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ON THE EQUATION ASSOCIATED WITH BOUNDED 
PARACONCAVE ENTROPIES 

Abstract. A paraconcave entropy function [2] is represented by a pair of two real 
functions of a real variable satisfying certain natural conditions. The subject of this paper 
is the functional equation, ¿ ( y \ f(pj)) = g(pj), that describes equivalence between 
two representations of a paraconcave entropy function with concave functions / and g sat-
isfying the condition for a bounded entropy. With the use of E-transforms of the functions 
/ and g we reduce the problem of solvability of the equation to the problem of injectivity of 
a certain nonlinear operator defined on the set of concave homeomorphisms of the interval 
[0,1] onto itself. Additionally, we prove some facts about concavity of the E-transform / . 

1. Introduction 
Let us denote by AN the set of components of a a complete probability 

distribution: 
(1.1) AN = {P = (P1,P2, • • • ,PN) I 0 < Pj < 1 a n d J ^ P j = !}• 

j 
Next, denote by A the respective union: 

oo 
(1.2) A = ( J A n -

N=1 
Given p = (PI,p2, • • • ,PN) € A, denote by |p| the sum of its components, 
that is 

(1-3) bl = l ( P i ) l = 5 > -
J 

Let fi be a subset of the real space Cr[0, 1] of continuous functions on the 
interval [0,1], defined by 
(1.4) i) = {/ € CR[0,1] | /(0) = /(1) = 0 and / is concave on [0,1]}. 
Next, let T denote the set of all homeomorphisms of the interval [0, oo) onto 
itself. It is clear that T is a group with respect to the composition of maps 
and that for every L 6 T, we have L(0) = 0. 
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Given maps f £ Cl and F € I \ define a map H : A —> [0, oo) by 

(1-5) H(p1,p2,...,pN) = F [ £ f f ( p j j . 
j 

The map H given by (1.5) is called a complete paraconcave entropy function 
[2] with the representatives / and F. Given two representations, ( / , F) and 
(g, G), of the paraconcave entropy H, we have the identity 

(1.6) ^ [ E / f o ) ] =G[Y,9(PJ)) for p = (i>i,P2, • • •,PN) £ A. 
j j 

In all of that follows we are assuming that the entropy functions under 
consideration are nontrivial and that, consequently, their representations 
consist of nonzero functions. The terms entropy and entropy function will 
be interchanged. 

The subject of this paper is the equation 

(1.7) L [ j 2 f ( P j ) ] for 0 < < 1, with 5 > , ) = 1, 
j j o 

where f,g € fi and L E T. The equation (1.7) is obtained from (1.6) by 
setting 

(1.8) L = G~1oF. 

The equations (1.6) and (1.7) are referred to as sum form equations and 
have quite a large literature, cf. [3], [5] or [6]. We would like to emphasize 
here that the number N that indicates how many terms appear on both 
sides of the equation (1.7) is an arbitrary natural number. This assumption 
may seem too strong. In this paper, however, we consider a sort of boundary 
case, the case of bounded entropies, described below, where a certain limit 
process is performed. To do so we need the number of terms in (1.7) to be 
infinite. Thus, the assumption about the range of N remains valid through 
all of that follows. 

Given / € fi, and a positive integer n, denote by /3n(/) and /3oo(f), the 
following two numbers: 

(1.9) /3n(/) = n / ^ , and 

(1.10) Poo(f) = s u p n / [ — ) = / ' ( 0+ ) (possibly extended). 
n \ n j 

The sequence {Pn(f)}^L\ given by (1.9) is nondecreasing [2]. If its limit is oo, 
that is, if Poa(f) = oo, we will say that the entropy given by a representative 
( f , F ) is unbounded; otherwise it is called bounded. The range of sums 
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f{Pj) in (1-5) equals the interval [0, oo), if the entropy is unbounded; 
and otherwise, if the entropy is bounded, then this range equals the closed 
interval [0, /3oo(/)] [4]. A particular case of bounded entropies is obtained by 
functions being linear around the origin. 
DEFINITION 1.1 [4]. A real function / defined in a right neighborhood of 
0 6 R is called germinally linear if there is a unique constant c(/) € R and 
a 5 > 0 such that the interval [0,5] is included in the neighborhood and 

(1.11) f(x) = c{f)x for all x € [0, S). 

An immediate consequence of the above definition is that for every function 
/ 6 which is germinally linear, the following identities hold: 

(1.12) n/^—^ = c(/) for sufficiently large n, and 

(1.13) Poo(f) = c ( f ) < oo. 

The following lemma will be used frequently in the sequel. 

LEMMA 1.1. If tp is a concave function on an open interval (a,b)and if 
x, y, x y ' are points of (a, b) with x < x' < y' and x < y < y', then 

Q 15x <p(y) ~ <p(x) > ¥>(y;) ~ 
y — x y' — x' 

P roof. It follows directly from Lemma 15 in [5] formulated there for convex 
functions. • 

The inequality (1.15) means that the chord over (x, y) has larger slope 
than the chord over (x',y'). If the inequality (1.15) is strict for all possible 
choices, the function (p is strictly concave. 

Given functions /, g € f2 and the sums ^ f(Pj) and Y1 d{Pj) °f their 
j j 

values at certain points pi, p2,..., pn, we will adopt the following convention 
to denote these sums: 
(1-16) = a n d 

j 

(1-17) 0S(P) = 
j 

When f € CI is fixed and p = (pi,p2, •••,?>«) 6 A is regarded as a variable, 
the formula (1.16) defines a nonnegative functional on a subset of A. The 
functional /s will be called the summation functional associated with the 
function /. It is well defined on the entire set A, if only Ax>(/) < oo [4]. 
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2. Algebraization of the entropy equation 
Let us consider the entropy equation (1.7), with unknown functions 

f,g 6 fi, and a homeomorphism L 6 T. Since the entropy is bounded, the 
numbers /?<»(/) and Poo(g), given by (1.10), are finite. Since the ranges of 
the summation functionals / s and g ,̂ are then the finite intervals [0, /3oo(/)] 
and [0, P00(g)], respectively, we will require only that the homeomorhism 
L of (1.7) maps the interval [0,/?oo(/)] onto the interval [0,Poo(g)], with 
L(0) = 0 and, consequently, L(/3oc(/)) = ¡3^(g). Such homeomorphisms 
will be called ordered homeomorphisms, and the set they form will be again 
denoted by I\ Respectively, denote by Clbnd, the set of all / € ii, satisfying 
Poo(f) < 00. 

Now, let / € fIbnd, t be any number in the interval [0,1], and n be any 
positive integer. Then, by (1.7), we get the following identity: 

(2.1) 
n 

= n g [ - ) + g ( l - t ) . 

Since limn-.oo n / ( ^ ) = t [4], if we let n —> 00 in (2.1) then we obtain the 
identity: 
(2.2) £[f/?oo(/) + / ( l - 0] = tPoo(g) + g(l-t), 0 < t < l . 
Let us rewrite the identity (2.1) to a form with two variables s and t: 

(2.3) 

where 0 < s, i < 1, s + i = 1, and n is a positive integer. If we let n 
(2.3) then we get the following identity: 

(2.4) - " 5 + t 

00 in 

- i i W , ^ ) ^ ) . 

Increasing the number of variables in (2.3) to an arbitrary m > 1 we get a 
general case 

(2.5) t i + t 2 + •••*»• 
m • / W / ) + 

i=i \ / J 

t i + i 2 + 
m • / M s ) + 

where 0 < ti, t 2 , . . . , tm < 1 and tx -f t2 + ... tm = 1. 
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Obviously, if L were linear, or even additive, then following any of the 
identities (2.2), (2.3), or (2.3), we would have that L(x) = cx with c = 
0oo(g)/Poo(f). 

DEFINITION 2.1. Given function / 6 Qbnd, the map / defined below, 

(2.6) f ( t ) = t p o o ( f ) + f ( l - t ) , for 0 < i < 1, 

will be called an E-transform of the function / , and the map that assigns to 
every function / € ftbnd its E-transform / will be called E-transformation, 
or just E-transform as well. 

COROLLARY 2.1. If the maps L, / , and g are solutions of the equation (1.7), 
then the maps L, f , and g satisfy the equation 

(2.7) Lof = g.m 

E-transforms are characterized by the following theorem. 

THEOREM 2.1. Assume that (i) / G fibn<i> o-nd (ii) / is not germinally lin-
ear. Then the map f is a concave homeomorhism of the intervals [0,1] and 
M o o ( / ) ] . 

P r o o f . Of course / is continuous, / (0) = 0, / (1) = /3oo(f), so the interval 
[0,/?«,(/)] is included in the range of the map / . Next, for 0 < t < 1, we 
have the following 

(2.8) 0 < f ( t ) = /U/)* + /(I -1) = (1 - 1 ) { + 

< (1 - i H / U / ) ^ + Poo(f)} = Poo(f). 

Therefore, the range of the map / equals the interval [0, Poo(f)]-
Now, we are going to show that the map / is a bijection. So, let 

0 < ¿i < ¿2 < 1. If f(h) = f(t2), then 

tiPoo(f) + /(I - h) = t2Poo(f) + /(I - ¿2). 

Therefore, 

/ ( l - t l ) - / ( l - t 2 ) = & o ( / ) ( t 2 - t l ) , 
and consequently, 

where 0 < ta = 1 - t2 < 1, and 0 < Ai = (1 - *i) - (1 - t2) = t2-tx. 
Since / is concave, but not germinally linear, we have 



406 Z. D u d e k 

The contradiction (2.11) proves that / must be a bijection. Concerning 
concavity of / , for 0 < t\ < i 2 < 1 and 0 < A < 1, we get the following. 

(2.11) /(Aii + (1 - A) t2) 

= / M / ) ( A i i + (1 ~ A)t2) + / ( I - (Ai! + (1 - \)t2)) 

= \Poo(f)h + (1 - A)/3oo(/)i2 + / (A(l - ix) + (1 - A)(l - i2)) 

> Af/M/)*! + / ( I - h)} + (1 - A)^OO(/)î2 + / ( I - t2)} 

= A/(t1) + ( l - A ) / ( t 2 ) . 

Thus the map / is a concave, continuous bijection of the interval [0,1] 
onto the interval [0,A»(/)]; obviously its inverse is also continuous. Hence, 
the map / is the required homeomorphism. • 

COROLLARY 2.2. For any f satisfying the assumptions of Theorem 2.1 we 
have 

(2.12) ( / ) ' ( ! - ) = / W / ) - / ' ( 0 + ) = 0. -

COROLLARY 2.3. The E-transformation f i-> / is a 1-1 correspondence be-
tween the sets: 

(TIQ) (2.13D) Q,bnd = { / E Qbnd f is not germinally linear}, and 

( 2 . 1 3 R ) ^concave = {<P E T : <p is concave and <p'(l~) = 0 } . . 

COROLLARY 2.4. The inverse map to the E-transformation, when defined on 
(2.13D), is the map rconcave 3 (p '—̂  (Ç^ G QtVCTl CIS follows? 

(2.14) <pY(t) = <p(l-t) + t<p(\)-<p(l), t E [0,1]. • 

COROLLARY 2.5. If the maps L, f , and g are solutions of the equation (1.7), 
and the functions f and g are not germinally linear, then 

(2.15) L = g o ( f ) ~ \ . 

The right hand side of the formula (2.15) is a composition of the function 
g and the inverse of the function / . 

Now, given functions / and g of the entropy equation (1.7) consider their 
symmetrizations : 

(2.16a) f~{p) = f(p) + / ( I - p), for p E [0,1]; 

(2.16b) g~(p)=9(p) + 9(l-p), for PE [0,1]. 

In view of the equation (1.7), we get another (algebraic) equation for L: 

(2.17) Lof~=g~. 



Bounded paraconcave entropies 407 

In the next section we are going to use equations (2.15) and (2.17) in a 
more symmetric setting regarding the functions L, / , and g, and solve them 
for L. 

3. Normal izat ion of the entropy equat ion 
Let us consider again the equation (1.7) with the unknown functions L, 

/ , g. We assume that the functions / and g are not germinally linear (in 
fact, it suffices to assume that one of them is not germinally linear) and that 
the numbers Ax>(/) and Poo(g) are finite. Consider the following functions: 

(3-1-a) f*(p) = £?L, for pe [0,1]; 

(3.1.6) g#{p) = JiM- for pe [0,1]; 
Poo (g) 

(3.1.c) L*(u) = - J — L ^ o o i / ) « ) , for u e [0,1], 
Poo [9) 

Of course, the reverse formulas hold: 

(3.2.o) f(P) = / M / ) / # ( p ) , for p e [0,1]; 

(3.2.6) g{p) = Poo (g)g*(p), for p e [0,1]; 

(3.2.c) L(x) = for s e [ 0 , & c ( / ) ] . 

Then all three functions and are defined on the interval [0,1], 
the range of is [0,1], and the range of the summation functionals corre-
sponding to the functions and g# is again the interval [0,1] (for both). 
Therefore the equation (1.7) is equivalent to the following one: 

(3.3) L* = f o r 0 ^ 1, with J 2 ( P j ) = 1. 
j j j 

The equation (3.3) will be called a normalization of the equation (1.7), and 
the three functions , , and , the normalized versions of the functions 
L, / , and g, respectively. It is clear that the operations of symmetrization 
and normalization are commutative. From now on we will consider only the 
equation (3.3), where, for the sake of simplicity, we will replace the map 
with L, and the functions and g* with / and g, like in the original 
equation (1.7). This time, however, L denotes an ordered homeomorphism 
of the interval [0,1] onto itself ( so that L(0) = 0 and L(l) = 1); all such 
homeomorphisms form a group, which will be again denoted by P. Now, 
both the numbers Poo(f) and ¡3oo(g) are equal 1 and the ranges of the 
summation functionals / e and g-£ are also equal the interval [0,1]. That is, 
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the equation (3.3) again becomes 

L[T,f(pj)] = E ^ ) f o r o < P,- < i, with = i. 
3 3 3 

with the functions L, f , and g satisfying the above conditions. 
The symmetrization of the functions / and g leads to the functions 

and g~, which are nondecreasing on the interval [0, and nonincreasing on 
the interval 0]. If the functions / and g are strictly concave, then the 
functions and g~ are increasing on the interval [0, and decreasing on 
the interval [5,0]. Thus we get the following 

PROPOSITION 3.1. If the functions L, f , and g are solutions of the equation 
of (3.4) and the functions / , g are not germinally linear, then 

(3.5) L = go ( f ) ~ \ where L, g, f € T; 

(3.6) L(x)=g~o(r)-l(x), for x € [0,2/( | )] . 

The equation (3.5) is an (algebraic) equation in the group T of ordered 
homeomorhisms of the interval [0,1]. The equation (3.6) gives L only on a 
subinterval via symmetrizations and g~. a 

In a normalized case and with the function / not being germinally linear, 
the E-transform of the function / is an ordered and concave homeomorphism 
of the interval [0,1] onto itself. For such maps the following proposition 
holds. 

PROPOSITION 3.2. Let ip be an ordered and concave homeomorphism of the 
interval [0,1] onto itself different from the identity map id. Then 

(3.7) lim <pn(x) = 1, for all x e (0,1). 
n—»00 

P r o o f . Let ¡p be an ordered homeomorphism of [0,1] onto itself that is 
concave and x € (0,1). Since <¿>(0) = 0 and <¿>(1) = 1, we have 0 < tp(x) < 1. 
Next, by concavity of <p, we have ^ ^ > ^ ^ = 1, so that <p(x) > x. 
Therefore, 1 > <pn(x) = <p(<pn~l(x)f> <pn~^(x) for all n > 1. Thus 
the sequence {ipn(x)} converges to a certain y € (x, 1], for which we have 
ip(y) = y?(limn,_>00 <pn(x)) — limn-,.00 <pn+l(x) = y. It follows that y must be 
equal 1. Otherwise we would get a contradiction 

1 = m . > m = 1 . u 

y 1 
Let us now rewrite formula (2.17) to the normalized case 

(3.7) LPrv iv 
°J =9 • 
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Combining formulas (3.5) and (3.7) we obtain 

(3.8) 9 ° { f r 1 o r = g~. 

Separating terms that depend only on one of the functions, / or g, we arrive 
at 

(3.9) ( f ) - 1 ° r = (9) - 1 og~. 

Now, we are in a position to obtain an operator equation involving the 
El-transforms / and g only. 

PROPOSITION 3.3. If the functions L, f , and g are solutions of the equation 
(3.4) and the functions f , g are not germinally linear, then 

(3.10) ( / )-1( /(<) + / ( l - i ) - l ) = ( 5 ) - 1 ( 5 ( i ) + 3 ( l - i ) - l ) , i€[0 ,1] . 

P r o o f . Following definition (2.6) of the E-transform and its inverse (2.14), 
adapted to the normalized case, we obtain 

(3.11) f ( l - t ) = f ( t ) - t , t G [0,1], 
(3.12) / ( t ) = / ( l - t ) + t - l , t G [0,1], and 
(3.13) r ( t ) = f(t) + /(1 - t) - 1, t G [0,1], 
Therefore, the equation (3.9) becomes (3.10). • 

Now, denote by rconcave the set of all concave ordered homeomorphisms 
of the interval [0,1] onto itself, and define an operator : Tcor icave —> 
Ck[0, 1], by setting 

(3.14) *(F)(t) = F~1(F(t)+F(l-t)-l), fori G [0,1], and FeTconcave. 

If the operator of (3.14) is 1-1, then the map L of (3.5), and consequently 
of (1.7), must be linear. It is clear that if F is linear then its image ^(F) is 
0. The map is nonlinear. The function ^b(F) may be viewed as a sort of 
measure of nonlinearity (concavity) of F. 

4. The case of germinally linear entropies 
Let us now consider the case when the function / in the equation (1.7) 

is germinally linear. The function g must be germinally linear either as is 
evident from the following proposition. 

PROPOSITION 4.1. Let the functions L,f, and g satisfy the equation (1.7) 
with the function f being germinally linear. Then the function g is germinally 
linear as well. 

P r o o f . Assume that there is a 0 < 5 < 1 and c > 0 such that for each 
0 < x < 6, f(x) — ex. Then for every selection of 0 < Pi,P2, • • • ,Pn < ^ with 
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^ZjPj = 1) w e have Yhj 9(Pj) = -^[c] = const. Thus, the sequence is 
also constant for n > 1/8, and consequently g(x) = L(c)x, for 0 < x < 6. u 
PROPOSITION 4.1. Let the function f £ Q be germinally linear. Then its 
E-transform f f is constant for t close to 1. 

P r o o f . Let 0 < d < 1 denote the length of a maximal interval on which 
f(x) is linear, 

(4.1) d = max{0 < 5 \ f(x) = /?oo(/)z for all 0 < i < <5 < 1}. 

Then for all t £ (1 — d, 1] we have 

(4.2) f ( t ) = + / ( I - t) = / W f ) ( t + (1 - t)) = P ^ i f ) . . 

Therefore, in this case, the E-transform / is not a homeomorphism of the 
whole interval [0,1] onto the interval [0, fioo(f)]- However, the map / , when 
restricted to the interval [0,1 — ci], with d as in (4.1), and still denoted by 
/ is a homeorphism (of the intervals [0,1 — d] and [O,/?^(/)]). With this 
reservation in mind we can write a formula corresponding to (2.7) 

(4.3) L = g o ( f ) ~ \ 

The normalization and symmetrization for germinally linear functions work 
the same as for non germinally linear, so the other formulas for solutions 
of the equation (1.7) hold as well. In particular, we have the analogs of 
formulas (3.7)-(3.10), which express the map L in terms of the functions / 
and g. 

5. Conclusions 
The method used in [4] to prove that the map L in the entropy equation 

(1.7) is linear (the case of complete unbounded entropies) relied strongly on 
the fact that the range of the summation functional / s is equal to the infinite 
interval [0, oo), which followed from the fact that limn^oo n f ( ^ ) = oo. This 
is not true for the bounded entropies and that is why we did algebraization 
of the equation and ended with the operator (3.14) defined on the set of 
ordered and concave homeomorphisms of the interval [0,1] onto itself. This 
operator is highly nonlinear. However, if it is injective, then the map L of 
(1.7) must be linear. We leave the issue of injectivity of the operator (3.14) 
to another paper. 
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