

Jarosław Górnicki, Krzysztof Pupka

REMARKS ON FIXED POINTS FOR INVOLUTIONS OF ORDER $n = 3$ IN BANACH SPACES

Abstract. In this paper we study the problem of existence of fixed points of k -Lipschitzian and uniformly k -Lipschitzian mappings ($k > 1$) defined on nonempty closed convex subset of Banach space. Using very simple method we extend Kirk and Linhart's result [5, 8] in the case of involution of order $n = 3$.

1. Introduction

Let C be a nonempty closed convex subset of Banach space E . A mapping $T: C \rightarrow C$ is called *k -Lipschitzian* if

$$\exists k > 0 \forall x, y \in C \|Tx - Ty\| \leq k\|x - y\|.$$

It is called *nonexpansive* if the same condition with $k = 1$ holds.

In 1970, K. Goebel [1] showed that involutions (mappings for which $T^2 = I$) always have fixed point if they are k -Lipschitzian for $k < 2$.

The Goebel's result was next extended in 1971 by W. A. Kirk [5] who showed that a mapping $T: C \rightarrow C$ for which $T^n = I$ ($n > 1$) has a fixed point if

$$\|T^i x - T^i y\| \leq k\|x - y\|, \quad x, y \in C, \quad i = 1, 2, \dots, n-1,$$

where k satisfies

$$(n-1)(n-2)k^2 + 2(n-1)k < n^2.$$

Hence, for $n = 3$ we have the following estimate for k :

$$k < \frac{1}{2}[\sqrt{22} - 2] \approx 1.345.$$

In 1973, J. Linhart [8] showed that a k -Lipschitzian mapping $T: C \rightarrow C$ for which $T^n = I$ ($n > 1$) has a fixed point if

1991 *Mathematics Subject Classification*: 47H09, 47H10.

Key words and phrases: Lipchitzian mappings, involutions, fixed points.

$$\frac{1}{n} \sum_{j=n-1}^{2n-3} k^j < 1.$$

Hence, for $n = 3$ we have the following estimate for k :

$$k < \sqrt[3]{\frac{79}{54}} + \sqrt{\frac{6237}{2916}} + \sqrt[3]{\frac{79}{54}} - \sqrt{\frac{6237}{2916}} - \frac{1}{3} \approx 1.174.$$

In 1991, J. Górnicki [2] showed that a k -Lipschitzian mapping $T: C \rightarrow C$ with $T^3 = I$ has a fixed point if $k < 1.2208$.

Recently M. Koter - Mórgowska [7] showed that a k -Lipschitzian mapping $T: C \rightarrow C$ in a Hilbert space with $T^3 = I$ has a fixed point if $k < \gamma_3^H(0)$, where $\gamma_3^H(0) \geq 1.366$.

In the present paper we extend previous results in the general case of Banach space for involutions of order $n = 3$ (mappings T for which $T^3 = I$).

2. Lipschitzian mappings

We will start with the following lemma:

LEMMA 1 ([2, 3]). *Let C be a nonempty closed subset of a Banach space E and $T: C \rightarrow C$ be a k -Lipschitzian. Given $A, B \in \mathbb{R}$ with $0 \leq A < 1$ and $0 < B$. If for arbitrary $x \in C$ there exists $u \in C$ such that*

$$\|Tu - u\| \leq A \cdot \|Tx - x\|$$

and

$$\|u - x\| \leq B \cdot \|Tx - x\|$$

then T has a fixed point in C .

THEOREM 1. *Let C be a nonempty closed convex subset of a Banach space E and $T: C \rightarrow C$ be a k -Lipschitzian such that $T^3 = I$. If*

$$k < k_0 = \sup_{\alpha \in (0,1)} \left\{ s > 1 : \alpha^2 s^3 + [\alpha^2(1-\alpha) + (1-\alpha)^3] s^2 - 1 = 0 \right\},$$

then T has a fixed point in C .

Note, that for $\alpha = 0.345$ we obtain the evaluation $k_0 \geq 1.3822$, which is better than that obtained in [7] even for a Hilbert space.

Proof. We consider a sequence generated by first steps of Halpern's iteration procedure [4] as follows: let x be an arbitrary point in C , i.e.

$$\begin{aligned} x_0 &= x \in C, \\ x_1 &= \alpha x_0 + (1-\alpha)Tx_0, \\ x_2 &= \alpha x_0 + (1-\alpha)Tx_1, \end{aligned}$$

where $\alpha \in (0, 1)$. Take $z = x_2$, and observe that

$$\begin{aligned}\|Tz - z\| &= \|\alpha(Tz - x_0) + (1 - \alpha)(Tz - Tx_1)\| \\ &\leq \alpha k \|z - T^2 x_0\| + (1 - \alpha)k \|z - x_1\| \\ &= \alpha k \|\alpha(x_0 - T^2 x_0) + (1 - \alpha)(Tx_1 - T^2 x_0)\| \\ &\quad + (1 - \alpha)k \|(1 - \alpha)(Tx_1 - Tx_0)\| \\ &\leq \alpha^2 k^3 \|Tx_0 - x_0\| + \alpha(1 - \alpha)k^2 \|x_1 - Tx_0\| + (1 - \alpha)^2 k^2 \|x_1 - x_0\| \\ &= \{\alpha^2 k^3 + \alpha^2(1 - \alpha)k^2 + (1 - \alpha)^3 k^2\} \|Tx_0 - x_0\|.\end{aligned}$$

Since, $h_\alpha(k) = \alpha^2 k^3 + [\alpha^2(1 - \alpha) + (1 - \alpha)^3] k^2 < 1$ for all $\alpha \in (0, 1)$ and $k < k_0$, and

$$\begin{aligned}\|z - x_0\| &= \|(1 - \alpha)(Tx_1 - x_0)\| \leq (1 - \alpha)k \|x_1 - T^2 x_0\| \\ &= (1 - \alpha)k \|\alpha(x_0 - T^2 x_0) + (1 - \alpha)(Tx_0 - T^2 x_0)\| \\ &\leq \{(1 - \alpha)\alpha k^3 + (1 - \alpha)^2 k^2\} \|Tx_0 - x_0\|,\end{aligned}$$

hence Lemma 1 implies the existence of fixed points of T in C . The sequence $\{z_n\}$ defined by

$$\begin{aligned}x_0 &= x \in C, \\ x_1 &= \alpha x_0 + (1 - \alpha)Tx_0, \\ z_1 &= \alpha x_0 + (1 - \alpha)Tx_1,\end{aligned}$$

and

$$z_{n+1} = \alpha z_n + (1 - \alpha)T(\alpha z_n + (1 - \alpha)Tz_n), \quad n = 1, 2, \dots,$$

converges strongly to a fixed point of T . ■

3. Uniformly Lipschitzian mappings

Recall, that a mapping $T: C \rightarrow C$ is called *uniformly k -Lipschitzian* if for all $n \in \mathbb{N}$ and $x, y \in C$,

$$\|T^n x - T^n y\| \leq k \|x - y\|.$$

THEOREM 2. *Let C be a nonempty closed convex subset of a Banach space E . Let $T: C \rightarrow C$ be a mapping such that*

$$(1) \quad \|T^i x - T^i y\| \leq k \|x - y\| \quad \text{for } i = 1, 2, \quad x, y \in C,$$

$$(2) \quad T^3 = I.$$

If $k < k_0 = \sqrt{\frac{14\sqrt{7}+88}{59}} \approx 1.455792162$ then T has a fixed point in C .

Proof. As in the proof of Theorem 1 we consider the following iteration procedure:

$$\begin{aligned}x_0 &= x \in C, \quad (\text{arbitrary point in } C) \\ x_1 &= \alpha x_0 + (1 - \alpha)Tx_0,\end{aligned}$$

$$x_2 = \alpha x_0 + (1 - \alpha)Tx_1,$$

where $\alpha \in (0, 1)$. For $z = x_2$, we have

$$\begin{aligned} \|Tz - z\| &= \|\alpha(Tz - x_0) + (1 - \alpha)(Tz - Tx_1)\| \\ &\leq \alpha k \|z - T^2x_0\| + (1 - \alpha)k \|z - x_1\| \\ &= \alpha k \|\alpha(x_0 - T^2x_0) + (1 - \alpha)(Tx_1 - T^2x_0)\| \\ &\quad + (1 - \alpha)k \|(1 - \alpha)(Tx_1 - Tx_0)\| \\ &\leq \alpha^2 k^2 \|Tx_0 - x_0\| + \alpha(1 - \alpha)k^2 \|x_1 - Tx_0\| + (1 - \alpha)^2 k^2 \|x_1 - x_0\| \\ &= [\alpha^2 + \alpha^2(1 - \alpha) + (1 - \alpha)^3] k^2 \|Tx_0 - x_0\|. \end{aligned}$$

Since $[\alpha^2 + \alpha^2(1 - \alpha) + (1 - \alpha)^3] k^2 = (-2\alpha^3 + 5\alpha^2 - 3\alpha + 1)k^2 < 1$ for all $\alpha \in (0, 1)$ and $k < k_0 = \sqrt{\frac{14\sqrt{7}+88}{59}}$, and

$$\begin{aligned} \|z - x_0\| &= \|(1 - \alpha)(Tx_1 - x_0)\| \leq (1 - \alpha)k \|x_1 - T^2x_0\| \\ &= (1 - \alpha)k \|\alpha(x_0 - T^2x_0) + (1 - \alpha)(Tx_0 - T^2x_0)\| \\ &\leq [(1 - \alpha)\alpha + (1 - \alpha)^2] k^2 \|Tx_0 - x_0\|, \end{aligned}$$

hence Lemma 1 implies the existence of fixed points of T . ■

4. Nonexpansive iterate

In this section, using Theorems 1 and 2, we extend the result of W. A. Kirk [5] in a special setting. We obtain conditions sufficient to guarantee the existence of fixed points for mappings T such that T^3 is nonexpansive.

THEOREM 3. *Let E be a reflexive Banach space which has strictly convex norm and suppose that C is a nonempty bounded closed convex subset of E with normal structure. Suppose that the mapping $T: C \rightarrow C$ has one of the following properties*

(A) *T^3 is nonexpansive and there is a constant $k < k_0$ (see Theorem 1) such that $\|Tx - Ty\| \leq k\|x - y\|$ for all $x, y \in C$,*

or

(B) *T^3 is nonexpansive and there is a constant $k < k_0$ (see Theorem 2) such that $\|T^i x - T^i y\| \leq k\|x - y\|$ for all $x, y \in C$, $i = 1, 2$.*

Then, T has a fixed point in C .

Proof. By the result of Browder–Göhde–Kirk [6] the set

$$C^* = \{x \in C : T^3x = x\} \neq \emptyset.$$

Because of the strict convexity of E , C^* has to be convex. Cleary C^* is closed, $T: C^* \rightarrow C^*$ and T^3 is the identity on C^* . Thus the assumptions of

Theorems 1 and 2, respectively, are satisfied for T on C^* . Consequently T has a fixed point in C . ■

References

- [1] K. Goebel, *Convexity of balls and fixed-point theorems for mappings with nonexpansive square*, Compositio Math. 22 (1970), 269–274.
- [2] J. Górnicki, *Fixed points for Lipschitzian involutions of order $n = 3$* , Zeszyty Nauk. Polit. Rzeszowskiej, seria: Matematyka i Fizyka, z. 12 (1991), 115 - 119.
- [3] J. Górnicki, *Fixed points of involution*, Math. Japonica, 43, no. 1 (1996), 151 - 155.
- [4] B. Halpern, *Fixed points of nonexpansive maps*, Bull. Amer. Math. Soc. 73 (1967), 957 - 961.
- [5] W. A. Kirk, *A fixed point theorem for mappings with a nonexpansive iterate*, Proc. Amer. Math. Soc. 29 (1971), 294 - 298.
- [6] W. A. Kirk, B. Sims (eds.), *Handbook of Metric Fixed Point Theory*, Kluwer Acad. Publ., Dordrecht - Boston - London, 2001.
- [7] M. Koter-Mórgowska, *Rotative mappings in Hilbert space*, J. Nonlinear and Convex Anal. 1, no 3 (2000), 295 - 304.
- [8] J. Linhart, *Fixpunkte von Involutionen n - ter Ordnung*, Österreich. Akad. Wiss. Math. - Natur. kl. II, 180 (1973), 89 - 93.

DEPARTMENT OF MATHEMATICS
RZESZÓW UNIVERSITY OF TECHNOLOGY
P.O. Box 85
35-959 RZESZÓW, POLAND
e-mail: gornicki@prz.rzeszow.pl
kpupka@prz.rzeszow.pl

Received March 15, 2004; revised version September 6, 2004.

