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TANGENCY AND ORTHOGONALITY IN METRIC SPACES 

Abstract. We consider an abstract definition of tangency in metric spaces and study 
some of its properties. We introduce also a particular structure on metric spaces and define, 
with respect this structure, the notion of tangency and orthogonality. Some properties of 
continuous curves in such spaces are investigated. 

1. Introduction 
The "metric geometry" is studied since the beginning of the twentieth 

century, and many concepts coming from the theory of linear spaces have 
been extended to metric spaces (see e.g. [1], [5], [11]). Moreover, H. Buseman, 
in [4], has pointed out the importance of this geometry for the Finsler spaces. 

On the other hand, the extension of notions typical of the linear case 
can be difficult even in simple situations. For example, the definition of 
orthogonality and the definition of tangent line to continuous curves in a 
normed space gives interesting and nontrivial problems. 

In the second section we consider particular operations defined for sub-
sets of a metric space and related in a natural way of the notion of tangency 
between sets that extends the elementary notion of tangency at a point of 
the graph of a real differentiable function. 

In the third section we introduce an abstract structure on a metric space 
which _allows to define a notion of tangent and normal line at a point of a 
continuous curves in the metric space. Moreover we can give a definition of 
generalized curvature at a point of a continuous curve. In the last section 
we add some further considerations on the curvature. 

Roughly speaking, the abstract structure defined in the second section 
over the metric space corresponds, in some particular situations, to con-
sideration of each point of the metric space as the "center" of a system of 
paths. 
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Many problems can be subsequentely considered, for example: the com-
parison with analogous definitions on linear metric spaces, the application 
to continuous plane curve and general abstract definitions of "differentiable 
functions between metric spaces". 

The original definition of tangency is investigated from different authors 
(see [7] [15], [16], [8],[9],[10], [13], [14]), but the aim is very different. 

2. Abstract operations 
Let (X, d) be a metric space and A, B be nonempty, compact (or locally 

compact) subsets of X. Assume that xo £ A H B is an accumulation point 
of A. We define the following functions: 

(2.1) liminf 

(2.2) VX0{AtB)= limsup 

where d(x,B) = inf{ci(x,y)\ y e B}. 

When D^0(A,B) = D 

x0(A,B), we write DX0(A,B)-, in general, one has 

(2.3) 0 < B) < B) < 1. 

If the point XQ is an accumulation point for A(~\B, we have in general 

a j A , B) ± Dj.0(B, A), DX0(A, B) ± DXo(B, A). 
Some estimates between DTQ(A,B), DX0(B, A), DX0(A, B), and DX0(B,A) 
are given in the next proposition. 
PROPOSITION 2.1. Let A,B be nonempty, compact (or locally compact) sets 
of the metric space X; let XQ be an accumulation point for A and B. The 
following inequalities hold: 
(2.4) \Dao(A,B)-Dieo(B,A)\<Da!Q(A,B)-Dio{B,A), 

(2.5) Dj.0{A,B) —T)X0(B, A) < DX0{A,B) •~DX0(B,A). 

Moreover, we have also: 

DX0(B,A) = 0 = • Dx0(A, B) = 0, 
DXo(A,B)=0 0CO(B,A) = 0. 

P r o o f . Let (bn) be a sequence in B such that bn ^ XQ for all n 6 N and 
limn d(bn, xo) = 0, Dx0(B, A) = limn 



Tangency and orthogonality in metric spaces 439 

Let now (an) be a sequence in A such that d(bn, A) = d(bn, an) for all 
n 6 N. Assume first o„ ^ XQ for all n € N. Then: 

d(bn, AN) d(an, B) _ d(an,B) d(an, ICQ) 

d{bn,xo) ~ d(bn,xo) d(an,x0) d(bn,x0) 

d(an, B) d(xo, bn) — d(bn, an) > 

For n 

(2 .6 ) 

d(an,x o) 

_ d(an,B) 

d(an,x o) 

oo, the inequality 

1 -

d(bn, xo) 

d(bn,an)' 

d(bn, xo). 
d(an,B) 

d(an, xo) 
1 -

d(bn, A) 

d(bn, xo) 

Dj.0{B,A) > liminf d(a,B) 
[ l - Q ^ f r A ) ] 

i4\{io}9o-»xo d(at Xo) 
follows, and then 
(2.7) £ ^ ( 3 , A) > Dx0(A,B)[ 1 - 2ko(£ f A)]. 

If we have a n = xo for infinitely many n, then D^0(B,A) = 1 and so (2.7) 
is true. 

In a similar way we may prove the following inequality 

( 2 . 8 ) B) > D^iB, A)[l - ^ ( A , B)]. 

Now, ( 2 .4 ) follows from ( 2 . 7 ) and ( 2 . 8 ) , and ( 2 .5 ) from ( 2 .7 ) and ( 2 . 3 ) . • 

REMARK 2 .2 . If DX0(A, B) &nd DXQ(B,A) exist, then: 

(2 .9 ) DX0(A,B) = 0 » Dxo(B,A) = 0 

and if DX0{A,B) ± 1 then 
DX0(A,B) ^ n / D DX0(A,B) 

(2.10) <DX0{B,A) < 
1 + DX0(A,B)~ I0V ' J~1-DX0(A,BY 

If three sets A, B, C are considered, further estimates hold, as we see in 
the next proposition. 

PROPOSITION 2 .3 . Let A,B,C be nonempty, compact (or locally compact) 
subsets of the metric space X; let XQ be an accumulation point for A, B 
and C. We have the following 

( 2 . 1 1 ) &0{A, C) - B) < I)I0(B, C) • [1 + B)], 

( 2 . 1 2 ) DX0(A, C) - DXo(A, B) < DXo(B, C) • [1 + DX0(A, B)}, 

( 2 . 1 3 ) ^ ( A C L - ^ ^ B ) | < 2 M A x { D X 0 ( B , C ) , DXo(C,B)}, 

( 2 . 1 4 ) \DX0(A, C) - DX0(A, B)\ < 2 M A x { D X 0 ( B , C), DX0(C,B)}, 

( 2 . 1 5 ) -DX0(A,O)+Q^(A,B) > DX0(B,C) • [1 - ]^0(A, B)}, 

( 2 . 1 6 ) Rx0(A, C) + DX0(A, B) > D*0(B, C) • [1 - DXo(A, B)]. 
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Proo f . Let (an ) , (bn), and (cn) be sequences in X such that for every n G N: 

on € A \ { x 0 } , 

with 
d(an,B) = d(an,bn), d(an,C) = d(an,Cn) 

and 

limd(an,x0 ) = 0, l i m = ^ 0 ( A , B ) , liminf ^ L l f ^ > n (A,C) . 

Assume that bn ^ xo for all n e N. Let (c'n) be a sequence of elements of C 
such that d(bn, C) = d(bn, c'n) for all n € N. Then: 

d(an, Cn) _ d(an, bn) ^^ d(an, c'n) _ d(an, bn) 

d(an,xo) d(an,xo) ~ d(an,xo) d(a„,xo) 
d(6„,c'n) _ d(bn,c'n) d(bn,xo) 

d(an, xo) d(bn, xo) d(an, xo) 

< d{bn,c'n) r <i(an,&n) i 
~ d(bn,xo) L d(a„,xo)-l 
_ rf(bn, C ) ^ d(an,B) i 

d(bntxo) L d(an, xq)J 

Then we have 

( 2 . 1 7 ) ^ ( ^ , ( 7 ) - D * 0 ( A > B ) < limsup 

Hence 

(2.18) C) - A J A , 5 ) < DX0(B, C).[ 1 + B)]. 

If bn = xo for infinitely many n, since Dxo (A, B) — 1, the previous inequality 
is true. 

In a similar way, assuming 
d(an,cn) d(an,bn) 

lim-ji 'r = DX0(A,C), limsup-^ ^ < DX0(A,B), 
n d(an,xo) n d(an,xo) 

we prove (2.12). 

Since the following condition is also true: 

(2.19) D^iA, B) - Dxo{A, C) < DXQ(C, B)-[ 1 + ^ ( A , C)], 

it is easily seen that 

(2.20) \J2X 0 (A tB)-aB 0 (A ,C)\ < 2max {D X 0 (B ,C ) ,DX0(C,B)} 

and, analogously: 

(2.21) \DX0(A,B) - DX0(A,C)\ < 2max {D X 0 (B ,C ) ,DX0(C,B)}. 

The last inequalities follow arguing as the previous argument. • 



Tangency and orthogonality in metric spaces 441 

REMARK 2.4. From Proposition 2.3 we deduce that the following implica-
tions hold: 

(i) if DXo (A, B) = 0 then 

O,0(A,C) <DX0(B,C)- D^.0(B, C) < T3X0(A, C); 

(ii) if DX0(A, B)(= ]Xc0{B, A)) = 0 then 

(iii) if DX0(A, B) = DX0{B, A)_= 0 then D^B, C) = D^0(A, C); 
^ „ ( C . A ) = fl); ^xo(CM) = I>xo(AB). 

We can characterize the condition £?) = 0 as follows: 

PROPOSITION 2 .5 . Let A, B nonempty, compact (or locally compact) subsets 
of a metric space X, and XQ be an accumulation point for A and B; assume 
that there exists Dxo (A, B). Then, Dxo (A, B) = 0 if and only if for every pair 
of sequences (an) C A \ {xo} and (bn) C B such that d(an, bn) — d(an, B) 
for all n £ N and limn d(an , xo) = 0 one has 

(2 22) # 2 ^ = 1, and = 
d(an,x o) d{bn,xo) 

P r o o f . Assume that DXQ(A, B) = 0 and (an), (bn) are as in the statement. 
Since 

d(bn,x 0) d(an,bn) d(an,B) 
- 1 < 

d(an,x o) d(an,xo) d(an,x o)' 
the first equality in (2.22) follows. Also, from 

d(an,bn) _ bn) d(an,xp) 
d(bn,x o) d(an ,xo) d(bn,x o) 

we get the second equality in (2.22). 
Conversely, as D^.0(A,B) = DX0(A,B), there are sequences (an) C 

A\{xo}, (bn) C B such that d(an, bn) = d(an , B) for all n € N, lim„ d(an, XQ) 
- 0 and 

d(a„,b„) 
n d{an,xo) 

By hypothesis, we may assume 6n / xo for any n € N, hence we have: 
^(on, few) _ d(an,bn) d(bn, xp) ^ ^ 
d(an,x o) d(i>„,x0) d(an ,xo) 

T h e n D I O ( A £ ) = l i m n $ ^ = 0 . . 

An application of the preceding results which will justify Definition 2.8 
below is given in the following example, whose proof is in [12]. 
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EXAMPLE 2.6. As a metric space take R 2 , endowed with the usual euclidean 
metric. Let / : R —> R be a continuous function and Gf CM.2 its graph. Let 
Po = (^Oj f(xo)) € Gf, and consider the functions D_po, Dpo. For r a straight 
line through po, then, the following conditions are equivalent: 

(i) r is the tangent line to Gf at po; 
(ii) Dpo(r, Gf) = 0 and Dpo(s, Gf) > 0 for every line s ^ r through po; 

(iii) Dpo(Gf, r) — 0 and Dpo(Gf, s) > 0 for every line s r through po-

It is not clear if the above example holds when the function / is con-
tinuous only at xo- But is very easy to prove the following proposition, still 
given in [12]. 

PROPOSITION 2.7. Let f : R —• R be a Lipschitz function, letpo — (xq, f(xo)) 
be in Gf and let r be a straight line through pq. If Dpo(r,Gf) — 0 then r is 
the tangent line to Gf in po. 

Let us now show how the functions D and D can be used to give a 
definition of tangency in a metric space. 

DEFINITION 2.8. Let A, B be nonempty, compact (or locally compact) sets 
of the metric space X and let xq be an accumulation point of A and B. We 
say that A is tangent to B in xq if and only if DX0(A,B) = 0. 

We say that A, B are tangent in xq if and only if both DX0(A,B) and 
DX0{B,A) exist and DX0(A,B) = DXo(B,A) = 0. 

3. Line-structured metric spaces 
In this section we introduce an abstract structure on a metric space X 

by assigning to each point x € X a family TZ(x) of subsets of X whose 
properties are similar to those of the straight lines in the euclidean space. 
This allows us to give an abstract definition of tangent and normal lines to 
a given curve in X. 

DEFINITION 3.1. Let (X, d) be an abstract metric space. We say ( X , d, 7Z) is 
a line-structured metric space (L-SMS for short) or a metric space with line 
elements if for every x € X, 7Z(x) is a family of locally compact subsets of 
X such that: 
(3.1) x€r\/r € 1l{x)\ 

(3.2) Vr, s e K(x) 3Dx(r, s), 3Dx(s, r) and Dx(r, s) = Dx(s, r); 

(3.3) r,se TZ(x), Dx(r, s) = 0 r = s; 

(3.4) 35 > 0 Vy e X : 0 < d(x, y) < 6 =}> ft(x) f | H(y) / 0. 

We set TZ = L U x K(x)-
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For r 6 7l(x)f]7l(y), we write r = rxy, but observe that, in general, 
K(x) f| H(y) can contain more than one element. From (2.3) and (2.13) we 
get that for every r,s,t€ 1Z(x) the inequality 
(3.5) \Dx(r,t)-Dx(t,s)\<2Dx(r,s) 
holds. Moreover, we have the following "continuity" property of the function 
Dx in K(x). 
PROPOSITION 3 . 2 . Let ( r n ) , ( s n ) be sequences in TZ(x) and r,s € 1Z(x). If 
limn Dx(rn, r) = limn Dx(sn, s) = 0 then 

limDx(rn , sn) = Dx(r, s). 
n 

Proof . From (3.5), we have: 

ID x {rn , sn ) - £>x(r,s)| < |D x(rn , sn) - Dx(sn,r)\ + |Dx(s„,r) - Dx(r,s)\ 
< 2[Dx(rn, r) + Dx(sn, s)], 

and the thesis follows. • 
We remark explicitly that in a metric space (X, d) we can define different 

"line elements". Moreover, if d\ is another metric on X, in general (X, di, TV) 
is not a line-structured metric space, even if d\ is equivalent to d. 

If (X, d, It) is a L-SMS, we may give the following definition: 
DEFINITION 3 . 3 . Let A be a nonempty, compact (or locally compact) subset 
of X and xo an accumulation point of A. We say that r is tangent to A at 
XQ if the following conditions hold: 
( 3 . 6 ) r G ft(X0); 

(3.7) DX0(r,A) = 0; 
(3.8) Vs 6 K(x0), s / r Dxo(s,A) > 0. 

In particular, let (X,d, H) be a L-SMS and 7 :]0,1[—> X a continuous 
curve in X ; set stg7 := {7(i)|i €]0,1[}, and consider xo = 7(^0) € stg7- If 
we specialize the above definition to A = stg7, we can say that r is tangent 
to 7 at xo if r is tangent to stg7 at xo, according to Definition 3.3. 

From Proposition 2.5, we can state conditions equivalent to ( 3 . 7 ) . 
Moreover, for given a L-SMS (X>d,7l), we can give the following defini-

tions: 
DEFINITION 3 . 4 . Let A be a nonempty, compact (or locally compact) subset 
of X and XQ an accumulation point of A. 

(i) We say that r is normal (or orthogonal) to A at xo if r E 1Z(xo) and 

(ii) We say that r is weakly normal to A at XQ if r € 1Z{XQ) and for every 
s € K(x0), if s / r then Dxo(s, A) < Dx0(r>A)-
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(iii) We say that r is strongly normal to A at xo if r is normal to A at xo 
and for every s G 7Z(xo), if s ^ r then Dxo(s, A) < 1. 

We have the following general result: 

PROPOSITION 3 .5 . Let A be compact (or locally compact) in a L-SMS X, XO 
an accumulation point of A, and r G lZ(xo). If for every pair of sequences 
(xn) C r \ {xo} and (an) C A such that d(xn,A) = d(xn,an) for all n G N 
one has: 

l i m d ( x n , x o ) = 0 => l im X ° \ = 0, 
n n d(xn, xo) 

then Dxo (r, A) = 1. 

P r o o f . It is sufficient to observe that the following inequality is true: 

d(xn, A) 1 _ d(xn, an) - d(xn, xo) <d(an,xo) 
- 1 

d(xn,x o) d(xn,x o) d(xn,xo) 

When A = stg7 for a continuous curve 7 in X, as for the tangent, we 
say that r is normal (weakly normal, strong normal) to 7 at xo if it is so to 
stg7. _ 

In a natural way, the functions DXQ, DXo lead to a definition of curvature 
of a continuous curve. 

DEFINITION 3.6. Let ( X , d, It) be a L-SMS such that for every pair of points 
x y in X there is only one element in IZ(x) f]TZ(y), which we denote by 
rxy. Let 7 :]0,1[—» X be a continuous curve and xo = 7(̂ 0)- We say that 7 
has strong curvature to XQ, denoted by C*(x0), if 

(3.9) C*(x0) = lim 
stg73x,—>xo d[X l,X3j 

We say that 7 has weak curvature to xo, denoted by C(x0), if 

(3 .10) C ( x o ) = l im ^ ( r i ° ' r ° 2 ) . 
Stg79ii—»XO a ( x l , X 2 j 

It is evident that if r 6 1Z(x) is a continuous curve then C*(x0) = 
C(x0) = 0 at every point xo G r. 

Henceforth, we assume the following further property of H: 

ASSUMPTION 3.7. For every x G X and for every sequence (rn) C TZ(x) 
there is a subsequence (rnk) and r G TZ(x) such that lim„ Dx(rnk, r) = 0. 

The following proposition is easy to prove: 

PROPOSITION 3 .8 . Let X be a L-SMS, and 7 :]0,1[—> X a continuous curve. 
If J has a finite weak curvature C(X0) at XQ = 7(to) then there is only one 
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r* 6 TZ(XQ) such that 

(3.11) lim Dxo(r*,rxxo) = 0 
stg79i—>io 

and 

(3.12) C(x 0) = lim D *ojf* , r x x o )^ 

stg79i—d{X, Xo) 

P r o o f . Given e > 0, let I be a neighbourhood of xo such that: 
(3.13) (C(x0)-e)d(x,y)<Dxo( rxxoiryxo) < {C(xq) + e)d(x, y) Vx,y € I. 

Fix y and consider a sequence (xn) in I P| stg7, converging to xo- Define 
rn := rXnX0 and assume, without loss of generality because of Assumption 
3.7, that 
(3.14) lim£)xo(r*, rn) = 0 

n 

with r* G TZ(XQ). Prom Proposition 3.2 and (3.13), we have 

(3.15) (C(x0) - e)d(x0,y) < Dxo(r*,ryxo) 

= l i m D x o ( r n , r y x o ) < (C(x0) + e)d(x0,y). 
n 

From the previous inequality, (3.11) follows. Uniqueness of r* is an easy 
consequence of (3.5) and, finally, condition (3.12) follows from (3.15). • 

Let us show an estimate concerning the curvature C*. 

PROPOSITION 3.9. Let 7 :]0,1[—> X be a continuous curve having in all 
its points x finite strong curvature C*{x). Assume that C* is a continuous 
function on stg7; then for any e > 0 there is S > 0 such that for all x\ € stg7 
and for every pair , £3 G stg7, if d(x 1, Xi) < 6 for i = 2,3 then 

C*(x0 -
Dxi(ri2,ru) 

< e. 
d{x 2,13) 

P r o o f . Assume that the thesis is not true; then there exist e > 0, three 
sequences (xn), (yn) and (zn) with elements in stg7 and there exists x € stg7 
such that: 

l imd(x n , x ) = lim £/(?/„, x) = l imd(z n ,x) = 0 n n n 

and 
Dxn (rxny„ ) rxnZn ) c*{xn)- > e Vn e N. 

d{yn,zn) 

By the continuity of C*, we can assume that \C*(x) — C*(^)| < e for 
Ç = xn,yn,zn and n large enough, and a contradiction follows. • 
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4. Results on curvature 
In this section we give some considerations on curvature; we prove that, 

with simple conditions on the family 1Z, a continuous rectificable curve of 
X with zero strong curvature at every point is a part of some element of 1Z. 

Let ( X , d, TV¡ be a L-SMS such that for every pair of points x ^ y in 
X there is only one element in TZ(x) p) 1Z(y), as in Definition 3.6 and that 
Assumption 3.7 holds. 

Henceforth, we further require the following conditions: 

(i) for all x, y G X with x ^ y, there exists 7rIi2/ : TZ(x) —> TZ(y) such that 

(4.1) Tfx,y(yxy) = Txyi 

(ii) there exists axy €]0,1] such that for all r, s G 1Z(x) 

(4-2) Dx(r, s) < axyDy(irx,y(r), irx,y(s)); 

(iii) for all r, s G ~R-{x), and for every e > 0, xo = x,x\,x2,... ,xn with 
xí / Xj (i j), there is ir i t i +i - tvXi<Xi+1 such that: 

(4.3) I Ac(7rn,0 0 Kn-l.n O . . . O 7T0,1 T, s) - Dx(r, s)\ < 

(iv) for every r G H{x), y # x, iTx<y, e > 0, x0 - x, x\ = y, x2,..., x „ - i , xn 

with Xi Xj (i ^ j), there exists = 7rXiiXi+1 (i / 0) verifying 
(4.1), (4.2) and 

(4.4) \Dx(irnfi o 7rn_iifl o . . . o Tro.ir, r)| < e. 

Let us set n X ) y = Ux.^gX The next proposition is easy to prove. 

PROPOSITION 4.1. Let 7 be a continuous curve in X andxi,x2,x3 be distinct 
points in stg'7. Setting D{ = D X i , r j j = rXiXj, for any r € TZ{x\) and for any 
s G H(x2) we have: 

(4.5) \Di(r,rii2)-D2(8,rlfi)\ < 2\Dl{r,ri,3)+D3(rh3,r3t2)+D2(r3,2,s)\. 

P r o o f . Fix Xi, i = 1 ,2 ,3 , in stg7, r ,s G TZ, e > 0 and 7Ti,3,7^,2 for which 
condition (4.3) holds. From (3.5) the following inequality follows: 

(4.6) D i ( r , r l i 2 ) < 2[£>i(r, ri , 3) + £>3(n,3, r 2 , 3 )+ £>2(^2,3, s)] +D2(s, r i , 2 ) + e . 

In fact we have 

Di(r,rh2) < 2£>i(r ,r i i 3) + £>1(^,3,^,2) 

< 2£>i(r, r i , 3) + a i 3 D 3 ( r h 3 , 7r l i 3(ri i 2)) 

< 2£>i(r, r i i 3 ) + £>3(^1,3,^1,3(^1,2)) 

< 2 [Di(r , r i ) 3 ) + D 3 ( r i ] 3 , r2 ,3)] +a23-D2(^2,3,7T3,2(^1,3(^1,2))) 

< 2[Di(r,r1)3) + D 3(ri f3,r 2 ,3) + D2(r2,3,s)] 

+ r>2(s,7r3,2(7ri,3(ri,2))) 
< 2[Di(r, rh3) + D3(rh3,r2¿) + D2(r2,3, s)) + D2(s,rh2) + e. 
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Hence, changing the role of xj , and r, s, (4.6) holds and the thesis follows 
from the arbitrariness of e. • 

Now we can prove the following proposition: 
PROPOSITION 4.2. Let (X, d, TV) be a L-SMS verifying all the preceding con-
ditions and, for simplicity, (3.4) with 5 = oo. Let 7 : [0,1 ]—* X be a 
continuous, rectifiable curve such that C*(x) = 0 for all x 6 stg7_ Then, for 
every pair x, y of distinct points of stg7 we have: 
(4.7) Dx(r*,rxy) = Dy(r*,rxy) 
and, for every irytX € Uy,x, 

(4-8) Dx(rx ,ny t x(r*)) = 0, 
where, for all x 6 stg7, r* is the element of1l(x) given in Proposition 3.8. 
P r o o f . Consider x ^ y € stg7 and e > 0; since the curve is rectifiable, it 
is possible to consider a finite number of points Xj, i = 0 ,1 ,2 , . . . , n in the 
arc of extreme points x,y such that xo = x, xn = y and ^,¿+1) < 
ed(xi+i, Xi-i) for i = 1 , 2 , . . . , n-1, D0(rr0,i) < ed(x0, xi), Dn(r*n, rn_i )7 l) 
< ed(xn-i,x„). 

Denote by L{7) the (finite) lenght of the curve. An application of Propo-
sition 4.1 extended to a finite number of points gives the following inequal-
ities: 

-DoWWn) < 2[A)(r5,r0)i) + A K i , n , 2 ) + . . . + r>„(r„_i,„, < ) ] 
+D T^n— l.n O "n— l.n—2 

< 2[d(xo, xi) + d(x2, xo) + d(xi, X2) + . . . + e£(xn_ 1, xn)] 

Then 
A)(r$, r0 ,n) - A » « , r0,n) < 4eL(7) + e. 

Exchanging x and y, we obtain (4.7). Moreover, from (4.6) and (4.4) applied 
to 7-Q and irXil,(r*) with obviuos modification, we prove easily (4.8). • 

With a very simple auxiliary condition we can obtain a stronger result 
which can be read as a necessary condition on the possible choices of the 
family TZ. 
PROPOSITION 4.3. Let (X, d, It) be a L-SMS verifying all preceding condi-
tions and, for simplicity, 5 = 00 in (3.4); assume also that 
(4.9) Vx ^ y 6 X 3nXty €H(x,y) such that 0 < axy < 1, 
where 

the coefficient in (4.2). Let 7 : [0,1] —» X be a continuous, 
rectifiable curve such that C*(x) = 0 for any x G stg7- Then there exists 
f 6 H such that stg7 C f . 
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P r o o f . Consider ttx>V 6 ü ( x , y ) as in (4 .9) . T h e n , from (4.1) , (3 .5) , (4 .8) 
and (4.7) , w e have: 

DX(Tx, TXy) ^ Q.XyDy{VXy,'KXy(Tx)) ^ OijyDy ir Xlj ) ^ y ) ^XJ/ ̂ X ) ̂ X ) " 

From the condition G]0, 1[ we deduce that rxy = r*; hence, y € r* and, 
by the arbitrariness of y, the thesis follows with f = r*. • 

EXAMPLE 4.4. Let us consider X = K2 endowed with the euclidean metric; 
let further 1Z(x) be the set of straight lines through the point x and 7rX)J/ the 
traslation of the plane along the line rxy (in such situation ax>y = 1). Then 
Proposition 4.3 can be specialized as follows: 

Every rectificable continuous curve of the real plane, having strong 
curvature zero in all points, has the following property: for every 
i ^ t / 6 s tg7 the lines r*, r* are parallel. 

REMARK 4.5. We remark that most of the results in Sections 3 and 4 do not 
depend on the definition of the functions D and D_, but only on their formal 
properties summarized in Definition 3.1 and (3.5), which could be taken as 
a starting point for an axiomatic treatment of structures even more general 
than L-SMS. 
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