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DEGENERATE SYSTEMS DESCRIBED BY GENERALIZED
INVERTIBLE OPERATORS AND CONTROLLABILITY

Abstract. The theory of right invertible operators was started with works of D. Prze-
worska-Rolewicz and then it has been developed by M. Tasche, H. von Trotha, Z. Bin-
derman and many other mathematicians (see [10]). Nguyen Dinh Quyet (in [5, 7]), has
considered the controllability of linear system described by right invertible operators where
the resolving operator is invertible. These results were generalized by A. Pogorzelec in the
case of one-sized invertible resolving operator (see [9]) and by Nguyen Van Mau for the
system described by generalized invertible operator (see [3]). However, for the degenerate
systems, the problem has not been investigated. In this paper, we deal with the initial
value problem for degenerate system of the form (2.7)-(2.8) and the controllability of this
system.

1. Preliminaries

Let X be a linear space over a field F of scalars (¥ = R or C ). Denote
by L(X) the space of linear operators defined on linear subspaces of X,
taking values in X, and write

Lo(X)={A € L(X) :domA = X}.

DEFINITION 1.1 ([10]). An operator D € L(X) is said to be right invertible
if there is an operator R € Lo(X) such that ImR C domD and

(1.1) DR=1I,

where I is an identity operator. In this case, R is called a right inverse
operator of D,

The set of all right invertible operators belonging to L(X) will be denoted
by R(X). If D € R(X), we denote Rp = {R € Lo(X) : DR=1}.

DEFINITION 1.2 ([3]).

(i) An operator V € L(X) is said to be generalized invertible if there is
an operator W € L(X) ( called a generalized inverse of V') such that

ImV C domW , ImW C domV and VWV =V on domV.
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The set of all generalized invertible operators in L(X) will be denoted
by W(X). For a given V € W(X), the set of all generalized inverses of
V is denoted by Wy.

(ii) HV e W(X),W € Wy and WVW = W on domW, then W is called

an almost inverse of V. The set of all almost inverse operators of V'
will be denoted by W .

PRrRoOPOSITION 1.1 ([3]). Suppose that V € W(X) and W € Wy. Then
(1.2) domV = WV (domV) & kerV.

DEFINITION 1.3 ([3]). An operator F(") € L(X) is said to be a right initial
operator for V € W(X) corresponding to W € W}, if

(i) (F2 = F) ImF() = kerV, domF(™) = domV,

(ii) FOW = 0 on domW.

The set of all right initial operators for V'€ W(X) will be denoted by Fy, ),

THEOREM 1.1 ([3]). An operator F) € L(X) is a right initial operator for
V € W(X) corresponding to W € W}, if and only if

(1.3) FO =1—-WV on domV.

Other properties of generalized invertible operators can be found in (2,

3], the theory of right invertible operators and their applications can be seen
in [10].

2. The initial value problem for degenerate system

Assume that V € W(X), with dim(kerV) # 0. Denote by F() ¢ f‘(f ) a
right initial operator for V' corresponding to W € W‘l,
In this paragraph, we deal with a linear system of the form:

(2.1) Ve=y, yelmV,
(2.2) FOg = o, o € kerV.

THEOREM 2.1. Suppose that V € W(X), and F") € .7-"(,') be a right initial
operator for V corresponding to W € W). Then the initial value problem
(2.1)-(2.2) have a unique solution of the form

(2.3) z =Wy + zo.

Proof. By the assumption of the problem y € ImV/, there exists z; €¢domV
such that y = Vz1, and since V = VWV the equation (2.1) can be written
V(z — WVz;) = 0. This implies that = — WVz, = 2, where z € kerV, so
that

(2.4) z=Wy+2z, z¢€kerV.
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By the condition (2.2) and z € kerV, there follows
zo=Fg = F(T)Wy + Fy= 2.
The theorem is proved. =

DEFINITION 2.1. Suppose that A, B € Lo(X), where A # 0 is non-invertible
and V € W(X), with dim(kerV') # 0. The linear system

(2.5) AVez=Bz+y, yeX,
is called a degenerate system.
PROPOSITION 2.1. Suppose that V € W (X),dim(kerV) # 0, F( € F is

a right initial operator for V corresponding to W € W}, and A, B € Lo(X).
Then the following identity holds on domV

(2.6) AV — B=(A- BW)V — BF(",
Proof. Formula (1.3) and InF(") = kerV, on domV imply
AV — B = (AV — B)I = (AV — B)(F") + WV)

= AVF") 4 AVWV — BF") _ BWV

= AV - BWV — BF(®"

=(A— BW)V — BF(") 4

Now consider the initial value problem for the degenerate system:

(2.7) AVz=Bz+y, ye€X,
(2.8) FMg =g, z0 € kerV.

THEOREM 2.2. Suppose that all assumptions of Proposition 2.1 are satisfied,
moreover,

y+ Bzg € (A— BW)(ImV).

(i) If A— BW € R(X) and Raw € Ra_pw, then all solutions of the
problem (2.7)—(2.8) are given by

(2.9) z = W[Raw(y + Bxzo) + z] + -9, =z € ker(A — BW),

(i) If A— BW € A(X) and Law € La—_pw, then all solutions of the
problem (2.7)—(2.8) are given by

(2.10) z = WLaw(y + Bzo) + zo,

(i) If A — BW is invertible then the unique solution of problem
(2.7)—(2.8) is given by

(2.11) x =W(A - BW) Y(y + Bxo) + o,
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(iv) If A— BW € W(X) and Waw € Wa_pw, then all solutions of the
problem (2.7)—(2.8) are given by

(2.12) z = W[Waw(y + Bzo) + 2] + zo, =z € ker(A — BW).

Proof. It is known that the one-sided invertible and invertible operators are
generalized invertible, it is sufficient to consider the case A— BW generalized
invertible.

Proposition 2.1 shows that equality (2.7) is equivalent to (A—BW)Vz —
BF()z =y, and then by the condition (2.8), we have

(2.13) (A— BW)Vz =y + Buxy.

With assumptions A — BW € W(X), Waw € Wa_pw and y + Bzg €
(A — BW)(ImV), it is apparent that the equation (2.13) has solution. By
the same way as the proving of Theorem 2.1, from (2.13), we have Vz =
Waw (y + Bzo) + z, where z € ker(A — BW). Therefore, the problem (2.7)-
(2.8) is equivalent to

(2.14) Ve =Waw(y+ Bzo)+ 2, =z € ker(A— BW),
(2.15) FMg = g, g € kerV.
By virtue of Theorem 2.1, all solutions of problem (2.14)-(2.15) are given
by
z=W[Waw(y+ Bzo) + 2] + 20. =
EXAMPLE 2.1. Suppose that X is the space (s) of all real sequences {z,},

n = 0,1,2,... with addition and multiplication by scalars defined as
following:

If z = {zn}, y = {yn}, A € Rthen z +y = {2, + yn}, Az = {Az,},
n=20,12..

Let V, A, B € Lo(X) be defined by:
V{zn} ={vn}, tn=12p, n=0,1,2 and v, =0,n2>3;
A{zn} = {an}, ao = 7o + 71,01 = 21 + T2,0p = 72,03 = 23,8, = 0,n > 4;
B{zn} ={zn+1}, n=0,1,2, ...

It is proved that kerV = {{0,0,0, 23, z4,2s,...} : z, € R, n = 3,4,5, ...}
# {0}, and VX # X, VVV{z,} = V{z,}, i.e. V is generalized invertible

operator and its almost inverse W = V € W} Hence, a right initial operator
F) for V corresponding to the almost inverse W is given by

F) zp} = (I = WV){za} = {fu},
where f, =0,n=0,1,2 and f, = z,, n > 3.
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In addition, the operator A # 0 is non-invertible. Indeed, we have
AX = {A{zn} = {z0 + 21, 21 + T2, 22,23,0,0,0,..} : {z,} € X} # X
and
kerA = {{0,0,0,0, z4, 75,26, ...} : o € R,n = 4,5,6,...} # {0}.
Let y = {y%} € X and 7 = {0,0,0,2%,29,22, ...} € kerV, where z¥ € R,

n=3,4,5 .. and 22 = —y0_, ifn > 4.
Consider the initial value problem

(2.16) AVz =Bz +y,

(2.17) Fg = 7.

We have ker(A—BW) = {{0,0,0,0, z4, z5,z¢, ...} : Tn € R, n =4,5,6,...}
# {0}, and the operator A — BW is generalized invertible, where Wyw =
I e Wa_Bw. Indeed,
(A— BW)I(A — BW){z,} = {z0, 21, 22, 23,0,0,0, ...}
= (A - BW){z,}.
Moreover, it is possible to verify that y + BZg € (A — BW)ImV. According
to Theorem 2.2, the solution of (2.16)-(2.17) is given by

x = W{Waw(y + BZo) + z] + Zo,
z2={0,0,0,0, 24, 25, 26, ...} € ker(A — BW) = {z,},

where 0 = 38, 71 = 4%, 2o = ) + 2], 3 =23 and z, = —y0_,, n > 4.

3. Controllability of degenerate systems

Let X and U be linear spaces over the same field F of scalars (F = R
or C ). Suppose that V € W(X), dim(kerV) # 0. Let F(") ¢ .'F‘(,T) be a right
initial operator for V corresponding to W € WY; operators 4, B € Lo(X),
A # 0 is non-invertible, and C € Lo(U, X).

We consider the degenerate system (D.S)p of the form:

(3.1) AVz =Bz 4+ Cu, CU® {Bxo} C (A—-BW)(ImV),
(3.2) FDg =gy x0€kerV.

The spaces X and U are called the spaces of states and the spaces of
controls, respectively. Elements £ € X and u € U are called states and
controls, respectively. The element zg € kerV is said to be an initial state.
A pair (zo,u) € (kerV) x U is called an input. If (3.1)-(3.2) has solution
z = &P(zo,u) then this solution is called output correspondent to input
(zo, u).
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By asimilar proof as in Theorem 2.2, the problem (3.1)-(3.2) is equivalent
to

(3.3) (A— BW)Vz = Cu + Buo.
Hence, the inclusion CU & {Bzo} C (A — BW)(ImV) is necessary and

sufficient condition for the problem (3.1)-(3.2) to have solutions for every
uel.

Note that the properties of degenerate systems depend on the properties
of the resolving operator A — BW. There are four cases to deal with:

(i) A— BW € R(X) (A — BW is right invertible),
(i) A— BW € A(X) ( A— BW is left invertible),
(iii) A — BW is invertible,
(iv) A— BW € W(X) (A — BW is generalized invertible).

Since both one-sided invertible and invertible operators are generalized
invertible, it is enough to consider the case when A — BW is generalized
invertible. In this case, we get
(3.4) @(:L‘o, u) = {.’E = W[T(Cu + B.’L‘o) + z] +xzo:T € Wa_Bw,

z € ker(A — BW)}.

Clearly, &(zo, u) is the set of all solutions of the problem (3.1)—(3.2) and
for every fixed input (zo, u) there corresponds an output =z = &(zo, u). Write

(3.5) Rangy; ., @ = U &(zo,u), o € kerV.
u€lU
The set Rangy , @ is called reachable from the initial o by means of
controls u € U.

DEFINITION 3.1. Let a degenerate system (DS)o of the form (3.1)-(3.2) be
given. Suppose that Fl(r) € .7-"(; ) is arbitrary right initial operator for V.
(i) A state z1 € kerV is said to be Fl(r)-reachable from an initial state

xg € kerV if there exists a control u; € U such that z; € Fl(r)@(xo, u1).
The state x; is called a final state.

(ii) The system (DS)o is said to be Fl(r)-controlla.ble if for every initial
state z¢ € kerV, we have

(3.6) F{ (Rangy ,,8) = kerV.
(iii) The system (D.S)y is said to be Fl(r)-controlla.ble to z1 € kerV if
(3.7) x1 € FI(T)(RangU,IOQS)

for every initial state zg € kerV.
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LEMMA 3.1. Suppose that the system (DS)o is Fl(r)—controllable to zero and
that for every x| € kerV, there exists z, € kerV and z| € ker(A — BW)
such that

(3.8) FOW(TBzh + 2,) + 2] = 2.
Then every final state 1 € kerV is F l(r)-reachable from zero.

Proof. Since the system (DS)y is Fl(r)—controllable to zero, we conclude
that

O0e Fl(r) (Rangy,,®) for every initial state zo € kerV'.
Therefore, there exists a control ug € U and 2y € ker(A — BW) such that

(3.9) FIWIT(Cuo + Bxo) + 2] + 2o} =0
or equivalently,
(3.10) FOW (T Cuo + 20) = ~F" (WTBzo + zo) .

The condition (3.8) means that, for every z; € kerV, there exists z; €
ker(A — BW) and z, € kerV such that

(3.11) FOW(TBzy + 21) + z2] = 1.

Moreover, by formula (3.10), for the element z3 € kerV, there exist
up € U and z{, € ker(A — BW) such that

(312)  FOW(TCu)+ 2y + z1) = FO[W(TBzxa + 1) + 2.
So (3.11) and (3.12) yield FVW(TCul + 2}) = z1, with 2} = 2} + 2 €

ker(A— BW). This proves that every final state z; € kerV is Fl(r) -reachable
from zero. m

THEOREM 3.1. Suppose that all assumptions of Lemma 3.1 are satisfied.
Then the degenerate system (DS)g is Fl(r)-controllable.

Proof. Assume that the system (DS)o is Fl(r)-controllable to zero, i.e.
there exists up € U and zp € ker(A — BW) such that

(3.13) FI{WI(T(Cuo + Bxo) + 0] + zo} = 0.

By Lemma 3.1, for every z; € kerV there exists u; € U and 2, €
ker(A — BW) such that

(3.14) FIOW(TCuy + 21) = 1.
By adding (3.13) and (3.14) we obtain
FIOUWIT(Cuo + u1) + Bxo) + (20 + 21)] + m0} = 71,
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or
FO{WI(T(Cup + Bxo) + 20} + zo} = =1,
where ug = up + u; € U and 2, = 29 + 21 € ker(A — BW). It means that

T 18 Fl(r)-reachable from the initial state xg. The arbitrariness of xg,z; €

kerV gives Fl(r)(Ra.ngU’Ioé) = kerV, for every zp € kerV. The theorem is
proved. =

THEOREM 3.2. Let a degenerate system (DS)g, a right initial operator Fl(r) €

f‘(,r ), and arbitrary T € Wa_pw be given. Suppose that V € L(X,X'),
Ce LyWU — X, X' - U'") and A,B,W € Lo(X,X’), then the system

(DS)o is Fl(r)-controllable if and only if
(3.15) kerC*T*W*(F{")* = {0}.

Proof. Note that Fl(r) WTC maps U into kerV. Therefore, fixing xo,z1 €
kerV, the condition (3.15) is equivalent to

(3.16) FIYWTCU = kerV.
The assumption CU @ {Bzo} C (A— BW)(ImV') and Proposition 1.1 imply
FOWTCU = FOWT(CU @ {Bxo}) — {F"WTBzo)
c FOWT(A - BW)(ImV) — {F)WT Bz}
c FOWIT(A — BW)(ImV) @ ker(A — BW))
~{FOWTBzo} — F'W (ker(A — BW))
c FOW(ImV) — {FOWTBze} — FOW (ker(A — BW))
c FM(WV(domV) & {zo}) — {F"WTBz,}
~F{W (ker(4 — BW)) — {F{Vz0}
c FO(WV (domV) @ kerV) — {F{VWT Bz}
—FOW (ker(A — BW)) — {F{"z,}
c F(domV) — {F"WTBzo}
—FOW (ker(A — BW)) — {FVx0} C kerV.
By (3.16), we have
FOWTCU = F (domV') - {FYWT Bz}
— FOW (ker(A — BW)) — {F{"z0)
= kerV.
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Thus,
FOWTCU + {FOWTBzo} + FW (ker(A — BW)) + {F"z0}
= fr)(domV) = kerV.

It means that for every z; € kerV, there exist v € domV, uy € U and
29 € ker(A — BW) such that

21 = FMy = FOWTCug + FOWTBzo + FOW 20 + F g
= F{WI[T(Cuo + Bxo) + 2] + 7o} -
Hence, z1 is Fl(r)-reachable from zg € kerV. The arbitrariness of zg,x; €
kerV shows that Fl(r)(RangU,Ioé) = kerV, for every z¢ € kerV.

Conversely, suppose that Fl(r)(RangU,m@) = kerV. Choosing z9 = 0,

zp = 0, we obtain FI(T)WTCU = kerV, thus kerC*T*W*(Flr))* = {0}. The
proof is completed. m

THEOREM 3.3. Suppose that the system (DS)g is F: fr)-controllable. Then this

system is Fér)-controllable for an arbitrary right initial operator FQ(T) € f‘(f ),

Proof. Let Fl(r) be a right initial operator for V corresponding to W; €
W‘l,, we get Fl(T)Wl = 0 on domW;. Moreover, for every z; € kerV and
w € domWyj, there exists zo € kerV such that ;7 = 12 + Fzr)Wlw. Since

the system (D.S)o is Fl(r)-controllable, for every xg, zo € kerV, there exists
a control u € U and z € ker(A — BW) such that

FI(T){W[T(C’U + Bzo) + z]) + 20} = 22,
or equivalently
W|[T(Cu+ Bzg) + 2] + zo=1z2 + Wiw, where wedomW), is arbitrary.
Hence,
F{O{W(T(Cu+ Bzo) + 2] + zo} = Fy" (z2 + Wyw)
=2+ FQ(T)Wlw = x.

Since the arbitrariness of zg,z; € kerV, the system (DS)g is FQ(T)-controll-
able. m

EXAMPLE 3.1. Suppose that X is the space (s) of all real sequences {z,},
n=20,1,2,... Let V, A, B € Lo(X) be defined by:

V{:Z:n} = {’Un}, Vo = V1 = O,’Un =Zn, N =2
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A{:En} = {an}a Ay = Tp + Tpyo, N = 0,1,2,3,a, = Tpy2, N 2 4;
B{z,} = {zn42},n=0,1,2, ...

It is completely checkable that VX # X, kerV = {{z,} : 2z, € R, 2, = 0,
n > 2} # {0} and VVV{z,} = V{z,}, thus V € W(X) and W =V € W},.
Therefore, the right initial operator F() for V corresponding to the almost
inverse W is defined by

Fl{za} = (I=WV){za} = {fa}, fo, L ER, fa=0,n>2.

The operator A differs from 0 and is non-invertible, since there exists
{zn} € X such that A{z,} # {0,0,0,...} and

kerA = {{zo, 21, —%0, —1, %0, 21,0,0,0, ...} : zo, 1 € R} # {0}.
Let
U={{un}:up € Rup =u; =0and u, =0,n >4}
and
C=al € Ly(U, X)
(where @ € R, # 0 and [ is an identity operator).
Now consider the system (DS)o:

(3.17) AVz =Bz +Cu, uel,
(3.18) Fz =3z, 7= {z),29,0,0,0,...} € kerV.
Since

(A - BW)I(A — BW){z,} = {z0, 21, 22,23,0,0,0,...} = (A — BW){z.},
the resolving operator A — BW is generalized invertible with T = I €
Wa_Bw.

In addition, ker(A — BW) = {{0,0,0,0,z4,7s5,26,...} : Tn € R, n =
4,5,6,..} and CU @ {BZo} C (A— BW)(ImV).
By the formula (3.4), the solution of the problem (DS)o is given by
(3.19) &(Zo,u) = W[T(Cu + Big) + 2] + Zo, z € ker(A — BW)
= Wlalu+ BZo + z} + Zo, z = {0,0,0,0, 24, 25, 26, ... }
= {20, 29, auy, aus, 24, 25, 26, .-} -
Write Wi{z,} = {yn}, %0 = T3, ¥1 = T2, Yn = Tn, 7 > 2, then W} € W}
Indeed,

VWiV{z,} =V{z,} and WiVW{z,} = Wi{z,}.
The right initial operator Fl(r) for V corresponding to W is defined by
FI(T){:L‘n} = (I - W1V){z,} = {z0 — 23,21 — 22,0,0,0,...}.
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Clearly, for every initial state Zg € kerV, there exist
' o = {0,0,29/a,28/,0,0,0,..} € U
and
Zo = {0,0,0,0, 22,22, 22, ...} € ker(A — BW)
such that
F{D® (g0, 1) = F\"{x§, 29, 2%, 23, 2, 28, 28, ...} = {0,0,0, .},

This means that the system (DS )0 is F{"-controllable to zero.

Moreover, for every 1':1 = {z}§,71,0,0,0,...} € kerV, there exists Zo = ;
and z; = {0,0,0,0,2},23,24,..} € ker(A BW) such that

FOW(TBzy + 7)) + 22) = 71
By Theorem 3.1, the system (DS)g is F( )_controllable.
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