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WEIL HOMOMORPHISM
IN NON-COMMUTATIVE DIFFERENTIAL SPACES

In this paper we construct Weil homomorphism in locally free module
over a non-commutative differential space, which is a generalization of Sikor-
ski differential space [6]. We consider real case, but the complex case can be
done analogously.

1. Preliminaries

Let (M, C) be a differential space [6], 2 a noncommutative unital algebra
such that the center Z () is isomorphic with R. We assume that algebra 2
is finite dimensional with a basis ey, ..., ;. Typically 2 could be a matrix
algebra. A function a : M — % is said to be smooth if a = 3", fle; with
fi € Cfori=1,...,m. Let A be the algebra of all smooth functions
defined on M with values in 2. The center Z (A) of the algebra A is of the
form Z (A) = C - 1, where 1-is the unit of «.

The pair (M, A) is called a non-commutative differential space. Now we
present some geometrical notions in such spaces.

A linear mapping v : A — 9 satisfying the Leibniz rule

v(a-b) =v(a)-b(p) +a(p) v(b)
for every a,b € A, is said to be a tangent vector to (M, A) at the point
pE M.

The linear space of all tangent vectors to (M, A) at p € M will be denoted
by T, (M, A). It is easy to observe that for every v € T, (M, A), v(1) =0
and consequently

v(k)=v(k-1)=0.
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We can consider £ € R as an element of A by the embedding R C A4,
k—k-1.

A mapping F : (M, A) — (N, B) between two differential non-commu-
tative differential spaces is said to be smooth if F*B C A (or equivalently
boF € A for every b € B).

For any u € T,(M, C) we define @ € T,(M, A) by t(a) = 1%, u (f?) e;,
forae A, a=372, fle; .

Analogously, for any derivation w € Der (%) we define w € T}, (M, A) by
@(a) = X% f* (p) w(e:)-

Let us denote by T' (M, A) = UpemT, (M, A), the disjoint sum of tangent
spaces. We obviously have the projection 7 : T'(M, A) — M given by v — p,
where v € T,,(M, A).

A mapping X : M — T (M, A) such that m o X = idps is said to be a
tangent vector field to the noncommutative differential space (M, A).

For any a € A we define the action of X on A as a 2 -valued function
on M, Xa: M — 2 given by (Xa) (p) = X (p) (a)for pe M.

The set of all smooth tangent vector fields to (M, A) will be denote by

V (A). In this set we naturally introduce the Z (A) - module structure. We
define addition and multiplication in the following way

(X +Y)(p) = X(p) +Y(p),
(@ X)(p) =ca(p) X (p)

forpe M, X, Y e V(A), a € Z(A).
A non-commutative differential space (M, A) is said to be of a constant

differential dimension n if and only if Z (A) - module V (4) is locally free
of rank n.

One can prove

ProposITION 1. If (M,C) is a differential space of constant differential
dimension k, then the non-commutative differential space (M, A) is of the
constant differential dimension k + [, where l is the dimension of Der?.

Proof. If Xj,..., X\ is a local basis of tangent vector fields to (M, C) on
an open set U, then we define X; : U — UpemT, (U, Ay), i = 1,...,n, by
the formula:

X)) =3 X:(p) () e,

m
i=l1

for p € U, where a = 3%, fle;, f' € Cy.
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We also prolonge the basis Fy,..., E; of Der?l to Ey,...,E; € V (Ay)
by

m

E(p) (@) =Y. FE(e), frpel.

i=1

We obtain a local basis X1,..., Xk, Ei,...,E; of Z(A) — module V(A).
Let us denote by A*(V(A), Z(A)) the Z(A) — module of all skew-symmetric
Z(A) — k—linear mappings w : V(A) x ... x V(4) — Z(A).

For any w € A¥(V(4), Z(A)) we define its differential dw € A*+1(V(4A),
Z(4)) by

k
(d)(X1, -, K1) = (-0 Xi(@(X, -, Ky Xir)
i=1

+ (D)X, X), X1y Xy XG5 Xer1)
i<j
for Xq,... ,Xk+1 € V(A)
Here d is a local R-linear operator and satisfies the standard properties:

d(w1 Awe) = dwy Awa + (—l)lwllwl Adwy, dod=0.
Let us put
B*(M) = {df : 6 € A¥"1(V(A), Z(A))}
and
Z¥(M) = {w € A¥(V(4), Z(A)) : dw = 0}.
Let H*(M) = A k(M)/B¥(M) be k-th cohomology group of d. For any open

set U € 1¢ let A(U) be the algebra of smooth %-valued functionsa : U — 2
defined on U. A is a sheaf of non-commutative algebras over M. u

DEFINITION 2. Let I} be a sheaf of Z(A)- modules over the noncommutative
differential space (M, A). A linear connection in 1) is R-linear mapping

D : (M) — AY(V(A),)(M)) satisfying the condition
D(a - n) = (da)n + aDn
for any n € I)(M) and o € Z(A).

2. Families of connections and curvature matrices

Let D: (M) — A(V(A),)(M)) be a linear connection in the sheaf 1.
Decomposing 1-forms De; € AY(V(A(V)),Q(U)) for i = 1,2,...,n with
respect to a local Z(U)-base € = (e1,...,&n) of the Z(U)-module 1)(U),



510 T. Jagodzinski, W. Sasin

U € 1¢c we get

n

(1) De; =Y 6l(e)-¢j, i=1,...,n,
j=1
where 6 (¢) € AY(A(U)), Z(A(D)).

The matrix 6(¢) = (0{ (€)) of the 1-forms is called the matrix of the con-
nection D with respect to the local Z (A:(U ))-base €. In the sequel, for sim-
plicity we will write Z(U) instead of Z(A(U)) and A*(U) instead V(A(U)).

There exists an open cover U = (U;)cex of M such that every € € X,
£ = (€1,...,€n), is a local Z(U.)-basis of I)(Ue).

DEFINITION 3. A family of matrices § = (8(¢))cex, 0(c) € M,(A (U.))
is called a family of connection matrices of a linear ¥ connection D with
respect to >_.

It satisfies the following transformation law:
(2) dg +6(e)|Ue NUes - g = g - 0(¢)|v.nwess
for €,¢’€ ¥ with U: NU,, # @, where g € GL(n, Z(U: N U)).

Now let F*(X) denote the set of families of matrices w = (w(€))eex, With
w(e) € M,(A*(U;)) satisfying the following transformation law:

w(evnvr = gw(e)lunurg,
whenever U, N U,, # @. F¥(Z) is Z(M)-module for k > 1.
DEFINITION 4. The family © € F2(X) defined by
(3) O(e) = db(e) + 0(e) Nb(g), fore € I,
is called the family of curvative matrices of D with respect to X.

For w = (w(€))eex € F¥(T), we define Dw = (Dw(e))eex to be the
family of matrices defined by

4) Dw(e) = dw(e) + 0(e) Aw(e) — (—1)Fw(e) A b(e)
for € € I, where dw(e) := (dw;'-(e_)), i,j=1,...,n, e € L. Of course Dw €
Fk"'l(Z).

For any x € F¥(Z) and ¥ € F}(£) and ¢ € T let us define

XE@) A (E) = (X Xnle) AVTE)),  di=1,...m
m=1

We define a wedge product x A 3 € FF(Z) by

(5) (x A¥)(e) = x(e) A(e), fore € L.
Thus x A% is the family of k + I-forms x A 9 = (x(€) A ¥(€))eex-
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Now, let [x, %] = ([x, ¥](€))eex be the family of matrices defined by

(6) Do, #)(e) = x(€) Ad(e) = (=1)*9(e) A x(e),
foreeX.
It is easy to see that [x, %] = x A — (=1)* A x.
By standard computations [5], [7] one can prove the following identities:

PROPOSITION 5. Let 0 be a family of connection matrices of connection D
with respect to ¥ and © the corresponding family of curvacture matrices. If

x € F¥(2) and ¢ € FY(X) then:
1. D(x A¥) = Dx A+ (=1)Fx A D9,
2. DO =0,
3. D% = [0, 9]

3. Invariant forms

Let M,,(R) be the set of n x n matrices with real entries. A k-linear form
P:M,(R)x...x Mp(R) — R is said to be invariant if

(7) P(gA1g7Y, ..., gAkg™ ) = P(A1,..., Ab),

for every g € GL(n,R) and every Ay, ..., A; € M,(R).
We shall denote the R-vector space of all k-linear forms on M,(R) by
Using the usual Einstein summation convention, each matrix A = (aj) €
M,(R) can be uniquely expressed as a linear combination A = a;-E;-, i,] =
1,...,n, for the standard basis E}, i,j = 1,...,n, of M,(R).

l
If A = (af), ! = 1,...,k are some matrices of M,(R) then for any
P € I;(M,(R)) we have

1 k
(8) P(Al, cey Ak) = P;ll;: a‘zll .. a{k,
where o .
9) PJ’;]’: = P(E;.}, ceny E;:)

Now, let M, (A (U)) be Z(U)-module of all n x n matrices with entries
in Z(A)-module I-forms A'(U), where U € 7¢ is open subset in M.
We prolonge the action of P to M, (A(U)) x ... x Mp(A%(U)) by:

o k
(10) Py(oa,...,ax) = PIUi%  ai AL A af.

It is easy to see that for open V C U we have
(11) Py(ai,...,a) lv=Pv(ai |v,..., 0 |v)-
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Py(ai,...,ox) is Iy + ...+ I - form satysfying the invariant condition:

(12) Py(g~'arg,...,9 7 arg) = Py(an, ..., o)
for g € GL(n, Z(U)).
One can prove (see [5]):

PROPOSITION 6. Let P € I (M,(R)) be invariant k-form. For any m €
F(X), ..., € F(X) there exists ezactly one form P(ny,...,n) of degree
Iy +...+ Iy such that

P(n,...,m) lv= Pu(m(U),...,m(U)).

Moreover, the mapping
&p: F1(Z) x ... x F*(T) — Ah+-+(p),
defined by ®p(m,...,m) := P(m,...,nk) is Z(A)-k-linear.
LEMMA 7. Letm € F1(Z),...,m € F'*(X) and P € It(M,(R)) be arbitrary
elements. Then:
(i) Loy (-)Htth-D) Py, [y ), - i) = O for any ¢ € FY(Z).
(i) dP(n,...,mk) = TX (~1)a+Fe-1P(ny, ..., Dng, ..., mK).

Proof. (i) It is well-known [7] that if A;,...,Ax, B € M,(R) and P €
Ii(My(R)), then

k
> P(A1,...,[B,Ad,..., A) =0
s=1
and consequently
k
ZP(Al,...,B,As,...,Ak) — P(Ay,...,AsB,...,A;) =0.
s=1
Using the above identity one can verify that

k
ZPV(al,...,Bas,...,ak)—Pv(al,...,asB,...,ak)=O
s=1

for V€ 7¢, a1 € Mp(A,(V)),...,a € Mp(A(V)) and B € M,(R).
Using (11) if we multiply the above equation by an arbitrary ® € M, (4,(V)),
we obtain:
k
Z(—l)l(ll+"'+l’_l)Pu( ay,...,2BAay,..., ak)

s=1

k
— Z(—l)l(ll+"'+l’-1)(—1)”’PU(C¥1, ey A ®B,..., ak) =0.

s=1
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This and the fact the every v € M,(A!(V)) can be written as ¢ = W Ez
linearity implies:

k
Z(_l)l(ll+m+ls_1)PU(ala e 7¢ A Qsgyo- ey ak)+
s=1
k
~ SO (-t (e Play, .o A, ap) = 0,
s=1
or equivalently
k
Z(—l)l(ll+"'+l"1)Pu(a1, cey [’4/1, as], BTN ak) =0.
s=1

Now (i) is evident.
(ii) Let € € X. From the very definition P(mn,...,7) |u. we have:

1 s k
dP(ny,...,m) lu.= Pl Z(—l)l”r”"q"1 M, (E)A. . .Adm (). . ATt (e),
=1

that is

k
dP(m, ..., me)lu. = (=) +e=1Pye(m(e), ..., dns(e), - ., m(e))-

s=1
Then by linearity we have:
k
dP(m1, ., me)|Ue = D (=) Py(m(e), . .., Dns(e), -, mi(€)) +
s=1
k
= Y (D)1 Py (me), -, [©,ms(e), - -, mr(E))-
s=1

From (i) the second term is zero and we obtain:

k
dP(n,. .., m) lu.= Z("l)ll+...+lsPU€(771(s)7 s Dg(€), .- -, mi())

s=1
which gives us (ii). =

Now let us notice that for every w € F*(Z) one can define a skew symetric
k-linear mapping

w:V(A) x...x V(4) - L(HY(M),)(M)),
given by
w(X1, .., Xi) (&) = Wl (e)(Xn, ..., Xi)ej,
fori,j=1,...,n
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One can easily see that w does not depend on the choice of the fam-
ily . In the sequell for a connection D in I} let © be the curvature 2-form
© : V(A) x V(A) — L(D(M),1)(M)) defined by the family of curvature
matrices (©(¢g))eex. Let P(O) := P(O,...,0) be 2k-form obtaining from
the family (©(e)).ex and P € I (M, (R)).

Now we can prove the folowing generalization of Weil theorem:

THEOREM 8. Let 1) be locally free sheaf of Z(A) — modules of rank n over
non-commutative differential space (M, A) and let 8 be a family of connec-
tion D in 1). Then for any invariant k-form P € I (M, (R))

(a) dP(©) =0, that is 2k-form P(0©) is closed,

(b) The cohomology class [P(©)] is independent of the connection D.

Sketch of proof:
(a) By Lemma 7 we have

k
dP(®)=>_ P(®,...,D9,...,0)
s=1

and DO = 0 by Proposition 1. Hence dP(©) = 0.

(b) Let 6 and ¢’ be two families of connection matrices of connection D
and D’ respectively. We may assume that both families are indexed by the
same family of local basis X. Let  := ' — 8, so n € F1(X). We consider the
one-parameter family

6:(e) = 0(e) + tn(e) for t € R.
It may be checked that

(13) ©;=0+tDp+tipAnforte R
and then

(14) DO, = DO +tD*y + t2D(n A 7).
Hence using Proposition 1. we have

(15) DO, =t[©,n] for teR.
Using (13) we obtain

(16) %@t =Dn+2tnAn.

One can verify that

d d
(17) ZP(9) = de(Et-G)t,@t, . .,et>.
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From (16)—(17) we obtain
d
EP(@t) = kdP(Dn,©y,...,0;) +2ktdP(n A1, Oy, ...,0,).

It follows from Lemma 7 that
(18) dP(n,©4,...,0,)
= P(Dn,©,...,0¢) — (k= 1)P(n, DO, 0y, ...,0;).
From Lemma 7 we obtain
(19) P([n,n],04,...,0¢) = (t = 1)P(n,[n,04),...,0¢) =0.
Using (14), (18), (19) we obtain
d(kP(n,0,...,0:)) = kP(Dn,0,...,0:) + ktP(n A 1,0y, ...,04).
Thus

d
Hence
14 1
| =P(©y)dt = {d(kP(n,©y,...,6y))dt,
0 dt 0

or equivalently
1
P(©1) — P(6) = d{kP(n,0,...,0y)dt.
0

Hence [P(©)] = [P(©)]. u

COROLLARY 9. The mapping w : I*(M,(R)) — H*(M) given by
I*(Mn(R)) > P— [P(©)] € H* (M),

is well defined homomorphism of the graded algebras w is called the Weil

homomorphism [4]. The cohomology class w(P) for P € I*(M,(R)) is called
a characteristic class of the sheaf ).
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