

Harsimran Gill, K. K. Dube

**ON CR SUBMANIFOLDS NEARLY AND CLOSELY
LORENTZIAN PARA COSYMPLECTIC MANIFOLDS**

1. Introduction

Section 2 contains a review of basic concepts related to a Lorentzian para contact manifold. The notion of Lorentzian para contact manifold is an extension of the notion of almost contact metric manifold, studied in [2]. In section 3, some basic results related to Lorentzian para cosymplectic, nearly Lorentzian para cosymplectic have been obtained. In section 4, integrability conditions autoparallelness and nearly autoparallelness of the distribution $D^1 \oplus \{U\}$ on submanifold have also been obtained. An integrability of distributions $D^0, D^0 \oplus \{U\}$ and $D^1 \oplus D^0$ is also studied. In section 5, totally umbilical and totally geodesic submanifolds are discussed. Section 6 is devoted to totally para contact umbilical and totally para contact geodesic related to Lorentzian para contact manifold.

2. Preliminaries

An n dimensional differentiable manifold V_n on which there are defined a tensor field F of type (1,1) a vector field U , a 1-form u and a Lorentzian metric g satisfying for arbitrary vector fields X, Y, Z

$$(1) \quad \bar{\bar{X}} = X + u(x)U, \quad u(U) = -1, \quad u(U) = 0, \quad u \circ F = 0,$$

$$(2) \quad g(\bar{\bar{X}}, \bar{\bar{Y}}) = g(X, Y) + u(X)u(Y),$$

where $\bar{\bar{X}} = FX$,

$$(3) \quad g(X, FY) = g(FX, Y), \quad g(X, U) = u(X) \quad \forall X, Y \in V_n$$

is called a Lorentzian para contact (L.P. contact) manifold and the structure (F, U, u, g) is an L.P. contact structure [6].

An almost para contact metric manifold is called a L.P. cosymplectic manifold [2] if

$$(\bar{\nabla}_X F)Y = 0.$$

An almost para contact metric manifold is called a nearly L.P. cosymplectic if F is a Killing, that is,

$$(4) \quad (\bar{\nabla}_X F)Y + (\bar{\nabla}_Y F)X = 0,$$

where $\bar{\nabla}$ is the operator of covariant differentiation with respect to g . On nearly L.P. cosymplectic manifold, U is a Killing vector field. That is,

$$g(\bar{\nabla}_X U, Y) + g(\bar{\nabla}_Y U, X) = 0, \quad \forall X, Y \in TV_n.$$

An almost para contact metric manifold is called a closely L.P. cosymplectic if F is a Killing and u is a closed. On a closely L.P. cosymplectic manifold we have

$$\bar{\nabla}_U F = 0, \bar{\nabla}U = 0, \bar{\nabla}u = 0.$$

Let V_m be a submanifold of a Riemannian manifold V_n with a Riemannian metric g . Then Guass and Wiengarten formulae are given respectively by,

$$(5) \quad \bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \forall X, Y \in TV_m,$$

$$(6) \quad \bar{\nabla}_X N = -A_N X + \nabla_X^\perp N, \quad N \in T^\perp V_m,$$

where $\bar{\nabla}$, ∇ , ∇_X^\perp are Riemannian, induced Riemannian and induced normal connection in V_n , V_m and the normal bundle $T^\perp V_m$ of V_m respectively and h is the second fundamental form related to A by

$$g(h(X, Y)N) = g(A_N X, Y).$$

F is a $(1,1)$ tensor field of on V_m , for $X \in TV_m$ and $N \in T^\perp V_m$ we have [4]

$$(7) \quad \begin{aligned} (\bar{\nabla}_X F)Y &= ((\nabla_X P)Y - A_Q Y X - th(X, Y)) \\ &\quad + ((\nabla_X Q)Y + h(X, PY) - fh(X, Y)), \\ (\bar{\nabla}_X F)N &= ((\nabla_X t)N - A_f N Y - PA_N X) \\ &\quad + ((\nabla_X f)N + h(X, tN) - QA_N X), \end{aligned}$$

where

$$FX = PX + QX, \quad PX \in TV_m, \quad QX \in T^\perp V_m,$$

$$FN = tN + fN, \quad tN \in TV_m, \quad fN \in T^\perp V_m,$$

where PX , and tN are tangential parts, while QX and fN are normal parts of FX and FN respectively,

$$(\nabla_X P)Y = \nabla_X PY - P\nabla_X Y,$$

$$(\nabla_X Q)Y = \nabla_X^\perp QY - Q\nabla_X Y,$$

$$(\nabla_X t)N = \nabla_X tN - tQ\nabla_X^\perp N,$$

$$(\nabla_X f)N = \nabla_X^\perp fN - fQ\nabla_X^\perp N.$$

The submanifold V_m is said to be totally geodesic in V_n if $h = 0$ and totally umbilical in V_n if

$$h(X, Y) = g(X, Y)K.$$

For a distribution D on V_m is said to be D-totally geodesic if

$$h(X, Y) = 0 \quad \forall X, Y \in D.$$

For a distribution D on V_m is said to be D-totally umbilical if we have

$$h(X, Y) = g(X, Y)k,$$

where K is a normal vector field $\forall X, Y \in D$. V_m is said to be (D, E) -mixed totally geodesic if $h(X, Y) = 0 \forall X \in D$ and Y in E .

Let D and E be two distributions defined on a manifold V_m . D is said to be a E -parallel if we have $\nabla_X y \in D \forall x \in E$ and $Y \in D$. If D is said D-parallel then it is called autoparallel. D is said to be X -parallel if we have $\nabla_X Y \in D \forall X \in TV_m$ and $Y \in D$. D is said to be parallel if $\forall X \in TV_m$ and $Y \in D$, $\nabla_X Y \in D$.

If a distribution D on V_m is autoparallel then it is a integrable, and by Guass formula D is totally geodesic in V_m . If D is parallel then orthogonal complementary distribution D^\perp is also parallel.

A submanifold V_m of an almost L.P. contact metric manifold V_n with $U \in TV_m$ is called a CR-submanifold of V_n if for each $x \in V_m$, $T_X V_m = D_x^1 \oplus D_x^0 \oplus \{U\}_x$, where,

$$\begin{aligned} D_x^1 &= \text{Ker}(Q|_{\{U\}}^\perp)_X \\ &= \{X_X \in \{U\}_X^\perp \mid \|X_X\| = \|PX_X\|\} = T_X V_m \cap F(T_X V_m), \\ D_x^0 &= \text{Ker}(P|_{\{U\}}^\perp)_X \\ &= \{X_X \in \{U\}_X^\perp \mid \|X_X\| = \|QX_X\|\} = T_X V_m \cap F(T_X^\perp V_m). \end{aligned}$$

The condition $T_X V_m = D_x^1 \oplus D_x^0 \oplus \{U\}_X$ implies that $P^3 - P = 0$ [7] on V_m and hence $\text{Dim}(D_x^1) = \text{Rank}(P_X)$ is independent $\forall x \in V$ and so is D_x^0 .

Now we have $TV_m = D_x^1 \oplus D_x^0 \oplus \{U\}_X$, these distribution are also differentiable we have

$$T^\perp V_m = \overline{D}^1 \oplus \overline{D}^0,$$

where

$$\begin{aligned} \overline{D}^1 &= \text{ker}(t) = T^\perp V_m \cap F(T^\perp V_m), & \overline{D}^0 &= \text{ker}(f) = T^\perp V_m \cap F(TV_m), \\ QD^0 &= \overline{D}^0, & t\overline{D}^0 &= D^0. \end{aligned}$$

3. Some results

Let V_m be a submanifold of a nearly L.P. cosymplectic manifold, tangent to U . By virtue of the equation (4) and the equation (7) we have,

$$(8) \quad ((\nabla_X P)Y + (\nabla_Y P)X - A_{QY}X - A_{QX}Y - 2th(X, Y) + (\nabla_X Q)Y + (\nabla_Y Q)X + h(X, PY) + h(PX, Y) - 2fh(X, Y)) = 0.$$

PROPOSITION 3.1. *Let V_m be a submanifold of a nearly L.P. cosymplectic manifold. If $U \in TV_m$ then $\forall X, Y \in TV_m$ we have,*

$$(9) \quad ((\nabla_X P)Y + (\nabla_Y P)X - A_{QY}X - A_{QX}Y - 2th(X, Y)) = 0,$$

$$(10) \quad ((\nabla_X Q)Y + (\nabla_Y Q)X + h(X, PY) + h(PX, Y) - 2fh(X, Y)) = 0.$$

Proof. Equating tangential and normal parts of the equation (8), we have the results.

PROPOSITION 3.2. *Let V_m be a submanifold of a nearly L.P. cosymplectic manifold. If $U \in TV_m$ then $\forall X, Y \in TV_m$ we have,*

$$(11) \quad \bar{\nabla}_X FY - \bar{\nabla}_Y FX - F[X, Y] = 2((\nabla_X P)Y - A_{QY}X - th(X, Y))Y + 2((\nabla_X Q) + h(X, PY) - fh(X, Y)) = 0.$$

The result is obvious and hence omitted.

THEOREM 3.3. *Let V_m be a submanifold of a nearly L.P. cosymplectic manifold. If $U \in TV_m$ then $\forall X, Y \in TV_m$ we get,*

$$(12) \quad P[X, Y] = -\nabla_X PY - \nabla_Y PX + A_{QY}X + A_{QX}Y + 2P\nabla_X Y + 2th(X, Y),$$

$$(13) \quad Q[X, Y] = -\nabla_X^\perp QY - \nabla_Y^\perp QX - h(X, PY) - h(PX, Y) + 2Q\nabla_X Y + 2fh(X, Y) = 0.$$

Proof. By virtue of the equation (7) and (11) we get,

$$(\nabla_X PY - P\nabla_X Y - \nabla_Y PX + P\nabla_Y X - A_{QY}X + A_{QX}Y - 2\nabla_X PY + 2P\nabla_X Y + 2A_{QY}X + 2th(X, Y)) + (\nabla_X^\perp QY - \nabla_Y^\perp QX - Q\nabla_X Y - Q\nabla_Y X + h(X, PY) - h(PX, Y) - 2\nabla_X^\perp QY + 2Q\nabla_X Y - 2h(X, PY) + 2fh(X, Y)) = 0.$$

Now equating tangential parts and normal parts we have desired results.

PROPOSITION 3.4. *Let V_m be a submanifold of a nearly L.P. cosymplectic manifold. Then (P, U, u, g) is a nearly L.P. cosymplectic structure on the distribution $D^1 \oplus \{U\}$, if $th(X, Y) = 0, \forall X, Y \in D^1 \oplus \{U\}$.*

Proof. Using $D^1 \oplus \{U\} = \text{Ker}(Q)$ and $P^2 + tQ = I + u \otimes U$ we obtain $P^2 = I + u \otimes U$ on $D^1 \oplus \{U\}$. We also get $PU = 0, u(U) = -1, u \cdot P = 0$. Using $D^1 \oplus \{U\} = \text{Ker}(Q)$ and $th(X, Y) = 0$ in the equation (9) we have,

$$(\nabla_X P)Y + (\nabla_Y P)X = 0 \quad \forall X, Y \in D^1 \oplus \{U\},$$

which proves our assertion.

THEOREM 3.5. *Let V_m be a CR-submanifold of a nearly L.P. cosymplectic manifold, we have,*

(a) *if $D^0 \oplus \{U\}$ is auto parallel then*

$$A_{QY}X + A_{QX}Y + 2th(X, Y) = 0 \quad \forall X, Y \in D^0 \oplus \{U\},$$

(b) *if $D^1 \oplus \{U\}$ is auto parallel then*

$$h(X, PY) + h(PX, Y) = 2fh(X, Y) \quad \forall X, Y \in D^1 \oplus \{U\}.$$

P r o o f. Using the equation (9) and autoparallelness of $D^0 \oplus \{U\}$, we get (a) and using the equation (10) and autoparallelness of $D^1 \oplus \{U\}$ we get (b).

THEOREM 3.6. *Let V_m be a submanifold of a nearly L.P. cosymplectic manifold with $U \in TV_m$. If V_m is invariant then V_m is a nearly L.P. cosymplectic manifold. Moreover*

$$(14) \quad h(X, PY) + h(PX, Y) = 2fh(X, Y) \quad \forall X, Y \in TV_m.$$

P r o o f. From $D^1 \oplus \{U\} = \text{Ker}(Q)$ and the equation (10) we get the equation (14).

4. Integrability conditions

LEMMA 4.1. *Let V_m be a CR-submanifold of a nearly L.P. cosymplectic manifold $\forall X, Y \in D^1 \oplus \{U\}$, we get,*

$$(15) \quad Q[X, Y] = -h(x, PY) - h(PX, Y) + 2Q\nabla_X Y + 2fh(X, Y)$$

or equivalently

$$(16) \quad -h(X, PX) + Q\nabla_X X + fh(X, X) = 0.$$

P r o o f. Using $D^1 \oplus \{U\} = \text{Ker}(Q)$ and the equation (13) we get the equation (15) and using $X = Y$ in the equation (15) we have the required result.

THEOREM 4.2. *The distribution $D^1 \oplus \{U\}$ on a CR-submanifold of a nearly L.P. cosymplectic manifolds is integrable if and only if*

$$h(X, PY) + h(PX, Y) = 2(Q\nabla_X Y + fh(X, Y)).$$

P r o o f. From $D^1 \oplus \{U\} = \text{Ker}(Q)$ and using the equation (15) we get the result.

DEFINITION 4.3. *Let V_m be a Riemannian manifold with a Riemannian connection ∇ . A distribution D on V_m is said to be nearly autoparallel if $\forall X, Y \in D$ we have $(\nabla_X Y + \nabla_Y X) \in D$ or equivalently $\nabla_X X \in D$.*

We have

Parallel \Rightarrow Autoparallel \Rightarrow Nearly autoparallel,
 Parallel \Rightarrow Integrable,
 Autoparallel \Rightarrow Integrable, and
 Nearly autoparallel + Integrable \Rightarrow Autoparallel.

THEOREM 4.4. *Let V_m be a CR-submanifold of a nearly L.P. cosymplectic manifold. Then the following relations holds:*

- (I) *the distribution $D^1 \oplus \{U\}$ is autoparallel,*
- (II) $h(X, PY) + h(PX, Y) = 2fh(X, Y), \forall X, Y \in D^1 \oplus \{U\},$
- (III) $h(X, PX) = fh(X, Y), \forall X \in D^1 \oplus \{U\},$
- (IV) *the distribution $D^1 \oplus \{U\}$ is nearly autoparallel,*

are related by (I) \Rightarrow (II) \Rightarrow (III) \Rightarrow (IV). In particular if $D^1 \oplus \{U\}$ is integrable, then the above four statements are equivalent.

P r o o f. (I) \Rightarrow (II) follows from Theorem (3.5)(b). Putting $X = Y$ in (II) we get (II) \Rightarrow (III). From (16) we get (III) \Rightarrow (IV). This completes the proof of the Theorem.

THEOREM 4.5. *Let V_m be a CR-submanifold of a nearly L.P. cosymplectic manifold, such that V_m is $D^1 \oplus \{U\}$ -totally umbilical, then*

- (I) *the distribution $D^1 \oplus \{U\}$ is a nearly autoparallel.*

Consequently, the following two statements becomes equivalent:

- (II) *the distribution $D^1 \oplus \{U\}$ is a integrable,*
- (III) *the distribution $D^1 \oplus \{U\}$ is an autoparallel.*

P r o o f. If submanifold V_m is $D^1 \oplus \{U\}$ -totally geodesic, then $h = 0$. Thus from (16) we get $\nabla_X X = 0$, then the statement (I) holds. Hence from the definition (4.3) we get (II) \Leftrightarrow (III).

COROLLARY 4.6. *In totally umbilical CR-submanifold of a nearly L.P. cosymplectic manifold, $D^1 \oplus \{U\}$ is autoparallel.*

P r o o f. Using Theorem (4.5) we have the result.

LEMMA 4.7. *Let V_m be a CR-submanifold a nearly L.P. cosymplectic manifold, then*

$$(17) \quad 3A_{QY}X + A_{QX}Y = P[X, Y], \forall X, Y \in D^0 \oplus \{U\}.$$

P r o o f. Let $X, Y \in D^0 \oplus \{U\}$, and $Z \in TV_m$ we have from the equation (5) and (6)

$$\begin{aligned} -A_{FX}Z + \nabla_Z^{\perp}FX &= \bar{\nabla}_ZFX = (\bar{\nabla}_ZF)X + F\bar{\nabla}_ZX \\ &= -(\bar{\nabla}_X F)Z + F\nabla_ZX + Fh(Z, X) \end{aligned}$$

so that

$$Fh(Z, X) = -A_{FX}Z + \nabla_Z^\perp FX + (\bar{\nabla}_X F)Z - F\nabla_Z X,$$

and hence

$$\begin{aligned} g(Fh(Z, X), Y) &= -g(A_{FX}Z, Y) + g((\bar{\nabla}_X F)Z, Y) \\ &= -g(A_{FX}Y, Z) + g((\bar{\nabla}_X F)Y, Z). \end{aligned}$$

Now we have

$$g(Fh(Z, X), Y) = g(h(Z, X), FY) = g(A_{FY}X, Z).$$

Thus from the above two equations we have

$$(18) \quad g(A_{FY}X, Z) = -g(A_{FY}Y, Z) + g((\bar{\nabla}_X F)Y, Z).$$

Now for $X, Y \in D^0 \oplus \{U\}$, we have

$$\bar{\nabla}_X FY - \bar{\nabla}_Y FX = A_{FX}Y - A_{FY}X + \nabla_X^\perp FY - \nabla_Y^\perp FX$$

and

$$\bar{\nabla}_X FY - \bar{\nabla}_Y FX = (\bar{\nabla}_X F)Y - (\bar{\nabla}_Y F)X + F[X, Y]$$

from the above two equations we have

$$(\bar{\nabla}_X F)Y - (\bar{\nabla}_Y F)X = A_{FX}Y - A_{FY}X + \nabla_X^\perp FY - \nabla_Y^\perp FX - F[X, Y].$$

Using the equation (5) and the above equation, we get

$$(\bar{\nabla}_X F)Y = \frac{1}{2}(A_{FX}Y - A_{FY}X + \nabla_X^\perp FY - \nabla_Y^\perp FX - F[X, Y]).$$

From the above equation and the equation (18) we get the equation (17).

THEOREM 4.8. *Let V_m be CR-submanifold of a nearly L.P. cosymplectic manifold. Then the distribution $D^0 \oplus \{U\}$ is integrable if and only if*

$$3A_{QY}X + A_{QX}Y = 0, \forall X, Y \in D^0 \oplus \{U\}.$$

P r o o f. From $D^0 \oplus \{U\} = \text{Ker}(P)$ and the equation (17), we have the result and converse is obvious.

THEOREM 4.9. *Let V_m be CR-submanifold of a nearly L.P. cosymplectic manifold. Then the distribution D^0 is an integrable if and only if*

$$3A_{QY}X + A_{QX}Y = 0, \quad \forall X, Y \in D^0.$$

P r o o f. By definition of D^0 and the equation (17), we get the result.

THEOREM 4.10. *Let V_m be CR-submanifold of a L.P. cosymplectic manifold. Then the distribution D^0 and $D^0 \oplus \{U\}$ are integrable.*

P r o o f. The result follows from Theorem (4.8.) and Theorem (4.9).

5. Totally umbilical and totally geodesic submanifolds

LEMMA 5.1. *Let V_m be a submanifold of a closely L.P. cosymplectic manifold, tangent to U . Then the integral curve of U in V_m is geodesic in V_m , and U is an asymptotic direction.*

Proof. Since in a closely L.P. cosymplectic manifold we have $\bar{\nabla}U = 0$. Now in view of the equation (5), we get $h(U, U) = 0$. This completes the proof.

PROPOSITION 5.2. *Let D be a distribution on a submanifold V_m of a closely L.P. cosymplectic manifold such that $U \in TV_m$. If V_m is D -totally umbilical then V_m is D -totally geodesic.*

Proof. For D -totally umbilical we have

$$h(X, Y) = g(X, Y)K, \forall X, Y \in D.$$

A direction U at a point of V_m is an asymptotic direction if normal vector field $K = 0$, which implies that $h(X, Y) = 0$, which shows that V_m is totally geodesic.

PROPOSITION 5.3. *Every totally umbilical submanifold of a closely L.P. cosymplectic manifold, tangent to U , is totally geodesic.*

Proof. The proof follows from Proposition (5.2).

6. Totally Lorentzian para contact umbilical and totally Lorentzian para contact geodesic submanifolds

Let V_m be a submanifold of an almost L.P. contact metric manifolds, tangent to U . In this case $TV_m = \{U\} \oplus \{U\}^\perp$, where $\{U\}$ is the distribution spanned by $\{U\}$ and $\{U\}^\perp$ is the complementary orthogonal distribution of $\{U\}$ in V_m .

DEFINITION 6.1. A submanifold V_m of an almost L.P. contact metric manifold, tangent to U , is called (1) totally L.P. contact umbilical if it is $\{U\}^\perp$ totally umbilical, and (2) totally L.P. contact geodesic if it is $\{U\}^\perp$ totally geodesic. The condition of totally L.P. contact umbilical and totally contact geodesic is respectively

$$(19) \quad h(F^2X, F^2Y) = g(F^2XF^2Y)K, \quad \forall X, Y \in TV_m,$$

$$(20) \quad h(F^2X, F^2Y) = 0, \quad \forall X, Y \in TV_m,$$

where K is a normal vector field. Using the equation (1) in the equation (19) and (20), we get respectively,

$$h(X, Y) = g(FX, FY)K - u(X)h(Y, U) - u(Y)h(X, U),$$

$$h(X, Y) = -u(X)h(Y, U) - u(Y)h(X, U).$$

THEOREM 6.2. *If V_m is a totally L.P. contact umbilical CR-submanifold of a closely L.P. cosymplectic manifold, then V_m is D^0, D^1 -mixed totally geodesic.*

Proof. Now we have $h(X, Y) = g(X, Y)K$, and for $X, Y \in \{U\} \perp h(U, U) = g(U, U)K$. $g(U, U)K = 0$, and using Gauss equation $\Rightarrow K = 0$. Therefore V_m is D^0, D^1 -mixed totally geodesic. This completes our assertions.

THEOREM 6.3. *Let V_m be a totally L.P. contact umbilical CR-submanifold of a closely L.P. cosymplectic manifold, then either $D^0 = \{0\}$ or $\text{Dim}(D^0) = 1$ or the normal vector field k is orthogonal to FD^0 .*

Proof. If $\text{Dim}(D^0) > 1$, for each $H \in D^0, \exists X \in D^0$ such that $g(X, H) = 0$ and $\|X\| = 0$, then

$$\begin{aligned} g(K, FH) &= g(h(X, X), FH) = g(A_{FH}X, X) = g(A_{FX}H, X) \\ &= g(h(X, H)FX) = 0. \end{aligned}$$

This gives the desired result.

Acknowledgements. The authors are thankful to the referee for his valuable suggestions for improvement of this paper.

References

- [1] A. Bejancu, *Geometry of CR-Submanifolds*, D. Redial Publ. Co., 1986.
- [2] I. K. Mishra and R. H. Ohja, *On Lorentzian para contact manifolds*, Bull. Calcutta Math. Soc. 92 (5), (2000), 357–360.
- [3] K. Yano and M. Kon, *On contact CR-submanifold*, J. Korean Math. Soc. 26 (1989), 231–262.
- [4] K. Yano and M. Kon, *CR-Submanifold of Kaehlerian and Sasakian Manifold*, Birkhäuser, Boston, (1983).
- [5] M. C. Chaki and B. Gupta, *On conformally symmetric spaces*, Indian J. Math. 5 (1963), 113–122.
- [6] K. Matsumoto, *On Lorentzian para contact manifolds*, Bull. Yamagata Univ. Nat. Science Vol. 12 No. 2 (1989), 151–156.
- [7] M. D. Upadhyay and K. K. Dube, *On a differentiable manifold with $f(s, -1)$ structure of rank (I), (II)*, Kyungpook Math. J. 18 (1978), 289–298.
- [8] M. Tarafdar and A. Bhattacharyya, *On Lorentzian para Sasakian manifold*, Ganita Vol. 52. No. 2 (2001), 149–155.

DEPARTMENT OF MATHEMATICS STATISTICS AND COMPUTER SCIENCE
CBSH, G.B.PANT UNIVERSITY OF AGRIC. AND TECH.
PANTNTAGAR-263145, UTTARANCHAL, INDIA
e-mail: simran_gill@rediffmail.com

Received December 2, 2003; revised version June 11, 2004.

