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ON CR SUBMANIFOLDS NEARLY AND CLOSELY
LORENTZIAN PARA COSYMPLECTIC MANIFOLDS

1. Introduction

Section 2 contains a review of basic concepts related to a Lorentzian para
contact manifold. The notion of Lorentzian para contact manifold is an ex-
tension of the notion of almost contact metric manifold, studied in [2]. In
section 3, some basic results related to Lorentzian para cosymplectic, nearly
Lorentzian para cosymplectic have been obtained. In section 4, integrability
conditions autoparallelness and nearly autoparallelness of the distribution
D! ¢ {U} on submanifold have also been obtained. An integrability of dis-
tributions D% D° @ {U} and D! @ DY is also studied. In section 5, totally
umbilical and totally geodesic submanifolds are discussed. Section 6 is de-
voted to totally para contact umbilical and totally paraa contact geodesic
related to Lorentzian para contact manifold.

2. Preliminaries

An n dimensional differentiable manifold V;, on which there are defined
a tensor field F of type (1,1) a vector field U, a 1-form u and a Lorentzian
metric g satisfying for arbitrary vector fields X, Y, Z

1) X=X+u@U, ulU)=-1, wlU)=0, uoF=0,
2) 9(XY)=g(X,Y) +u(X)u(Y),
where X = FX,
3) 9(X,FY)=g(FX)Y), gX,U)=u(X) VX,YeV,
is called a Lorentzian para contact (L.P. contact) manifold and the structure
(F,U,u, g) is an L.P.contact structure [6].

An almost para contact metric manifold is called a L.P. cosymplectic
manifold (2] if
' (vxF)Y =0.
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An almost para contact metric manifold is called a nearly L.P. cosymplectic
if F is a Killing, that is,

(4) (VxP)Y + (VyF)X =0,

where V is the operator of covariant differentiation with respect to g. On
nearly L.P. cosymplectic manifold, U is a Killing vector field. That is,

g(VxUY)+g(VyU,X)=0, VX, Y €TV,

An almost para contact metric manifold is called a closely L.P. cosym-
plectic if F is a Killing and u is a closed. On a closely L.P. cosymplectic
manifold we have

VuF =0,VU =0,Vu=0.

Let V,,, be a submanifold of a Riemannian manifold V,, with a Rieman-
nian metric g. Then Guass and Wiengarten formulae are given respectively

by,

(5) VxY =VxY +h(X,Y), VXY €TV,,

(6) VxN=-ANX+V%N, NeTtV,,

where V,V, V% are Riemannian, induced Riemannian and induced normal

connection in V,,, V,,, and the normal bundle T*V,, of V,, respectively and
h is the second fundamental form related to A by

g(h(X,Y)N) = g(AnX,Y).
F is a (1,1) tensor field of on V,,,, for X € _TVm and N € T+V,, we have [4)
(7) (VxF)Y = (VxP)Y — Agy X — th(X,Y))
+ (VxQ)Y + (X, PY) - fR(X,Y)),
(VxF)N = ((Vxt)N — A;nY — PANX)
+ ((Vx )N + h(X,IN) — QAN X),
where
FX=PX+QX, PXeTV,, QXeT'V,,
FN=tN+fN, tNeTV,, fNeTV,,

where PX, and tN are tangential parts, while QX and fN are normal parts
of FX and FN respectively,

(VxP)Y = VxPY — PVyY,
(VxQ)Y = VxQY — QVxY,
(Vxt)N = VxtN — tQVx%N,
(Vxf)N = VxfN — fQVxN.
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The submanifold V,, is said to be totally geodesic in V,, if h = 0 and
totally umbilical in V,, if

MX,Y)=9g(X,Y)K.
For a distribution D on V,, is said to be D-totally geodesic if
h(X,Y)=0 VXY eD.
For a distribution D on V,, is said to be D-totally umbilical if we have
hMX,Y)=g(X,Y)k,
where K is a normal vector field VX,Y € D. V,, is said to be (D, F)-mixed

totally geodesic if h(X,Y)=0VX € Dand Y in E.

Let D and E be two distributions defined on a manifold V,, D is said
to be a E-parallel if we have Vxy € DVz € Eand Y € D. If D is said
D-parallel then it is called autoparallel. D is said to be X-parallel if we have
VxY e DYX € TV,, and Y € D. D is siad to be parallel if VX € TV, and
YeD VxY eD.

If a distribution D on V,, is autoparallel then it is a integrable, and by
Guass formula D is totally geodesic ni V,,. If D is parallel then orthogonal
complementary distribution D+ is also parallel.

A submanifold V,,, of an almost L.P. contact matric manifold V,, with
U e TV,, is called a CR-submanifold of V,, if for each 2z € V,,,, TxV,, =
D! @ D% & {U},, where,
D; = Ker(Ql{yy)x
= {Xx € U}zl Xx|l = [|PXx|]} = Tx Vin N F(Tx Vi),
DY = Ker(Plgyy)x
= {Xx € (U}l Xx|l = 1QXx
The condition Tx Vy, = DL & D2 @ {U} x implies that P3 — P =0[7] on V,,,
and hence Dim (D}) = Rank(Pyx) is independent Yz € V and so is DY.

Now we have TV,, = DL ® DY ® {U}x, these distribution are also dif-
ferentiable we have

}=Tx Vi N F(T5Vin).

‘1Tiy, =D'eD’,

where ‘

D' =ker(t) = T1V,, N F(TLV,y), = ker(f) = T+ V, N F(TV,0),
—0

QD°=D°, D’ =D".

D’
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3. Some results
" Let V,, be a submanifold of a nearly L.P. cosymplectic manifold, tangent
to U. By virtue of the eqation (4) and the equation (7) we have,

(8) ((VxP)Y + (VyP)X — Agy X — AoxY — 2th(X,Y) + (VxQ)Y
+ (VyQ)X + h(X,PY) + h(PX,Y) — 2fh(X,Y)) = 0.

PRrROPOSITION 3.1. Let V,,, be a submanifold of a nearly L.P. cosymplectic
manifold. If U € TV,,, then VXY € TV,,, we have,

(9) ((VxP)Y + (VyP)X — AQyX — AQ)(Y —2th(X,Y)) =0,
(10) ((VxQ)Y + (VyQ)X + h(X,PY) 4+ h(PX,Y) — 2fh(X,Y)) =0.

Proof. Equating tangential and normal parts of the equation (8), we have
the results.

PROPOSITION 3.2. Let V,,, be a submanifold of a nearly L.P. cosymplectic
manifold. If U € TV,, then VX,Y € TV,, we have,

(11) VxFY -VyFX - FIX, Y] =2((VxP)Y — Aoy X —th(X,Y))Y
+2((VxQ) + h(X,PY) ~ fh(X,Y)) = 0.
The result is obvious and hence omitted.

THEOREM 3.3. Let V,,, be a submanifold of a nearly L.P. cosymplectic man-
ifold. If U € TV,,, then VX,Y € TV,, we get,
(12) P[X,Y] = ~VXpY—VyPX+AQyX
+ AgxY +2PVxY + 2th(X,Y),
(13) QIX,Y] = — V£QY — V£QX — h(X, PY) — h(PX,Y)
+2QVxY +2fh(X,Y)=0.
Proof. By virtue of the eqﬁation (7) and (11) we get,
(VxPY — PVxY —VyPX + PVyX — Agy X + AgxY - 2VxPY
+2PVxY +24A0y X +2th(X,Y))+(VxQY -V QX - QVxY —QVy X+
h(X,PY)—h(PX,Y)-2V%QY +2QVxY —2h(X, PY)+2fh(X,Y)) = 0.
Now equating tangential parts and normal parts we have desired results.

PROPOSITION 3.4. Let V,,, be a submanifold of a nearly L.P. cosymplectic

manifold. Then (P,U,u,g) is a nearly L.P. cosymplectic structure on the
distribution D' @ {U}, if th(X,Y) =0,vX,Y € D! @ {U}.

Proof. Using D! @ {U} = Ker(Q) and P? +tQ = I + u® U we obtain
P?=1+4+4®U on D' ® {U}. We also get PU =0, uw(U) = ~1,u- P = 0.
Using D! @ {U} = Ker(Q) and th(X,Y) = 0 in the equation (9) we have,
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(VxP)Y + (VyP)X = 0WX,Y € D' @ {U},
which proves our assertion.

THEOREM 3.5. Let V,,, be a CR-submanifold of a nearly L.P. cosymplectic
manifold, we have,

(a) if D° @ {U} is auto parallel then
Agy X + AoxY +2th(X,Y) = 0VX,Y € D’ @ {U},
(b) if D' @ {U} is auto parallel then |
h(X,PY) +h(PPX,Y) =2fh(X,Y)VX,Y € D' & {U}.

Proof. Using the equation (9) and autoparallelness of D° ® {U}, we get (a)
and using the equation (10) and autoparallelness of D! @ {U} we get (b).

THEOREM 3.6. Let V,;, be a submanifold of a nearly L.P. cosymplectic mani-
fold with U € TV,,,. If V,,, is invariant then V,, is a nearly L.P. cosymplectic
manifold. Moreover

(14) h(X,PY) + h(PX,Y) = 2fh(X,YVX,Y € TV;n.

Proof. From D! @ {U} = Ker(Q) and the equation (10) we get the equa-
tion (14).

4. Integrability conditions

LEMMA 4.1. Let V,,, be a CR-submanifold of a nearly L.P. cosymplectic
manifold VX,Y € D' & {U}, we get,

(15) Q[X,Y]=—h(z,PY) - h(PX,Y)+2QVxY +2fh(X,Y)
or equivalently
(16) —h(X,PX)+ QVxX + fh(X,X) =0.

Proof. Using D'*®{U} = Ker(Q) and the equation (13) we get the equation
(15) and using X =Y in the equation (15) we have the required result.

THEOREM 4.2. The distribution D! & {U} on a CR-submanifold of a nearly
L.P. cosymplectic manifolds i integrable if and only if

WX, PY) +h(PX,Y) = 2QVxY + fh(X,Y)).

Proof. From D! @ {U} = Ker(Q) and using the equation (15) we get the
result.

DEFINITION 4.3. Let V., be a Riemannian manifold with a Riemannian

connection V. A distribution D on V,, is said to be nerly autoparallel if
VX,Y € D we have (VxY + Vy X) € D or equivalently Vx X € D.
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We have

Parallel = Autoparallel = Nearly autoparallel,
Parallel = Integrable,

Autoparallel = Integrable, and

Nearly autoparallel + Integrable = Autoparallel.

THEOREM 4.4. Let V,,, be a CR-submanifold of a nearly L.P. cosymplectic
manifold. Then the following relations holds:

(0 the distribution D* @ {U} is autoparallel,

(II) A(X,PY)+h(PX,Y)=2fh(X,Y)VX,Y € D' @ {U},

(III) AK(X,PX)=fh(X,Y)VX € D! ® {U},

(IV)  the distribution D' @ {U} is nearly autoparallel,

are related by (I)=(I11)=(1I1)=(IV). In particular if D' @& {U} is integrable,
then the above four statements are equivalent.

Proof. (I)=(II) follows from Theorem (3.5)(b). Putting X =Y in (II) we
get (II)=(III). From (16) we get (III)=>(IV). This completes the proof of
the Theorem.

THEOREM 4.5. Let V,,, be a CR-submanifold of a nearly L.P. cosymplectic
manifold, such that V,, is D' @ {U}-totally umbilical, then

(I)  the distribution D' & {U} is a nearly autoparallel.
Consequently, the following two statements becomes equivalent:

(II) the distribution D* @ {U} is a integrable,
(III)  the distribution D* ® {U} is an autoparallel.

Proof. If submanifold V,, is D! & {U}-totally geodesic, then h = 0. Thus
from (16) we get VxX = 0, then the statement (I) holds. Hence from the
definition (4.3) we get (II)<(III).

COROLLARY 4.6. In totally umbilical CR-submanifold of a nearly L.P. co-
symplectic manfold, D' & {U} is autoparallel.

Proof. Using Theorem (4.5) we have the result.

LEMMA 4.7. Let V,,, be a CR-submanifold a nearly L.P. cosymplectic mani-
fold, then

(17) 34gv X + AgxY = P[X,Y],VX,Y € D° @ {U}.

Proof. Let X,Y € D°® {U}, and Z € TV,,, we have from the equation (5)
and (6)

-ApxZ + VéFX =VZFX = (VzF)X-i-FvZX
— _(VxF)Z + FV;X + Fh(Z, X)
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so that
Fh(Z,X)=-ArxZ +ViFX + (VxF)Z — FVzX,

and hence

9(Fh(Z,X),Y) = ~g(ArxZ,Y) + o(Vx F)Z,Y)
= —g(ArxY, 2) + 9(VxF)Y, 2).

Now we have

9(FhZ,X),Y) = g(h(Z, X), FY) = g(Ary X, Z).
Thus from the above two equations we have
(18) 9(Ary X, Z) = —g(AryY, Z) + g(VxF)Y, Z).
Now for X,Y € D° @ {U}, we have

VxFY —VyFX = ApxY — Apy X + V% FY — V3 FX
and
VxFY -VyFX = (VxF)Y - (VyF)X + F[X,Y]
from the above two equations we have
(VxF)Y — (VyF)X = ApxY — Apy X + V% FY — V3 FX — F[X,Y].

Using the equation (5) and the above equation, we get

(TxF)Y = %(AFXY — ApyX + VEFY — VEFX — F[X, Y)).

From the above equation and the equation (18) we get the equation (17).

THEOREM 4.8. Let V,,, be CR-submanifold of a nearly L.P. cosymplectic
manifold. Then the distribution D° @ {U} is integrable if and only if

340y X + AoxY =0,VX,Y € D° @ {U}.

Proof. From D°® {U} = Ker(P) and the equation (17), we have the result
and converse is obvious.

THEOREM 4.9. Let V,,, be CR-submanifold of a nearly L.P. cosymplectic
manifold. Then the distribution D° is an integrable if and only if

3Aov X + AgxY =0, VX, Y€ D°.
Proof. By definition of D° and the equation (17), we get the result.

THEOREM 4.10. Let V,,, be CR-submanifold of a L.P. cosymplectic manifold.
Then the distribution D° and D° @ {U} are integrable.

Proof. The result follows from Theorem (4.8.) and Theorem (4.9).
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5. Totally umbilical and totally geodesic submanifolds

LEMMA 5.1. Let V,,, be a submanifold of a closely L.P. cosymplectic manifold,
tangent to U. Then the integral curve of U in V., is geodesic in V,,, and U
is an asymptotic direction.

Proof. Since in a closely L.P. cosymplectic manifold we have VU = 0. Now
in view of the equation (5), we get h(U,U) = 0. This completes the proof.

PROPOSITION 5.2. Let D be a distribution on a submanifold V,,, of a closely
L.P. cosymplectic manifold such that U € TV,,. If V,,, is D-totally umbilical
then V,,, is D-totally geodesic.

Proof. For D-totally umbilical we have
MX,Y)=9(X,Y)K,VX,Y € D.

A direction U at a point of V,,, is an asymptotic direction if normal vector
field K = 0, which implies that A(X,Y’) = 0, which shows that V,, is totally
geodesic.

PROPOSITION 5.3. Every totally umbilical submanifold of a closely L.P.
cosymplectic manifold, tangent to U, is totally geodesic.

Proof. The proof follows from Proposition (5.2).

6. Totally Lorentzian para contact umbilical and totally Lorentzian
para contact geodesic submanifolds
Let V,, be a submanifold of an almost L.P. contact metric manifolds,
tangent to U. In this case TV,, = {U}@{U}+, where {U} is the distribution
spanned by {U} and {U}" is the complementary orthogonal distribution of
{U} in V.

DEFINITION 6.1. A submanifold V;,, of an almost L.P. contact metric mani-
fold, tangent to U, is called (1) totally L.P. contact umbilical if it is {U}+
totally umbilical, and (2) totally L.P. contact geodesic if it is {U}* totally
geodesic. The condition of totally L.P. contact umbilical and totally cocntact
geodesic is respectively

(19) h(F2X,F%Y) = g(F2XF2Y)K, VX,Y €TV,
(20) h(F?2X,F?Y) =0, VYX,Y €TV,

where K is a normal vector field. Using the equation (1) in the equation
(19) and (20), we get respectively,

h(X,Y) = g(FX,FY)K — u(X)h(Y,U) — w(Y)h(X,U),
h(X,Y) = —u(X)A(Y,U) — w(Y)h(X,U).
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THEOREM 6.2. If V,, is a totally L.P. contact umbilical CR-submanifold
of a closely L.P. cosymplectic manifold, then V,, is D°, D'-mized totally
geodesic.

Proof. Now we have h(X,Y) = g(X,Y)K, and for X,Y € {U}Lh(U,U) =
g(U,U)K. g(U,U)K = 0, and using Gauss equation = K = 0. Therefore
Vim is D%, D! - mixed totally geodesic. This completes our assertions.

THEOREM 6.3. Let V,,, be a totally L.P. contact umbilical CR-submanifold of
a closely L.P. cosymplectic manifold, then either D° = {0} or Dim(D°) = 1
or the normal vector field k is orthogonal to FD°.

Proof. If Dim(D°) > 1, for each H € D% 3X € D° such that g(X,H) =0
and ||X|| = 0, then

g(K, FH) = g(h(X,X),Fh) = g(AFHX,X) = g(AF)(H,X)
= g(h(X,H)FX) =0.
This gives the desired result.
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