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TANGENCY AND ORTHOGONALITY IN METRIC SPACES

Abstract. We consider an abstract definition of tangency in metric spaces and study
some of its properties. We introduce also a particular structure on metric spaces and define,
with respect this structure, the notion of tangency and orthogonality. Some properties of
continuous curves in such spaces are investigated.

1. Introduction

The “metric geometry” is studied since the beginning of the twentieth
century, and many concepts coming from the theory of linear spaces have
been extended to metric spaces (see e.g. [1], [5], [11]). Moreover, H. Buseman,
in [4], has pointed out the importance of this geometry for the Finsler spaces.

On the other hand, the extension of notions typical of the linear case
can be difficult even in simple situations. For example, the definition of
orthogonality and the definition of tangent line to continuous curves in a
normed space gives interesting and nontrivial problems.

In the second section we consider particular operations defined for sub-
sets of a metric space and related in a natural way of the notion of tangency
between sets that extends the elementary notion of tangency at a point of
the graph of a real differentiable function.

In the third section we introduce an abstract structure on a metric space
which allows to define a notion of tangent and normal line at a point of a-
continuous curves in the metric space. Moreover we can give a definition of
generalized curvature at a point of a continuous curve. In the last section
we add some further considerations on the curvature.

Roughly speaking, the abstract structure defined in the second section
over the metric space corresponds, in some particular situations, to con-
sideration of each point of the metric space as the “center” of a system of
paths.
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Many problems can be subsequentely considered, for example: the com-
parison with analogous definitions on linear metric spaces, the application
to continuous plane curve and general abstract definitions of “differentiable
functions between metric spaces”.

The original definition of tangency is investigated from different authors
(see [7] (15}, [16], [8],[9],[10], [13], [14]), but the aim is very different.

2. Abstract operations

Let (X, d) be a metric space and A, B be nonempty, compact (or locally
compact) subsets of X. Assume that zop € AN B is an accumulation point
of A. We define the following functions:

tU

).

)’
2.2 D,,(A,B) = limsup
(22) (4. B) A\{z0}3a—z0 (T, T0)

where d(z, B) = inf{d(z,y)| v € B}.

, - d(z,
@ Dol B) = figint Gz,
(

8

?

?

When D, (A, B) = Dgy(A, B), we write Dgo(A, B); in general, one has
(2.3) , 0<D,,(A,B)<D,(AB)<1.
If the point zg is aﬁ accumulation point for A B, we have in general
D.,(A,B) # D,y(B,4),  Diy(A,B) # Dey(B, A).

Some estimates between D, (A, B), D, (B, A), Dz,(A, B), and D, (B, A)
are given in the next proposition.

PROPOSITION 2.1. Let A, B be nonempty, compact (or locally compact) sets
of the metric space X; let o be an accumulation point for A and B. The
following inequalities hold:

(24) |Dzy (A, B) = Dyy (B, A)| < Dy (A, B) - Dy (B, A),
(2.5) D.y(4, B) = Diug(B, A) < Dyy(A, B) - Do (B, A).
Moreover, we have also:
D:o(B,A) =0 = D, (4,B) =0,
D, (A,B)=0 <= D, (B,A)=0.
Proof. Let (b,) be a sequence in B such that b, # z¢ for all n € N and
limy, d(bn, 20) = 0, Dy, (B, A) = lim,, 52241



Tangency and orthogonality in metric spaces 439

Let now (a,) be a sequence in A such that d(b,, A) = d(by, an) for all
n € N. Assume first a,, # zo for all n € N. Then:
d(bn, an) > d(an, B) _ d(as, B) d(an, o)
d(bn,.’l:o) d(bn,l‘o) d(an,.’l,‘o) d(bn,.’l,‘o)
d(an B) d(zo0,bn) = d(bn, an)

d(an,z ) d(bn, zo)
_ d(an, B) [1 3 d(bn,an)J _ d(an,B) [1 3 d(bn,A)]
d(an, .’Eo) d(bn, :L‘o) d(an, :L‘o) d(bn, .’L‘o) )
For n — oo, the inequality
d(a, B)

. >
(2.6) D,,(B,4) 2 {lif,’iéf,‘f. r0 4(a, 70)

- [1 = Dgy (B, 4)]
follows, and then
(27) on(B’A) Zon(AaB)[l '“on(B,A)]'

If we have a, = zo for infinitely many n, then D, (B, A) =1 and so (2.7)
is true.

In a similar way we may prove the following inequality
(2.8) D,.(A B) > D, (B, A1 - D, (A, B)].
Now, (2.4) follows from (2.7) and (2.8), and (2.5) from (2.7) and (2.3). =
REMARK 2.2. If D, (A, B)and D,,(B, A) exist, then:

(2.9) D.,(A,B)=0 = D.,(B,A)=0
and if D, (A, B) # 1 then
Dz (4, B) D (4, B)
. ——zVh ) <D, T LY
(2.10) TF Doy(A, B) = DB ) < T 3 By

If three sets A, B, C are considered, further estimates hold, as we see in
the next proposition.

PROPOSITION 2.3. Let A, B,C be nonempty, compact (or locally compact)

subsets of the metric space X; let ©o be an accumulation point for A, B
and C. We have the following

(2.11) D,,(A,C) - D, (A,B) < Dyo(B,C) - [1 + D, (4, B)],
(212) D.,(A,C) - zo(A B) < D.o(B,C) - [1 4+ Do, (A4, B)),
(2.13)  |D4y(4,C) = Dy (4, B)| < 2max{D,o(B, C), Dy, (C, B)},
(2.14)  |Dgo(A,C) — zo(A,B)] < 2max{D,,(B,C), D,(C, B)},
(2.15)  Dqo(A,C) + D, (A, B) > D, (B,C) - [1 — D,y (4, B)],
(2.16)  D.o(A,C) + Dxo(A, B) 2 Dy (B, C) - [1 — Dio(4, B))-
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Proof. Let (a,), (bn), and (c,) be sequences in X such that for every n € N:
an € A\ {zo}, b, € B, ¢, € C,

with
d(an, B) = d(an,bn), d(as,C) = d(an, cs)
and
: _ . d(an,bp) d(an, cn)
hyllnd(an,:z:o) =0, lim (ar. 7o) =D, (4, B), hmmf d(an, 70) > >D,, (A,C).

Assume that b, # xo for all n € N. Let (c,) be a sequence of elements of C
such that d(b,, C) = d(bn,n) for all n € N. Then:
d(an,cn)  d(an,bn) < d(an,c'n) _ d(an,bs)
d(an,z0) d(an,z0) ~ d(an,z0) d(an,zo)
’ < Wb, n) _ d(bn,'n) d(bn, 20)
~ d(an,z0)  d(bn,z0) d(an,xo)
< d(bn,c'n) [1 d(an,bn)]

= d(bn, 20) d(an, xo)
_ d(ba,C) d(an, B)
B d(bn,-’vo) [1 + d(an,xo)]'

Then we have

_ . d(b,C
217) D, (A,C) — D,.(A,B) < 1 1 A, B)).
(2.17) D,,(A,C) o(4; B) B\{lzr?}s;;gm b, zO)[ + D.,(4, B))

Hence
(218)  Duy(A, C) = Dyy(4, B) < Dag(B,C) - [1 + Dy (4, B)).
If b, = xo for infinitely many n, since D, (A, B) = 1, the previous inequality
is true.
In a similar way, assuming
lim d(an, cn)
n d(an, Zo)

=D, (4,0), hmsup j(a"’ b

n) =
(an, ) S D:l:o(AaB)7

we prove (2.12).
Since the following condition is also true:

(219)  Duy(A, B) = Duy(4,C) < Dag(C, B) - [1 + Doy (4, C)],
it is easily seen that

(2.20)  |Dyo(A, B) — Do (A4,C)| < 2lna'x{D-:ro (B,C), Ezo (C,B)}
and, analogously:

(221) [Day(A, B) - Day(4, )| < 2max{Dey(B, C), Ds,(C, B)}.

The last inequalities follow arguing as the previous argument. =
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REMARK 2.4. From Proposition 2.3 we deduce that the following implica-
tions hold:

(i) if D, (A4, B) = 0 then
D, (A,C) < D.(B,C); D, (B,C) < D,(A,C);
(ii) if Dyo(A, B)(= D, (B, A)) = 0 then
D,(B,C) < D,y(4,C);
(iii) if DIO(A B) = D4, (B, A) =0 then D, (B, C) = D,,(4,C);
D, (C,A) = D, (C,B); Dy (C, A) = Dy, (A, B).
We can characterize the condition D.,(A, B) = 0 as follows:

PROPOSITION 2.5. Let A, B nonempty, compact (or locally compact) subsets
of a metric space X, and zo be an accumulation point for A and B; assume

that there exists Dy, (A, B). Then, D;(A, B) = 0 if and only if for every pair
of sequences (an,) C A\ {zo} and (b,) C B such that d(an,b,) = d(an, B)
for alln € N and lim,, d(a,, o) = 0 one has

d(bn, z0) d(an,by)
d(an, .’L‘o) d(bm 1'0)
Proof. Assume that D,,(A, B) =0 and (a,), {(b,) are as in the statement.
Since

(2.22) =1, and =0.

I d(bp, zo) I d(an,b,) d(as,B)
—~1l| < = ,
d(an, zo) ~ d(an,z0) d(an,zo)
the first equality in (2.22) follows. Also, from
d(a'mbn) d(an, n) d(amxo)
d(bp, o) d(an, zo) d(bp, o)
we get the second equality in (2.22).

Conversely, as D, (A,B) = D (A, B), there are sequences (an) C
A\{zo}, (bn) C B such that d(a,, b,) = d(a,, B) for all n € N, lim,, d(a,, o)

=0 and p
lim an, bn)

n d(an, o)

= D;, (A, B).

By hypothesis, we may assume b,, # zo for any n € N, hence we have:
d(an,bn) _ d(an, by) . d(bp, xo)
d(an,zo)  d(bn,z0) d(an,zo)

Then D, (A, B) = lim,, % =0. =

An application of the preceding results which will justify Definition 2.8
below is given in the following example, whose proof is in [12].

Vn € N.
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EXAMPLE 2.6. As a metric space take R2, endowed with the usual euclidean
metric. Let f : R — R be a continuous function and Gy C R? its graph. Let
po = (2o, f(z0)) € Gy, and consider the functions D,,;, Dp,. For r a straight
line through pg, then, the following conditions are equivalent:
(i) r is the tangent line to G at po;

(i) Dpy(r,Gy) = 0 and D, (s, Gy) > O for every line s # r through po;
(iil) Dpo(Gy,r) =0 and D,,(Gy,s) > 0 for every line s # r through po.

It is not clear if the above example holds when the function f is con-
tinuous only at zg. But is very easy to prove the following proposition, still
given in [12]. ' '

PROPOSITION 2.7. Let f : R—Rbea Lipschitz function, let po = (zo, f(z0))
be in G5 and let r be a straight line through po. If Dpy(r,G¢) =0 then r is
the tangent line to Gy in pg.

Let us now show how the functions D and D can be used to give a
definition of tangency in a metric space.

DEFINITION 2.8. Let A, B be nonempty, compact (or locally compact) sets
of the metric space X and let zg be an accumulation point of A and B. We
say that A is tangent to B in zo if and only if D;,(A, B) = 0.

We say that A, B are tangent in zg if and only if both D,,(A, B) and
Dyo(B, A) exist and D,,(A, B) = D,y (B, A) =0.

3. Line-structured metric spaces

In this section we introduce an abstract structure on a metric space X
by assigning to each point z € X a family R(z) of subsets of X whose
properties are similar to those of the straight lines in the euclidean space.
This allows us to give an abstract definition of tangent and normal lines to
a given curve in X.

DEFINITION 3.1. Let (X, d) be an abstract metric space. We say (X,d, R) is
a line-structured metric space (L-SMS for short) or a metric space with line

elements if for every z € X, R(z) is a family of locally compact subsets of
X such that:

(3.1) z € r Vr € R(z);
(3.2) Vr,s€ R(z) 3Dy(r,s), ID.(s,r) and D,(r,s) = D,(s,r);
(33) s E€ R(.’L'), DI(Ta S) =0=r=s

(3.4) I>0VyeX:0<d(zy) <dé=>R(z)[\|R(y)#0.
We set R = U ecx R(z).
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For r € R(z)NR(y), we write r = ryy, but observe that, in general,
R(z) N R(y) can contain more than one element. From (2.3) and (2.13) we
get that for every r, s,t € R(z) the inequality

(3.5) |Dz(r,t) — Dq(t, )| < 2Dz(r, 5)

holds. Moreover, we have the following “continuity” property of the function

D; in R(z).

PROPOSITION 3.2. Let (ry),(sn) be sequences in R(z) and r,s € R(x). If

lim, Dz (rp,7) = lim, Dz(sn,s) =0 then
li};n Dy(rpn, 8n) = Dg(r, s).

Proof. From (3.5), we have:

| Dz (7, $n) = Dz(r,8)| < |De(Tn, $n) = Dz(sn,7)| + |Dz(sn,7) — Dg(r, s)|

< 2[Dg(rn, ) + Dy(sn, s)),

and the thesis follows. =

We remark explicitly that in a metric space (X, d) we can define different
“line elements”. Moreover, if d; is another metric on X, in general (X, d;, R)
is not a line-structured metric space, even if d; is equivalent to d.

If (X,d,R) is a L-SMS, we may give the following definition:

DEFINITION 3.3. Let A be a nonempty, compact (or locally compact) subset
of X and zo an accumulation point of A. We say that r is tangent to A at
xg if the following conditions hold:

(3.6) r € R(z0);
(3.7) Dy, (r, A) = 0;
(3.8) Vs € R(zo), s #r=> D, (s,A) > 0.

In particular, let (X,d,R) be a L-SMS and 4 :]0,1[— X a continuous
curve in X; set stgy := {y(t)|t €]0,1[}, and consider ¢ = ~y(to) € stgy. If
we specialize the above definition to A = stgy, we can say that r is tangent
to v at xp if r is tangent to stgy at zo, according to Definition 3.3.

From Proposition 2.5, we can state conditions equivalent to (3.7).

Moreover, for given a L-SMS (X, d, R), we can give the following defini-
tions:

DEFINITION 3.4. Let A be a nonempty, compact (or locally compact) subset
of X and z( an accumulation point of A.

(i) We say that r is normal (or orthogonal) to A at zo if r € R(zo) and
D, (r,A) =1.

(i) We say that r is weakly normal to A at z¢ if r € R(zo) and for every
s € R(zo), if s # 7 then Dy (s, A) < D, (r, A).
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(iii) We say that r is strongly normal to A at z¢ if r is normal to A at zo
and for every s € R(zo), if s # r then D, (s, A) < 1.

We have the following general result:

PROPOSITION 3.5. Let A be compact (or locally compact) in a L-SMS X, zg
an accumulation point of A, and r € R(xo). If for every pair of sequences
(zn) C 7\ {z0} and (a,) C A such that d(z,, A) = d(zp,ay) for alln € N
one has:

d (13}
lim d(zn, 20) =0 => lip 4(@m220) _

=0
n d(xna$0) ’

then Dg,(r,A) = 1.
Proof. It is sufficient to observe that the following inequality is true:

d(zn, A) _1d(@n, an) — d(zn, To) d(an, zo)
o) || < o)
d(zn, o) d(z,, o) d(zn, o)

When A = stgry for a continuous curve v in X, as for the tangent, we
say that 7 is normal (weakly normal, strong normal) to v at zo if it is so to
stgry.

In a natural way, the functions D, , D., lead to a definition of curvature
of a continuous curve.

DEFINITION 3.6. Let (X, d, R) be a L-SMS such that for every pair of points
z # y in X there is only one element in R(z){\R(y), which we denote by
Tzy. Let 7 :]0,1[— X be a continuous curve and zg = y(tp). We say that v
has strong curvature to xg, denoted by C*(zo), if

) D,,(r12,793)

i . _ P AL

(3.9) Cr(wo) = lm d(z1,z3)

We say that v has weak curvature to xo, denoted by C(zp), if
. Dy, (r10, T02)

3.10 = ECTR

It is evident that if » € R(z) is a continuous curve then C*(zg) =
C(zo) = 0 at every point zg € 7.
Henceforth, we assume the following further property of R:

ASSUMPTION 3.7. For every ¢ € X and for every sequence (rn) C R(x)
there is a subsequence (r,,) and T € R(zx) such that lim, Dy (ry,,7) = 0.

The following proposition is easy to prove:

PROPOSITION 3.8. Let X be a L-SMS, and v :]0,1[— X a continuous curve.
If v has a finite weak curvature C(xo) at zo = y(to) then there is only one
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r* € R(zo) such that

(3.11) stgvlélgl—»zo D.'co (T 77'110) =0
and
(3.12) Clan) =, Jim  Dxores)

stgydz—x0 d(:v, :Eo)
Proof. Given € > 0, let I be a neighbourhood of z¢ such that:
(3.13) (C(z0) - €)d(z,y) < Dzo(roags Tyao) < (C(2z0) +€)d(z,y) Va,y el

Fix y and consider a sequence (z,) in I[)stgy, converging to zo. Define
Tn = Tz,z, and assume, without loss of generality because of Assumption
3.7, that

(3.14) li7rln Dyo(r*,mp) =0
with r* € R(z¢). From Proposition 3.2 and (3.13), we have

(3.15)  (C(zo) — €)d(z0,y) < Dao(r™, Tyao)
= liVIln Dzo(7n,Tyzo) < (Clzo) + €)d(z0, y).

From the previous inequality, (3.11) follows. Uniqueness of r* is an easy
consequence of (3.5) and, finally, condition (3.12) follows from (3.15). =

Let us show an estimate concerning the curvature C*.

PROPOSITION 3.9. Let v :]0,1[— X be a continuous curve having in all
its points = finite strong curvature C*(x). Assume that C* is a continuous
function on stgry; then for any € > 0 there is 6 > 0 such that for all x| € stgy
and for every pair xo,x3 € stgy, if d(x1,x;) < d for i =2,3 then

Dg, (r12,713)
oW l <e.

Proof. Assume that the thesis is not true; then there exist ¢ > 0, three
sequences (), (yn) and (z,) with elements in stgry and there exists T € stgy
such that:

C*(z1) -

lim d(zn,T) = lim d(yn,T) = lim d(z,,T) =0

and
* ‘Drn Tftn n7r-'rnz'n)
O lan) == Ei(yyz )

By the continuity of C*, we can assume that |C*(T) — C*(£)| < € for
£ = ., Yn, zn and n large enough, and a contradiction follows. =

> € Vn € N.
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4. Results on curvature

In this section we give some considerations on curvature; we prove that,
with simple conditions on the family R, a continuous rectificable curve of
X with zero strong curvature at every point is a part of some element of R.

Let (X,d,R) be a L-SMS such that for every pair of points z # y in
X there is only one element in R(z) N R(y), as in Definition 3.6 and that
Assumption 3.7 holds.

Henceforth, we further require the following conditions:

(i) for all z,y € X with = # y, there exists 75, : R(z) — R(y) such that

(4.1) Tey(Tzy) = Tay;
(ii) there exists azy €]0, 1] such that for all r, s € R(z)
(4.2) Dz(r,5) < 0ayDy(mzy(r), Tzy(s));

(ii) for all r,s € R(z), and for every € > 0, z¢9 = z,z1,x9,...,T, With
z; # z; (i # j), there is m; ;41 = 7z, z,,, such that:

(4.3) |Dg(Ttno o0 Mn1pno...0mo1r,s) — Dg(r,s)| < ¢

(iv) for every r € R(z), y # z, T2y, €> 0, 20 = 2,21 = Y, T2, ..., Ln-1,%n
with z; # z; (¢ # j), there exists mj;41 = Tz, q;,, (¢ # 0) verifying
(4.1), (4.2) and

(44) |DI(7rn,0 0 TMp—1,n©...0 7017, T)' <e

Let us set Iy y = U, yex 7z,y- The next proposition is easy to prove.

PROPOSITION 4.1. Let v be a continuous curve in X and x1, 20, 23 be distinct
points in stgy. Setting D; = Dy,,7ij = Tg.2;, for any v € R(z1) and for any
s € R(z2) we have:

(4.5)  [Di(r,r1,2)—Da(s,m1,2)| < 2|Di(r,m1,3)+ D3(r1,3,73,.2) + Da(r3e, s)|.

Proof. Fix z;, ¢ = 1,2,3, in stgy, r,s € R, € > 0 and 71,3, 732 for which
condition (4.3) holds. From (3.5) the following inequality follows:

(4.6) Di(r,r12) < 2[D1(r,r1,3)+D3(r1,3,72,3)+ Da(ra,3, s)|+Da(s,r1,2) +e€.
In fact we have
Dy(r,r12) < 2D1(r,71,3) + D1(r1,3,71,2)
< 2Dy(r,71,3) + a13D3(r1,3,m1,3(r1,2))
< 2D1(r,r1,3) + D3(r1,3, 71,3(r1,2))
< 2[Dy(r,71,3) + D3(r1,3,72,3)] + c23D2(ra,3, 73 2(m1,3(71,2)))
< 2[Dy(r,71,3) + D3(r1,3,72,3) + Da(r23, 5)]
+ Da(s, m3,2(m1,3(r1,2)))
< 2[D1(7‘, 7‘1,3) + D3(r1‘3, 7’2’3) + D2(T213, S)] + D2(S, 7'1‘2) + €.
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Hence, changing the role of z;, x5 and r, s, (4.6) holds and the thesis follows
from the arbitrariness of €. =

Now we can prove the following proposition:
PROPOSITION 4.2. Let (X,d, R) be a L-SMS wverifying all the preceding con-
ditions and, for simplicity, (3.4) with 6 = oo. Let v : [0,1] — X be a
continuous, rectifiable curve such that C*(z) = 0 for all = € stgy. Then, for
every pair x,y of distinct points of stgy we have:

4.7) Dz(T;a"'zy) = Dy(r;arry)
and, for every my s € Iy 4,
(4.8) Da(rz, mya(ry)) =0,

*
T

where, for all x € stgy, r; is the element of R(z) given in Proposition 3.8.

Proof. Consider z # y € stgy and € > 0; since the curve is rectifiable, it
is possible to consider a finite number of points z;, 1 = 0,1,2,...,7n in the
arc of extreme points z,y such that zo = z, £, = y and D;(ri—14,7ii+1) <
6d(.’l:¢+1, :1:45_1) fori = 1, 2, cevy n—l, Do(’ra, 7‘0,1) < Ed(zo, :L‘l), Dn(T*n, 7‘.,,,_1,”)
< eéd(Tn-1,Zn).

Denote by L(v) the (finite) lenght of the curve. An application of Propo-
sition 4.1 extended to a finite number of points gives the following inequal-
ities:

Do(ro,70,n) < 2[Do(rg,70,1) + D1(ro,1,71,2) + .- . + Dn(Tn-1,n,70)]

+Dp (1), Tn=1,n © Tn—1,n-20...0 T 1(T0,n))
< 2[d(zo, z1) + d(z2, z0) + d(z1,22) + . . . + d(Tp-1, T0))
+Dn(7';a 7'0,11) + €.
Then
Do(r5,70,n) = Dn(rp, To,n) < 4eL(7) + €.
Exchanging = and y, we obtain (4.7). Moreover, from (4.6) and (4.4) applied
to r§ and m,,,(ry) with obviuos modification, we prove easily (4.8). =

With a very simple auxiliary condition we can obtain a stronger result
which can be read as a necessary condition on the possible choices of the
family R.

PROPOSITION 4.3. Let (X,d,R) be a L-SMS verifying all preceding condi-
tions and, for simplicity, § = oo in (3.4); assume also that
(4.9) Ve#yeX 3Imyyell(z,y) such that 0< azy <1,

where azy s the coefficient in (4.2). Let v : [0,1] — X be a continuous,
rectifiable curve such that C*(z) = 0 for any z € stgy. Then there exists
T € R such that stgy C 7.
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Proof. Consider n, € II(z,y) as in (4.9). Then, from (4.1), (3.5), (4.8)
and (4.7), we have:

Da(ry,72y) < azyDy(ray, Tay(ry)) < al.yDy(rl.y,r;) = QgyDy(T2y,77)-

From the condition o,y €]0, 1[ we deduce that 75, = r}; hence, y € } and,
by the arbitrariness of y, the thesis follows with ¥ =7}. =

EXAMPLE 4.4. Let us consider X = R? endowed with the euclidean metric;
let further R(x) be the set of straight lines through the point = and 7 4 the
traslation of the plane along the line r;, (in such situation oy, = 1). Then
Proposition 4.3 can be specialized as follows:

Every rectificable continuous curve of the real plane, having strong
curvature zero in all points, has the following property: for every
T # y € stgy the lines 3, ry are parallel.

REMARK 4.5. We remark that most of the results in Sections 3 and 4 do not
depend on the definition of the functions D and D, but only on their formal
properties summarized in Definition 3.1 and (3.5), which could be taken as

a starting point for an axiomatic treatment of structures even more general
than L-SMS.
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