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WEIL HOMOMORPHISM 
IN NON-COMMUTATIVE DIFFERENTIAL SPACES 

In this paper we construct Weil homomorphism in locally free module 
over a non-commutative differential space, which is a generalization of Sikor-
ski differential space [6]. We consider real case, but the complex case can be 
done analogously. 

1. Preliminaries 
Let (M, C) be a differential space [6], 21 a noncommutative unital algebra 

such that the center Z (21) is isomorphic with R. We assume that algebra 21 
is finite dimensional with a basis e\,..., em . Typically 21 could be a matrix 
algebra. A function a : M —• 21 is said to be smooth if a = ]Ci=i Fei with 
fl € C for i — 1 , . . . , m . Let A be the algebra of all smooth functions 
defined on M with values in 21. The center Z (A) of the algebra A is of the 
form Z (A) = C • 1, where 1 is the unit of 21. 

The pair (M, A) is called a non-commutative differential space. Now we 
present some geometrical notions in such spaces. 

A linear mapping v : A —• 2t satisfying the Leibniz rule 

v(a -b) = v (a) • b(p) + a(p) • v (b) 

for every a,b 6 A, is said to be a tangent vector to (M,A ) at the point 
p€ M. 

The linear space of all tangent vectors to (M, A) at p G M will be denoted 
by Tp (M, A). It is easy to observe that for every v e Tp (M, A), v (1) = 0 
and consequently 

v(k) = v (k • 1) = 0. 
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We can consider k G R as an element of A by the embedding R c i , 
k —> k • 1. 

A mapping F : (M, A) —• (N, B) between two differential non-commu-
tative differential spaces is said to be smooth if F*B C A (or equivalently 
b o F G A for every b € B). 

For any u G TP(M, C) we define u G TP(M, A) by u(a) = u ( f ) e{, 
for a G A, a = . 

Analogously, for any derivation w G Der (21) we define w 6 Tp (M, A) by 

Let us denote by T (M, A) = UpeMTp (M, A), the disjoint sum of tangent 
spaces. We obviously have the projection 7r: T(M, A) M given by v p, 
where v e TP(M, A). 

A mapping X : M —+ T (M, A) such that 7r o X = id^f is said to be a 
tangent vector field to the noncommutative differential space (M,A). 

For any a E A we define the action of X on A as a 21 -valued function 
on M, Xa : M —> 21 given by ( l a ) (p) = X (p) (a)for p€ M. 

The set of all smooth tangent vector fields to (M, A) will be denote by 
V (A). In this set we naturally introduce the Z (A) - module structure. We 
define addition and multiplication in the following way 

A non-commutative differential space (M, A) is said to be of a constant 
differential dimension n if and only if Z (A) - module V (A) is locally free 
of rank n. 

One can prove 

PROPOSITION 1. If (M,C) is a differential space of constant differential 
dimension k, then the non-commutative differential space (M, A) is of the 
constant differential dimension k + l, where I is the dimension of DerVL. 

P r o o f . If X i , . . . , Xk is a local basis of tangent vector fields to (M, C) on 
an open set U, then we define Xi : U —> UpeMTp (U, Ay), i = 1 , . . . , n, by 
the formula: 

(X + Y)(p) = X(p) + Y(p), 

(a-X) (p) = a(p)X(p) 

for p e M, X, Y e V (A), aeZ(A). 

m 

j=1 

for p 6 U, where a = /'e*, f G Cv. 
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We also prolonge the basis E\,...,Ei of DerVl to Ei,..., Ei € V(Av) 

by 
m 

Ti(p)(a) = Y , f j E i ( e j ) , for peU. 
i=1 

We obtain a local basis X\,..., Xk, E\,..., Ei of Z(A) — module V( J4) . 
Let us denote by Ak(V(A), Z(A)) the Z(A) — module of all skew-symmetric 
Z(A) — k—linear mappings u : V(J l4) x . . . x V ( A ) —> Z(A). 

For any u G Ak(V(A), Z(A)) we define its differential dw e Ak+1{V(A), 
Z(A)) by 

k ^ 
(du)(Xu Xk+l) = ...,Xi,..., Xfc+i)) 

i=1 

+ E(-I)i+M[*i> Xj],x1,...,xi,...,xj,..., Xk+1) 
i<j 

for Xu...,Xk+1€V(A). 

Here d is a local R-linear operator and satisfies the standard properties: 

d{u>i A UJ2) = du>i A UJ2 + ( — A du2, d o d = 0 . 

Let us put 
Bk(M) = {dQ:0<E I 4 F C _ 1 ( V ( I 4 ) , Z(A))} 

and 
Zk(M) = { u e Ak(V(A), Z{A)) : dui = 0 } . 

Let F f c ( M ) = Zk(M)/Bk(M) be Jfc-th cohomology group of d. For any open 
set U 6 tc let A(U) be the algebra of smooth 21-valued functions a : U —> 21 
defined on U. A is a sheaf of non-commutative algebras over M. m 

DEFINITION 2. Let R) be a sheaf of Z(A)- modules over the noncommutative 
differential space (M, A). A linear connection in I) is R-linear mapping 
D : I ) ( M ) >11(V(A), r ) (M)) satisfying the condition 

D(a • rj) — (da)rj + aD-q 

for any r) € I ) ( M ) and a 6 Z(A). 

2. Families of connections and curvature matrices 
Let D: I) (M) —> A1 (V(^4), r) (M)) be a linear connection in the sheaf T). 

Decomposing 1-forms Dei 6 A1(V(A{U)),!)([/)) for i = 1,2 , . . . , n with 
respect to a local Z(U)-base £ = (ei,...,en) of the Z(i7)-module I)(i/), 
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U etc we get 
n 

(1) De i = J 2 e i ( £ ) - £ j , * = l , . . . , n , 
j=1 

where 6{(e) € y l 1 ^ 7 ) ) , ^ ( ¿ ( f ) ) -
The matrix 6(e) = (e)) of the 1-forms is called the matrix of the con-

nection D with respect to the local Z(A(>U))-base e. In the sequel, for sim-
plicity we will write Z(U) instead of Z(A(U)) and Ak(U) instead V(A(U)). 

There exists an open cover U = (Ue)Ee% of M such that every e € E, 
e = (e i , . . . ,£n), is a local Z(i/£)-basis of 

DEFINITION 3. A family of matrices 6 - (6(e))eex, 0(e) e Mn(Al(U£)) 
is called a family of connection matrices of a linear E connection D with 
respect to 

It satisfies the following transformation law: 

(2) dg + 6(e)\Ue FL Ue, • g = g • 6(e)\UenUcl, 
for e,e'€ E with Ue n U£l ^ 0 , where g e GL(n, Z(U£ n UE,)). 

Now let F f c(E) denote the set of families of matrices u> = (u)(e))e^, with 
uj(e) € Mn(Ak(U£)) satisfying the following transformation law: 

u(e')\UnU> = g'u)(e)\UnU,g, 

whenever Ue n Uel ^ 0 . F f e(E) is Z(M)-module for k> 1. 

DEFINITION 4. The family 0 e F 2 ( £ ) defined by 

(3) ©(e) = dd(e) + 6(e) A 6(e), for £ 6 E, 

is called the family of curvative matrices of D with respect to E. 

For u> = (u>(e))eez € Fk(E), we define Du> = (Dcj(e))£eE to be the 
family of matrices defined by 

(4) Doj(e) = du(e) + 6(e) A u(e) - ( - l ) f c u;(0 A 6(e) 

for e 6 E, where dui(e) := (dujj(e)), i,j — 1 , . . . , n, e 6 E. Of course Du> € 
Fk+1( E). 

For any x € Fk(E) and <b € Fl(E) and e 6 E let us define 

X(£) A : = ( £ X\n(e) A ^ ( e ) ) , i,j = l,...,n. 
m=1 

We define a wedge product x A V" € Fk+l(E) by 

(5) (x A = x ( 0 A rl>(e), for £ € E. 

Thus x A ip is the family of k + ¿-forms x A i/j = (x(£) A VK^eeE-
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Now, let [x, V*] = ([x> V'](£:))eeS be the family of matrices defined by 

(6) ]X, = X(e) A m - ( - l ) f c t y ( e ) A X (e) , 

for e € S . 
It is easy to see that [x, ip] = X A i> — (—l)kltp A x-
By standard computations [5], [7] one can prove the following identities: 

PROPOSITION 5. Let 9 be a family of connection matrices of connection D 
with respect to S and © the corresponding family of curvacture matrices. If 
X € F * ( E ) and V> € Fl{E) then: 

1. D(X A V) = DX A V + (~l)fcX A Dj>, 
2. DQ = 0, 
3. I > V = [ © , # 

3. Invariant forms 
Let Mn(R) be the set of nxn matrices with real entries. A ¿-linear form 

P : M„(R) x . . . x Mn(R) —> R is said to be invariant if 

(7 ) P(gAig-\ .. .,gAkg-x) = P(AU ...,Ak), 

for every g £ GL(n, R) and every A i , . . . , Ak € M„(R). 
We shall denote the R-vector space of all fc-linear forms on Mn(R) by 

Ik(Mn( R ) ) . 

Using the usual Einstein summation convention, each matrix A — (a*) € 
Mn(R) can be uniquely expressed as a linear combination A = a*E*, i,j = 
1 , . . . , n, for the standard basis E*, i , j = l,...,n,of Mn(R). 

l 
If Ai = (ûj,), I = 1 are some matrices of Mn(R) then for any 

P € 4 ( M n ( R ) ) we have 

(8) P ( A u . . . , A k ) = P H ; ± a g . . . 4 
where 

(9) P ;1 ;± = P ( E % . . . , E ^ ) . 

Now, let Mn(Al(U)) be Z(f/)-module of all n x n matrices with entries 
in Z(vl)-module ¿-forms Al(U), where U €TC is open subset in M. 

We prolonge the action of P to Mn(Ah(U)) x . . . x Mn(Alk(U)) by: 

(10) P u ( a u . . . , a k ) = P £ ± a ^ A . . . A o | . 

It is easy to see that for open V c U we have 

( 1 1 ) Pu(a i, . . . , a k ) \v= Pv{oi i \v, • • •, ak 
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Pv(oti,..., ak) is ¿1 + . . . + lk - form satysfying the invariant condition: 

(12 ) Pu{g~laig,...,g~lakg) = Pu(at,..., ak) 

f o r g € GL(n,Z(U)). 
One can prove (see [5]): 

PROPOSITION 6. Let P e Ik(Mn(R)) be invariant k-form. For any r]i € 
Fl1 ( E ) , . . . ,rjk 6 Flk ( E ) there exists exactly one form P(771,..., rjk) of degree 
l\ + . . . + lk such that 

P(m,---,r]k) \u=Pu{m{U),...,r]k{U)). 

Moreover, the mapping 

: Fll(E) x . . . x Flk(E) Ah+~+lk(M), 

defined by $p(t] 1,... ,T]k) := P(j] 1,... ,r]k) is Z(A)-k-linear. 

LEMMA 7. Let 771 E Fh( E ) , ...,T]ke Flk( E ) andP € Ik(Mn(R)) 6e arbitrary 
elements. Then: 

(i) £ s = i ( - l . . . , [ ^ J , . . . = 0 /or any ^ e 
(h) dP(m,...,%) = L i U i - i ) ' 1 * - * ' - 1 ^(m,• • • , ^ 

P r o o f , (i) It is well-known [7] that if A\,... ,Ak , B e Mn( R) and P € 
Jfc(Mn(R)), then 

k 
. . , [ £ , ¿ J , . . . , A f c ) = 0 

S = 1 

and consequently 
k 

Y ^ P ( A u . . . , B , A s , . . . , A k ) - P ( A l , . . . , A s B , . . . , A k ) = 0. 

s=1 

Using the above identity one can verify that 
k 

¿V(c* i , . . . , Bas, . . . , a k ) ~ Pv(a 1 , . . . , a s B , . . . , ak) = 0 
S = 1 

for V e r c , a i e Mn(A, (V)) , . . . , ak € Mn{Ak(V)) and B € Mn(R). 
Using (11) if we multiply the above equation by an arbitrary $ G Mn(Ai(V)), 
we obtain: 

k 
£ ( _ l ) i d i + - + l . - i ) p f / ( a i ) . . . , A q s , . . . , a k ) 
s= 1 

- ¿ ( - l ) i ( ' 1 + - + Z s - l ) ( - l ) " s P l / ( a i , . . .,a3 A . . . , afc) = 0. 
s=1 
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This and the fact the every ijj € Mn(Al(V)) can be written as ip = ip)E^ by 
linearity implies: 

k 

... A as,..., afc)+ 

s=1 

k 

3=1 

or equivalently 

k ^ ( _ l ) ' ( ' i + - + ' . - i ) / V ( a i > • • • , [ V , a a ] , . . . , a f c ) = 0 . 
S = 1 

Now (i) is evident. 
(ii) Let £ € E. Prom the very definition P(?7i,. . . , 7%) |[/E we have: 

k 1 s k 

S = 1 
that is 

k 

d P ( m , V k ) \ U e = J2(-^)h+-+h-1Pus(m(e), • • •, <Me),..., 7/fc(e)). 

s=1 

Then by linearity we have: 

k 

dP(m,. • •, »7fc)l^ = E(-1),1+-+'i_1^e(»7i(e), • • •, ¿MO, • • •, WOO) + 
S = 1 

- ¿ ( - l ^ + ^ - ' P i / e M e ) , .. . ,[©, %](£), . . . , %(£)). 

s=l 

Prom (i) the second term is zero and we obtain: 

k 
dP(vi, ...,Vk) k = £ ( - l ) ' 1 + - + H P U E ( v i ( £ ) , DV3(S), ..., VK(E)) 

s=l 

which gives us (ii). • 

Now let us notice that for every w € FK(L) one can define a skew symetric 
fc-linear mapping 

w : V ( A ) x . . . x V(A) - > L(T}(M),T}(M)), 

given by 

iv(Xu Xk)(6i) = u4(e)(Xu ..., xk)£j, 

for i, j = 1 , . . . ,n. 
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One can easily see that u> does not depend on the choice of the fam-
ily E. In the sequell for a connection D in I] let © be the curvature 2-form 
© : V(A) x V(A) L(g(M),Q(M)) defined by the family of curvature 
matrices (0(e))£ es. Let P(©) := P ( © , . . . , 0 ) be 2A;-form obtaining from 
the family (©(e))eeS and P € Ik(Mn(R)). 

Now we can prove the folowing generalization of Weil theorem: 

THEOREM 8. Let I ] be locally free sheaf of Z(A) — modules of rank n over 
non-commutative differential space (M, A) and let 9 be a family of connec-
tion D in I). Then for any invariant k-form P € Ik(Mn(R)) 

(a) dP(Q) = 0, that is 2k-form P(©) is closed, 
(b) The cohomology class [-P(Q)] is independent of the connection D. 

S k e t c h of p roof : 
(a) By Lemma 7 we have 

k 

and DQ = 0 by Proposition 1. Hence dP(G) = 0. 
(b) Let 6 and 6' be two families of connection matrices of connection D 

and D' respectively. We may assume that both families are indexed by the 
same family of local basis E. Let 77 := 6' — 0, so 77 € F1^). We consider the 
one-parameter family 

S=1 

et(e) = 6(e) + tr)(e) for t € R. 

It may be checked that 

(13) ©t = 0 + tDrj + t2r) A r) for t € R 

and then 
(14) DQt = De + tD2r] + t2D{ri A 77). 

Hence using Proposition 1. we have 

DQt = t[Qt,rj\ for te R. 

(17) 
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From (16)—(17) we obtain 

jtP(&t) = kdP(Dr), ©t,..., e t ) + 2ktdP(rj A 77, © t , . . . , © t ) . 

It follows from Lemma 7 that 
(18) dP(t], ©t,..., ©t) 

= Ppi?, ©t,..., ©t) - (fc - l)P(t], D@t, ©t,..., ©t). 

From Lemma 7 we obtain 
(19) P(fo, t?], © t , . . . , ©t) - (t - l)P(i7, [r?, ©f], . . . , © 0 = 0. 
Using (14), (18), (19) we obtain 

d(fcP(T7, ©t,..., ©t)) = kP(DV, ©t,..., ©t) + ktP(r) A 77, © t , . . . , © t ) . 

Thus 

(20) -^P(© t) = d(kP(ri, ©<,..., ©t)). 

Hence 1 . 1 
S TP{Qt)dt = \ d(kP(V, ©t,..., ©t))di, 
o a t 0 

or equivalently 
1 

P ( 0 i ) - P ( © 0 ) = d j fcP(7j, © t , . . . , @t)dt. 
0 

Hence [P(©')] = [P(9)]. -
COROLLARY 9. The mapping w : 7 * ( M n ( R ) ) —• H*(M) given by 

I*(Mn(R)) [P(©)] € H*(M), 

is well defined homomorphism of the graded algebras w is called the Weil 
homomorphism [4]. The cohomology class w(P) for P € 7 * ( M n ( R ) ) is called 
a characteristic class of the sheaf I J . 
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