3.1 or 3.2 can be used to prove existence of solutions in some 
special situations when the classical theorems do not match. The way to do 
this is to find a differential inclusion which satisfies already assumptions of 
some theorem on existence of solutions and which has the same trajectories 
as the given one. Let us see one of possible applications of this rule. 

THEOREM 3.3. Suppose F : SI —• Cl(Rd) is Borel measurable, the cones Sp(x) 

are closed, convex and contain no straight lines. Moreover the multifunction 

has closed graph and for some r > 0 the intersection F(x) fl (rB\) is 

empty for all x € ii. Then for every XQ £ ii the Cauchy problem 

(5) x £ F{x) , x(0) = XQ 

has a solution on some interval [0, a]. 

The proof is done in the following steps. There is a neighborhood U C U 

of XQ and a hyperplane P not containing 0 such that for x £ U the sets F(x) 

are contained in the half-space generated by P and not containing 0. 
Putting G(x) — Sp(xj PlP we get a multifunction with nonempty, convex, 

compact values which is upper semicontinuous. The Cauchy Problem 

x £ G{x) , x(0) = xo 

has thus a local solution x(-). The inequality 

»¿(Oi l < 1 

w(F(x(t),x(t)) -

is satisfied a.e. in the domain of x(-) so Theorem 2.1 implies existence of a 
solution of (5). 

Let us give at the end some comments on relations to the results con-
tained in Filippov's book [3], Chapter 2, par. 9. Filippov also considers the 
problem of equality of families of trajectories of two autonomous differential 
inclusions. He proves in Theorem 3 therein that if q : O —> R is continuous 
and strictly positive then differential inclusions x £ F(x) and x £ q(x)F(x) 

have the same trajectories. This can be deduced from our Theorem 3.1 in 
the following way. Suppose x(-) is a solution of x £ F(x). Its trajectory 
is compact and so contained in the interior of some compact set A C f i on 
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which q(x) > 7 for some 7 > 0. We may consider restrictions of F( ) and 
q(-) to A and the condition (4) is then satisfied. 

Lemma 3 in the same part of Filippov's book is also near to our Theo-
rem 3.1. It shows how to replace an autonomous differential inclusion with 
a nonautonomous one but with the reduction of dimension. It could be re-
formulated to give the equality of families of trajectories of two differential 
inclusions under the condition that the intersections of cones generated by 
right-hand sides with some fixed hyperplane are the same. It would require 
also that all F(x) and G(x) are strongly separated from 0 by some fixed hy-
perplane. Some regularity of right-hand sides would also be necessary which 
was not needed in the original formulation. In our case this regularity is 
Borel measurability (which seems to be a reasonable minimal assumption). 
Moreover, contrary to Filippov's assumptions we do not need the separation 
of multifunctions from 0 - it may even belong to F(x) or G(x). 

4. Appendix 
According to the Referee's suggestion we include here, for convenience 

of the Reader, the proof of a property used in the proof of Theorem 2.1. 

LEMMA 4.1. Let 4>: [a, b] —* K. be absolutely continuous and <p(t) > 0 a.e. in 
[a, b]. Then the inverse function </>-1 is also absolutely continuous. 

P r o o f . Suppose <p~l is not absolutely continuous and let e > 0 be such that 
for any 8 > 0 exist pairwise disjoint intervals [ai,/?i], . . . , [afc, At] contained 
in [4>{a),(f>{b)} such that - an) < 6 and ¿ ( ^ ( A ) - « T 1 ^ ) ) > e. 

We fix now a > 0 such that m({t € [a, b] : <p(t) < a}) < e/2 and consider 
5=(e-a)/2. Then 

- oh) = - < K < R V I ) ) 

m-HaM-HM] 
This contradiction proves that 4>~l must be absolutely continuous. 
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