

Tadeusz Jagodziński, Wiesław Sasin

WEIL HOMOMORPHISM  
IN NON-COMMUTATIVE DIFFERENTIAL SPACES

In this paper we construct Weil homomorphism in locally free module over a non-commutative differential space, which is a generalization of Sikorski differential space [6]. We consider real case, but the complex case can be done analogously.

### 1. Preliminaries

Let  $(M, C)$  be a differential space [6],  $\mathfrak{A}$  a noncommutative unital algebra such that the center  $Z(\mathfrak{A})$  is isomorphic with  $\mathbf{R}$ . We assume that algebra  $\mathfrak{A}$  is finite dimensional with a basis  $e_1, \dots, e_m$ . Typically  $\mathfrak{A}$  could be a matrix algebra. A function  $a : M \rightarrow \mathfrak{A}$  is said to be smooth if  $a = \sum_{i=1}^m f^i e_i$  with  $f^i \in C$  for  $i = 1, \dots, m$ . Let  $A$  be the algebra of all smooth functions defined on  $M$  with values in  $\mathfrak{A}$ . The center  $Z(A)$  of the algebra  $A$  is of the form  $Z(A) = C \cdot \mathbf{1}$ , where  $\mathbf{1}$  is the unit of  $\mathfrak{A}$ .

The pair  $(M, A)$  is called a non-commutative differential space. Now we present some geometrical notions in such spaces.

A linear mapping  $v : A \rightarrow \mathfrak{A}$  satisfying the Leibniz rule

$$v(a \cdot b) = v(a) \cdot b(p) + a(p) \cdot v(b)$$

for every  $a, b \in A$ , is said to be a tangent vector to  $(M, A)$  at the point  $p \in M$ .

The linear space of all tangent vectors to  $(M, A)$  at  $p \in M$  will be denoted by  $T_p(M, A)$ . It is easy to observe that for every  $v \in T_p(M, A)$ ,  $v(\mathbf{1}) = 0$  and consequently

$$v(k) = v(k \cdot \mathbf{1}) = 0.$$

---

2000 Mathematics Subject Classification: 58A40.

Key words and phrases: Differential space, connection, family of curvature matrices, Weil homomorphism.

We can consider  $k \in \mathbf{R}$  as an element of  $A$  by the embedding  $\mathbf{R} \subset A$ ,  $k \rightarrow k \cdot \mathbf{1}$ .

A mapping  $F : (M, A) \rightarrow (N, B)$  between two differential non-commutative differential spaces is said to be smooth if  $F^*B \subset A$  (or equivalently  $b \circ F \in A$  for every  $b \in B$ ).

For any  $u \in T_p(M, C)$  we define  $\bar{u} \in T_p(M, A)$  by  $\bar{u}(a) = \sum_{i=1}^m u(f^i) e_i$ , for  $a \in A$ ,  $a = \sum_{i=1}^m f^i e_i$ .

Analogously, for any derivation  $w \in \text{Der}(\mathfrak{A})$  we define  $\bar{w} \in T_p(M, A)$  by  $\bar{w}(a) = \sum_{i=1}^m f^i(p) w(e_i)$ .

Let us denote by  $T(M, A) = \cup_{p \in M} T_p(M, A)$ , the disjoint sum of tangent spaces. We obviously have the projection  $\pi : T(M, A) \rightarrow M$  given by  $v \mapsto p$ , where  $v \in T_p(M, A)$ .

A mapping  $X : M \rightarrow T(M, A)$  such that  $\pi \circ X = id_M$  is said to be a tangent vector field to the noncommutative differential space  $(M, A)$ .

For any  $a \in A$  we define the action of  $X$  on  $A$  as a  $\mathfrak{A}$ -valued function on  $M$ ,  $Xa : M \rightarrow \mathfrak{A}$  given by  $(Xa)(p) = X(p)(a)$  for  $p \in M$ .

The set of all smooth tangent vector fields to  $(M, A)$  will be denote by  $\mathbf{V}(A)$ . In this set we naturally introduce the  $Z(A)$ -module structure. We define addition and multiplication in the following way

$$(X + Y)(p) = X(p) + Y(p),$$

$$(\alpha \cdot X)(p) = \alpha(p) X(p)$$

for  $p \in M$ ,  $X, Y \in \mathbf{V}(A)$ ,  $\alpha \in Z(A)$ .

A non-commutative differential space  $(M, A)$  is said to be of a constant differential dimension  $n$  if and only if  $Z(A)$ -module  $\mathbf{V}(A)$  is locally free of rank  $n$ .

One can prove

**PROPOSITION 1.** *If  $(M, C)$  is a differential space of constant differential dimension  $k$ , then the non-commutative differential space  $(M, A)$  is of the constant differential dimension  $k + l$ , where  $l$  is the dimension of  $\text{Der}(\mathfrak{A})$ .*

**Proof.** If  $X_1, \dots, X_k$  is a local basis of tangent vector fields to  $(M, C)$  on an open set  $U$ , then we define  $\bar{X}_i : U \rightarrow \cup_{p \in M} T_p(U, A_U)$ ,  $i = 1, \dots, n$ , by the formula:

$$\bar{X}_i(p)(a) = \sum_{j=1}^m X_i(p)(f^j) e_j,$$

for  $p \in U$ , where  $a = \sum_{i=1}^n f^i e_i$ ,  $f^i \in C_U$ .

We also prolonge the basis  $E_1, \dots, E_l$  of  $Der\mathfrak{A}$  to  $\overline{E}_1, \dots, \overline{E}_l \in \mathbf{V}(A_U)$  by

$$\overline{E}_i(p)(a) = \sum_{i=1}^m f^j E_i(e_j), \quad \text{for } p \in U.$$

We obtain a local basis  $X_1, \dots, X_k, \overline{E}_1, \dots, \overline{E}_l$  of  $Z(A)$  — module  $\mathbf{V}(A)$ . Let us denote by  $A^k(\mathbf{V}(A), Z(A))$  the  $Z(A)$  — module of all skew-symmetric  $Z(A) - k$  — linear mappings  $\omega : \mathbf{V}(A) \times \dots \times \mathbf{V}(A) \rightarrow Z(A)$ .

For any  $\omega \in A^k(\mathbf{V}(A), Z(A))$  we define its differential  $d\omega \in A^{k+1}(\mathbf{V}(A), Z(A))$  by

$$\begin{aligned} (d\omega)(X_1, \dots, X_{k+1}) &= \sum_{i=1}^k (-1)^{i+1} X_i(\omega(X_1, \dots, \widehat{X}_i, \dots, X_{k+1})) \\ &+ \sum_{i < j} (-1)^{i+j} \omega([X_i, X_j], X_1, \dots, \widehat{X}_i, \dots, \widehat{X}_j, \dots, X_{k+1}) \end{aligned}$$

for  $X_1, \dots, X_{k+1} \in \mathbf{V}(A)$ .

Here  $d$  is a local  $\mathbf{R}$ -linear operator and satisfies the standard properties:

$$d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^{|\omega_1|} \omega_1 \wedge d\omega_2, \quad d \circ d = 0.$$

Let us put

$$B^k(M) = \{d\theta : \theta \in A^{k-1}(\mathbf{V}(A), Z(A))\}$$

and

$$Z^k(M) = \{\omega \in A^k(\mathbf{V}(A), Z(A)) : d\omega = 0\}.$$

Let  $H^k(M) = Z^k(M)/B^k(M)$  be  $k$ -th cohomology group of  $d$ . For any open set  $U \in \tau_C$  let  $\tilde{A}(U)$  be the algebra of smooth  $\mathfrak{A}$ -valued functions  $a : U \rightarrow \mathfrak{A}$  defined on  $U$ .  $\tilde{A}$  is a sheaf of non-commutative algebras over  $M$ . ■

**DEFINITION 2.** Let  $\mathfrak{I}$  be a sheaf of  $Z(A)$ -modules over the noncommutative differential space  $(M, A)$ . A linear connection in  $\mathfrak{I}$  is  $\mathbf{R}$ -linear mapping  $D : \mathfrak{I}(M) \rightarrow A^1(\mathbf{V}(A), \mathfrak{I}(M))$  satisfying the condition

$$D(\alpha \cdot \eta) = (d\alpha)\eta + \alpha D\eta$$

for any  $\eta \in \mathfrak{I}(M)$  and  $\alpha \in Z(A)$ .

## 2. Families of connections and curvature matrices

Let  $D : \mathfrak{I}(M) \rightarrow A^1(\mathbf{V}(A), \mathfrak{I}(M))$  be a linear connection in the sheaf  $\mathfrak{I}$ . Decomposing 1-forms  $D\epsilon_i \in A^1(\mathbf{V}(\tilde{A}(U)), \mathfrak{I}(U))$  for  $i = 1, 2, \dots, n$  with respect to a local  $Z(U)$ -base  $\epsilon = (\epsilon_1, \dots, \epsilon_n)$  of the  $Z(U)$ -module  $\mathfrak{I}(U)$ ,

$U \in \tau_C$  we get

$$(1) \quad D\epsilon_i = \sum_{j=1}^n \theta_i^j(\epsilon) \cdot \epsilon_j, \quad i = 1, \dots, n,$$

where  $\theta_i^j(\epsilon) \in A^1(\tilde{A}(U)), Z(\tilde{A}(U))$ .

The matrix  $\theta(\epsilon) = (\theta_i^j(\epsilon))$  of the 1-forms is called the matrix of the connection  $D$  with respect to the local  $Z(\tilde{A}(U))$ -base  $\epsilon$ . In the sequel, for simplicity we will write  $Z(U)$  instead of  $Z(\tilde{A}(U))$  and  $A^k(U)$  instead  $V(\tilde{A}(U))$ .

There exists an open cover  $U = (U_\epsilon)_{\epsilon \in \Sigma}$  of  $M$  such that every  $\epsilon \in \Sigma$ ,  $\epsilon = (\epsilon_1, \dots, \epsilon_n)$ , is a local  $Z(U_\epsilon)$ -basis of  $\mathfrak{U}(U_\epsilon)$ .

**DEFINITION 3.** A family of matrices  $\theta = (\theta(\epsilon))_{\epsilon \in \Sigma}$ ,  $\theta(\epsilon) \in M_n(A^1(U_\epsilon))$  is called a family of connection matrices of a linear  $\Sigma$  connection  $D$  with respect to  $\Sigma$ .

It satisfies the following transformation law:

$$(2) \quad dg + \theta(\epsilon)|_{U_\epsilon \cap U_{\epsilon'}} \cdot g = g \cdot \theta(\epsilon)|_{U_\epsilon \cap U_{\epsilon'}},$$

for  $\epsilon, \epsilon' \in \Sigma$  with  $U_\epsilon \cap U_{\epsilon'} \neq \emptyset$ , where  $g \in GL(n, Z(U_\epsilon \cap U_{\epsilon'}))$ .

Now let  $F^k(\Sigma)$  denote the set of families of matrices  $\omega = (\omega(\epsilon))_{\epsilon \in \Sigma}$ , with  $\omega(\epsilon) \in M_n(A^k(U_\epsilon))$  satisfying the following transformation law:

$$\omega(\epsilon')|_{U \cap U'} = \overline{g} \omega(\epsilon)|_{U \cap U'} g,$$

whenever  $U_\epsilon \cap U_{\epsilon'} \neq \emptyset$ .  $F^k(\Sigma)$  is  $Z(M)$ -module for  $k \geq 1$ .

**DEFINITION 4.** The family  $\Theta \in F^2(\Sigma)$  defined by

$$(3) \quad \Theta(\epsilon) = d\theta(\epsilon) + \theta(\epsilon) \wedge \theta(\epsilon), \quad \text{for } \epsilon \in \Sigma,$$

is called the family of curvative matrices of  $D$  with respect to  $\Sigma$ .

For  $\omega = (\omega(\epsilon))_{\epsilon \in \Sigma} \in F^k(\Sigma)$ , we define  $D\omega = (D\omega(\epsilon))_{\epsilon \in \Sigma}$  to be the family of matrices defined by

$$(4) \quad D\omega(\epsilon) = d\omega(\epsilon) + \theta(\epsilon) \wedge \omega(\epsilon) - (-1)^k \omega(\epsilon) \wedge \theta(\epsilon)$$

for  $\epsilon \in \Sigma$ , where  $d\omega(\epsilon) := (d\omega_j^i(\epsilon))$ ,  $i, j = 1, \dots, n$ ,  $\epsilon \in \Sigma$ . Of course  $D\omega \in F^{k+1}(\Sigma)$ .

For any  $\chi \in F^k(\Sigma)$  and  $\Psi \in F^l(\Sigma)$  and  $\epsilon \in \Sigma$  let us define

$$\chi(\epsilon) \wedge \psi(\epsilon) := \left( \sum_{m=1}^n \chi_m^i(\epsilon) \wedge \psi_j^m(\epsilon) \right), \quad i, j = 1, \dots, n.$$

We define a wedge product  $\chi \wedge \psi \in F^{k+l}(\Sigma)$  by

$$(5) \quad (\chi \wedge \psi)(\epsilon) = \chi(\epsilon) \wedge \psi(\epsilon), \quad \text{for } \epsilon \in \Sigma.$$

Thus  $\chi \wedge \psi$  is the family of  $k+l$ -forms  $\chi \wedge \psi = (\chi(\epsilon) \wedge \psi(\epsilon))_{\epsilon \in \Sigma}$ .

Now, let  $[\chi, \psi] = ([\chi, \psi](\varepsilon))_{\varepsilon \in \Sigma}$  be the family of matrices defined by

$$(6) \quad [\chi, \psi](\varepsilon) = \chi(\varepsilon) \wedge \psi(\varepsilon) - (-1)^{kl} \psi(\varepsilon) \wedge \chi(\varepsilon),$$

for  $\varepsilon \in \Sigma$ .

It is easy to see that  $[\chi, \psi] = \chi \wedge \psi - (-1)^{kl} \psi \wedge \chi$ .

By standard computations [5], [7] one can prove the following identities:

**PROPOSITION 5.** *Let  $\theta$  be a family of connection matrices of connection  $D$  with respect to  $\Sigma$  and  $\Theta$  the corresponding family of curvature matrices. If  $\chi \in F^k(\Sigma)$  and  $\psi \in F^l(\Sigma)$  then:*

1.  $D(\chi \wedge \psi) = D\chi \wedge \psi + (-1)^k \chi \wedge D\psi$ ,
2.  $D\Theta = 0$ ,
3.  $D^2\psi = [\Theta, \psi]$ .

### 3. Invariant forms

Let  $M_n(\mathbf{R})$  be the set of  $n \times n$  matrices with real entries. A  $k$ -linear form  $P : M_n(\mathbf{R}) \times \dots \times M_n(\mathbf{R}) \rightarrow \mathbf{R}$  is said to be invariant if

$$(7) \quad P(gA_1g^{-1}, \dots, gA_kg^{-1}) = P(A_1, \dots, A_k),$$

for every  $g \in GL(n, \mathbf{R})$  and every  $A_1, \dots, A_k \in M_n(\mathbf{R})$ .

We shall denote the  $\mathbf{R}$ -vector space of all  $k$ -linear forms on  $M_n(\mathbf{R})$  by  $I_k(M_n(\mathbf{R}))$ .

Using the usual Einstein summation convention, each matrix  $A = (a_{ij}^i) \in M_n(\mathbf{R})$  can be uniquely expressed as a linear combination  $A = a_j^i E_j^i$ ,  $i, j = 1, \dots, n$ , for the standard basis  $E_j^i$ ,  $i, j = 1, \dots, n$ , of  $M_n(\mathbf{R})$ .

If  $A_l = (a_{jl}^{i_l})$ ,  $l = 1, \dots, k$  are some matrices of  $M_n(\mathbf{R})$  then for any  $P \in I_k(M_n(\mathbf{R}))$  we have

$$(8) \quad P(A_1, \dots, A_k) = P_{j_1 \dots j_k}^{i_1 \dots i_k} a_{i_1}^{j_1} \dots a_{i_k}^{j_k},$$

where

$$(9) \quad P_{j_1 \dots j_k}^{i_1 \dots i_k} = P(E_{j_1}^{i_1}, \dots, E_{j_k}^{i_k}).$$

Now, let  $M_n(A^l(U))$  be  $Z(U)$ -module of all  $n \times n$  matrices with entries in  $Z(A)$ -module  $l$ -forms  $A^l(U)$ , where  $U \in \tau_C$  is open subset in  $M$ .

We prolong the action of  $P$  to  $M_n(A^{l_1}(U)) \times \dots \times M_n(A^{l_k}(U))$  by:

$$(10) \quad P_U(\alpha_1, \dots, \alpha_k) = P_{i_1 \dots i_k}^{j_1 \dots j_k} a_{i_1}^{j_1} \wedge \dots \wedge a_{i_k}^{j_k}.$$

It is easy to see that for open  $V \subset U$  we have

$$(11) \quad P_U(\alpha_1, \dots, \alpha_k) |_V = P_V(\alpha_1 |_V, \dots, \alpha_k |_V).$$

$P_V(\alpha_1, \dots, \alpha_k)$  is  $l_1 + \dots + l_k$  - form satysfying the invariant condition:

$$(12) \quad P_U(g^{-1}\alpha_1g, \dots, g^{-1}\alpha_kg) = P_U(\alpha_1, \dots, \alpha_k)$$

for  $g \in GL(n, Z(U))$ .

One can prove (see [5]):

**PROPOSITION 6.** *Let  $P \in I_k(M_n(R))$  be invariant  $k$ -form. For any  $\eta_1 \in F^{l_1}(\Sigma), \dots, \eta_k \in F^{l_k}(\Sigma)$  there exists exactly one form  $P(\eta_1, \dots, \eta_k)$  of degree  $l_1 + \dots + l_k$  such that*

$$P(\eta_1, \dots, \eta_k)|_U = P_U(\eta_1(U), \dots, \eta_k(U)).$$

Moreover, the mapping

$$\Phi_P : F^{l_1}(\Sigma) \times \dots \times F^{l_k}(\Sigma) \rightarrow A^{l_1+\dots+l_k}(M),$$

defined by  $\Phi_P(\eta_1, \dots, \eta_k) := P(\eta_1, \dots, \eta_k)$  is  $Z(A)$ - $k$ -linear.

**LEMMA 7.** *Let  $\eta_1 \in F^{l_1}(\Sigma), \dots, \eta_k \in F^{l_k}(\Sigma)$  and  $P \in I_k(M_n(R))$  be arbitrary elements. Then:*

- (i)  $\sum_{s=1}^k (-1)^{l(l_1+\dots+l_{s-1})} P(\eta_1, \dots, [\psi, \eta_s], \dots, \eta_k) = 0$  for any  $\psi \in F^l(\Sigma)$ .
- (ii)  $dP(\eta_1, \dots, \eta_k) = \sum_{s=1}^k (-1)^{l_1+\dots+l_{s-1}} P(\eta_1, \dots, D\eta_s, \dots, \eta_k)$ .

**Proof.** (i) It is well-known [7] that if  $A_1, \dots, A_k, B \in M_n(\mathbf{R})$  and  $P \in I_k(M_n(\mathbf{R}))$ , then

$$\sum_{s=1}^k P(A_1, \dots, [B, A_s], \dots, A_k) = 0$$

and consequently

$$\sum_{s=1}^k P(A_1, \dots, B, A_s, \dots, A_k) - P(A_1, \dots, A_s B, \dots, A_k) = 0.$$

Using the above identity one can verify that

$$\sum_{s=1}^k P_V(\alpha_1, \dots, B\alpha_s, \dots, \alpha_k) - P_V(\alpha_1, \dots, \alpha_s B, \dots, \alpha_k) = 0$$

for  $V \in \tau_C$ ,  $\alpha_1 \in M_n(A_1(V)), \dots, \alpha_k \in M_n(A_k(V))$  and  $B \in M_n(\mathbf{R})$ . Using (11) if we multiply the above equation by an arbitrary  $\Phi \in M_n(A_l(V))$ , we obtain:

$$\begin{aligned} & \sum_{s=1}^k (-1)^{l(l_1+\dots+l_{s-1})} P_U(\alpha_1, \dots, \Phi B \wedge \alpha_s, \dots, \alpha_k) \\ & - \sum_{s=1}^k (-1)^{l(l_1+\dots+l_{s-1})} (-1)^{l\alpha_s} P_U(\alpha_1, \dots, \alpha_s \wedge \Phi B, \dots, \alpha_k) = 0. \end{aligned}$$

This and the fact the every  $\psi \in M_n(A^l(V))$  can be written as  $\psi = \psi_j^i E_j^i$  by linearity implies:

$$\begin{aligned} \sum_{s=1}^k (-1)^{l(l_1+\dots+l_{s-1})} P_U(\alpha_1, \dots, \psi \wedge \alpha_s, \dots, \alpha_k) + \\ - \sum_{s=1}^k (-1)^{l(l_1+\dots+l_{s-1})} (-1)^{ll_s} P(\alpha_1, \dots, \alpha_s \wedge \psi, \dots, \alpha_k) = 0, \end{aligned}$$

or equivalently

$$\sum_{s=1}^k (-1)^{l(l_1+\dots+l_{s-1})} P_U(\alpha_1, \dots, [\psi, \alpha_s], \dots, \alpha_k) = 0.$$

Now (i) is evident.

(ii) Let  $\varepsilon \in \Sigma$ . From the very definition  $P(\eta_1, \dots, \eta_k) |_{U_\varepsilon}$  we have:

$$dP(\eta_1, \dots, \eta_k) |_{U_\varepsilon} = P_{j_1 \dots j_k}^{i_1 \dots i_k} \sum_{s=1}^k (-1)^{l_1+\dots+l_{s-1}} \eta_{i_1}^{j_1}(\varepsilon) \wedge \dots \wedge d\eta_{i_s}^{j_s}(\varepsilon) \wedge \dots \wedge \eta_{i_k}^{j_k}(\varepsilon),$$

that is

$$dP(\eta_1, \dots, \eta_k) |_{U_\varepsilon} = \sum_{s=1}^k (-1)^{l_1+\dots+l_{s-1}} P_{U_\varepsilon}(\eta_1(\varepsilon), \dots, d\eta_s(\varepsilon), \dots, \eta_k(\varepsilon)).$$

Then by linearity we have:

$$\begin{aligned} dP(\eta_1, \dots, \eta_k) |_{U_\varepsilon} = \sum_{s=1}^k (-1)^{l_1+\dots+l_{s-1}} P_{U_\varepsilon}(\eta_1(\varepsilon), \dots, D\eta_s(\varepsilon), \dots, \eta_k(\varepsilon)) + \\ - \sum_{s=1}^k (-1)^{l_1+\dots+l_{s-1}} P_{U_\varepsilon}(\eta_1(\varepsilon), \dots, [\Theta, \eta_s](\varepsilon), \dots, \eta_k(\varepsilon)). \end{aligned}$$

From (i) the second term is zero and we obtain:

$$dP(\eta_1, \dots, \eta_k) |_{U_\varepsilon} = \sum_{s=1}^k (-1)^{l_1+\dots+l_s} P_{U_\varepsilon}(\eta_1(\varepsilon), \dots, D\eta_s(\varepsilon), \dots, \eta_k(\varepsilon))$$

which gives us (ii). ■

Now let us notice that for every  $\omega \in F^k(\Sigma)$  one can define a skew symmetric  $k$ -linear mapping

$$\omega : \mathbf{V}(A) \times \dots \times \mathbf{V}(A) \rightarrow L(\mathbf{J}(M), \mathbf{J}(M)),$$

given by

$$\omega(X_1, \dots, X_k)(\varepsilon_i) = \omega_i^j(\varepsilon)(X_1, \dots, X_k)\varepsilon_j,$$

for  $i, j = 1, \dots, n$ .

One can easily see that  $\omega$  does not depend on the choice of the family  $\Sigma$ . In the sequell for a connection  $D$  in  $\mathfrak{Y}$  let  $\Theta$  be the curvature 2-form  $\Theta : \mathbf{V}(A) \times \mathbf{V}(A) \rightarrow L(\mathfrak{Y}(M), \mathfrak{Y}(M))$  defined by the family of curvature matrices  $(\Theta(\varepsilon))_{\varepsilon \in \Sigma}$ . Let  $P(\Theta) := P(\Theta, \dots, \Theta)$  be  $2k$ -form obtaining from the family  $(\Theta(\varepsilon))_{\varepsilon \in \Sigma}$  and  $P \in I_k(M_n(\mathbf{R}))$ .

Now we can prove the following generalization of Weil theorem:

**THEOREM 8.** *Let  $\mathfrak{Y}$  be locally free sheaf of  $Z(A)$  — modules of rank  $n$  over non-commutative differential space  $(M, A)$  and let  $\theta$  be a family of connection  $D$  in  $\mathfrak{Y}$ . Then for any invariant  $k$ -form  $P \in I_k(M_n(\mathbf{R}))$*

- (a)  $dP(\Theta) = 0$ , that is  $2k$ -form  $P(\Theta)$  is closed,
- (b) The cohomology class  $[P(\Theta)]$  is independent of the connection  $D$ .

**Sketch of proof:**

(a) By Lemma 7 we have

$$dP(\Theta) = \sum_{s=1}^k P(\Theta, \dots, D\Theta, \dots, \Theta)$$

and  $D\Theta = 0$  by Proposition 1. Hence  $dP(\Theta) = 0$ .

(b) Let  $\theta$  and  $\theta'$  be two families of connection matrices of connection  $D$  and  $D'$  respectively. We may assume that both families are indexed by the same family of local basis  $\Sigma$ . Let  $\eta := \theta' - \theta$ , so  $\eta \in F^1(\Sigma)$ . We consider the one-parameter family

$$\theta_t(e) = \theta(e) + t\eta(e) \text{ for } t \in \mathbf{R}.$$

It may be checked that

$$(13) \quad \Theta_t = \Theta + tD\eta + t^2\eta \wedge \eta \text{ for } t \in \mathbf{R}$$

and then

$$(14) \quad D\Theta_t = D\Theta + tD^2\eta + t^2D(\eta \wedge \eta).$$

Hence using Proposition 1. we have

$$(15) \quad D\Theta_t = t[\Theta_t, \eta] \text{ for } t \in \mathbf{R}.$$

Using (13) we obtain

$$(16) \quad \frac{d}{dt}\Theta_t = D\eta + 2t\eta \wedge \eta.$$

One can verify that

$$(17) \quad \frac{d}{dt}P(\Theta_t) = kdP\left(\frac{d}{dt}\Theta_t, \Theta_t, \dots, \Theta_t\right).$$

From (16)–(17) we obtain

$$\frac{d}{dt}P(\Theta_t) = kdP(D\eta, \Theta_t, \dots, \Theta_t) + 2kt dP(\eta \wedge \eta, \Theta_t, \dots, \Theta_t).$$

It follows from Lemma 7 that

$$(18) \quad \begin{aligned} dP(\eta, \Theta_t, \dots, \Theta_t) \\ = P(D\eta, \Theta_t, \dots, \Theta_t) - (k-1)P(\eta, D\Theta_t, \Theta_t, \dots, \Theta_t). \end{aligned}$$

From Lemma 7 we obtain

$$(19) \quad P([\eta, \eta], \Theta_t, \dots, \Theta_t) - (t-1)P(\eta, [\eta, \Theta_t], \dots, \Theta_t) = 0.$$

Using (14), (18), (19) we obtain

$$d(kP(\eta, \Theta_t, \dots, \Theta_t)) = kP(D\eta, \Theta_t, \dots, \Theta_t) + ktP(\eta \wedge \eta, \Theta_t, \dots, \Theta_t).$$

Thus

$$(20) \quad \frac{d}{dt}P(\Theta_t) = d(kP(\eta, \Theta_t, \dots, \Theta_t)).$$

Hence

$$\int_0^1 \frac{d}{dt}P(\Theta_t)dt = \int_0^1 d(kP(\eta, \Theta_t, \dots, \Theta_t))dt,$$

or equivalently

$$P(\Theta_1) - P(\Theta_0) = \int_0^1 kP(\eta, \Theta_t, \dots, \Theta_t)dt.$$

Hence  $[P(\Theta')] = [P(\Theta)]$ . ■

COROLLARY 9. *The mapping  $w : I^*(M_n(\mathbf{R})) \rightarrow H^*(M)$  given by*

$$I^*(M_n(\mathbf{R})) \ni P \longmapsto [P(\Theta)] \in H^*(M),$$

*is well defined homomorphism of the graded algebras  $w$  is called the Weil homomorphism [4]. The cohomology class  $w(P)$  for  $P \in I^*(M_n(\mathbf{R}))$  is called a characteristic class of the sheaf  $\mathfrak{I}$ .*

## References

- [1] A. Connes, *Noncommunicative Differential Geometry*, Academic Press Inc., New York 1994.
- [2] A. E. F. Djemai, *Introduction to Dubois-Violette's noncommutative differential geometry*, Intern. J. Theor. Phys., Vol. 34, No. 6 (1995), 804–887.
- [3] M. Dubois-Violette, *Derivations et calcul différentiel non-commutatif*, Comptes Rendus de l'Academie de Sciences Paris Serie 1 (1988), 307, 403.
- [4] P. Griffiths, J. Harris, *Principles of Algebraic Geometry*, New York 1978.
- [5] W. Sasin, *On Weil homomorphism in locally free sheaves over a differential space*, Demonstratio Math. 16 (1983), 239–267.

- [6] R. Sikorski, *Abstract covariant derivative*, Colloq. Math. 18 (1967), 251–272.
- [7] R. Sikorski, *Differential modules*, Colloq. Math. 24 (1971), 46–79.
- [8] R. O. Wells, *Differential Analysis on Complex Manifold*. Englewood Cliffs, N.J. 1973.

WARSAW UNIVERSITY OF TECHNOLOGY  
FACULTY OF MATHEMATICS AND INFORMATION SCIENCE  
Pl. Politechniki 1  
00-661 WARSAW, POLAND

*Received December 29, 2003.*