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ON THE EQUATION ASSOCIATED WITH BOUNDED
PARACONCAVE ENTROPIES

Abstract. A paraconcave entropy function [2] is represented by a pair of two real
functions of a real variable satisfying certain natural conditions. The subject of this paper
is the functional equation, L(Ej fpy)) = Zj 9(p;), that describes equivalence between
two representations of a paraconcave entropy function with concave functions f and g sat-
isfying the condition for a bounded entropy. With the use of E-transforms of the functions
f and g we reduce the problem of solvability of the equation to the problem of injectivity of
a certain nonlinear operator defined on the set of concave homeomorphisms of the interval
[0, 1] onto itself. Additionally, we prove some facts about concavity of the E-transform f.

1. Introduction
Let us denote by An the set of components of a a complete probability
distribution:

(11) AN = {p = I(P17P2a i 'apN) l 0 < Pj < 1 and ij = 1}
Next, denote by A the respective union: ’
(1.2) A= | An.

N=1

Given p = (p1,p2,...,PN) € A, denote by |p| the sum of its components,
that is

(1.3) lpl = |(pj)| = ij'

Let € be a subset of the real space Cg|0, 1] of continuous functions on the
interval [0, 1], defined by
(14) Q={fe€Cr[0,1]] f(0) = f(1) =0 and f is concave on [0,1]}.

Next, let I" denote the set of all homeomorphisms of the interval [0, co) onto
itself. It is clear that I" is a group with respect to the composition of maps
and that for every L € ', we have L(0) = 0.
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Given maps f € Q and F €T, define a map H : A — [0,00) by
J

The map H given by (1.5) is called a complete paraconcave entropy function
[2] with the representatives f and F. Given two representations, (f, F') and
(9, G), of the paraconcave entropy H, we have the identity

(1.6) F[Z f(pj)] = G[Zg(pj)] for p = (p1,p2, ...,PN) € A.

In all of that follows we are assuming that the entropy functions under
consideration are nontrivial and that, consequently, their representations
consist of nonzero functions. The terms entropy and entropy function will
be interchanged.

The subject of this paper is the equation

(1.7) L[Zf(pj)] =Y g(p;), for 0<p; <1, with 3 (p;) =1,

J J J
where f,g € Q and L € T'. The equation (1.7) is obtained from (1.6) by
setting

(1.8) L=G 'oF

The equations (1.6) and (1.7) are referred to as sum form equations and
have quite a large literature, cf. [3], [5] or [6]. We would like to emphasize
here that the number N that indicates how many terms appear on both
sides of the equation (1.7) is an arbitrary natural number. This assumption
may seem too strong. In this paper, however, we consider a sort of boundary
case, the case of bounded entropies, described below, where a certain limit
process is performed. To do so we need the number of terms in (1.7) to be
infinite. Thus, the assumption about the range of N remains valid through
all of that follows.

Given f € Q, and a positive integer n, denote by 3,(f) and Boo(f), the
following two numbers:

(19) Bul$) =nf(3), and

(1.10) Boo(f) = sgpnf(%) = f'(0+) (possibly extended). |

The sequence {8, (f)}32, given by (1.9) is nondecreasing [2]. If its limit is oo,
that is, if Boo(f) = 00, we will say that the entropy given by a representative
(f, F) is unbounded; otherwise it is called bounded. The range of sums
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> i (pj) in (1.5) equals the interval [0,00), if the entropy is unbounded,;
and otherwise, if the entropy is bounded, then this range equals the closed
interval [0, Boo(f)] [4]. A particular case of bounded entropies is obtained by
functions being linear around the origin.

DEFINITION 1.1 [4]. A real function f defined in a right neighborhood of
0 € R is called germinally linear if there is a unique constant ¢(f) € R and
a § > 0 such that the interval [0, §] is included in the neighborhood and

(1.11) f(z) = ¢(f)z for all z € [0, ).
An immediate consequence of the above definition is that for every function

f € Q which is germinally linear, the following identities hold:

(1.12) nf(%) = ¢(f) for sufficiently large n, and

(1.13) Boo(f) = ¢(f) < o0

The following lemma will be used frequently in the sequel.

LEMMA 1.1. If ¢ is a concave function on an open interval (a,b)and if
z,y,z',y are points of (a,b) withz <2/’ <y'and z <y < ¢/, then

_ "N ’
(1.15) ply) — o(2) | ey) —p(z)

y—-z = Y-

Proof. It follows directly from Lemma 15 in {5] formulated there for convex
functions. =

The inequality (1.15) means that the chord over (z,y) has larger slope
than the chord over (2/,y’). If the inequality (1.15) is strict for all possible
choices, the function ¢ is strictly concave.

Given functions f, g € © and the sums Z f(p;) and Zg(pj) of their

values at certain points pq, pa, . ,pn, we will adopt the followmg convention
to denote these sums:
(1.16) fe(p) =) f(p;), and
J
(1.17) gs(p) = _ 9(p;)-
J

When f € Q is fixed and p = (p1,p2,-..,Pn) € A is regarded as a variable,
the formula (1.16) defines a nonnegative functional on a subset of A. The
functional fy will be called the summation functional associated with the
function f. It is well defined on the entire set A, if only 8 (f) < oo [4].
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2. Algebraization of the entropy equation

Let us consider the entropy equation (1.7), with unknown functions
f,g € 81, and a homeomorphism L € I'. Since the entropy is bounded, the
numbers B (f) and B(g), given by (1.10), are finite. Since the ranges of
the summation functionals fy and gs are then the finite intervals [0, oo (f)]
and [0, B0(9)], respectively, we will require only that the homeomorhism
L of (1.7) maps the interval [0, Boo(f)] onto the interval {0, Boo(g)], with
L(0) = 0 and, consequently, L(Bs(f)) = Boo(g). Such homeomorphisms
will be called ordered homeomorphisms, and the set they form will be again
denoted by I'. Respectively, denote by 4,4, the set of all f € §, satisfying
Boo(f) < 00.

Now, let f € Qpnq, t be any number in the interval [0, 1], and n be any
positive integer. Then, by (1.7), we get the following identity:

2.1) L[nf(%) + 51— t)] - ng( ) +g(1—1).

Since lim, oo nf(£) =t [4], if we let n — oo in (2.1) then we obtain the
identity:

(22)  Llthoolf) + (1= 1)] = thoo(g) +9(1 1), 0<E<L
Let us rewrite the identity (2.1) to a form with two variables s and ¢:

e 1fo3) () (52) (5
o) () o159 (15

where 0 < s,t <1, s+t =1, and n is a positive integer. If we let n — oo in
(2.3) then we get the following identity:

e L[ +1(150) + ()]

s+t,3°°(g)+g<12 )+g(1;t).

Increasing the number of variables in (2.3) to an arbitrary m > 1 we get a
general case

(2.5) L[t‘ that ot () +Zf(
EL'-t2_-+.‘_—“Boo(g) + Zg(

j=1

whereOStl,tz,...,tmgla.ndt1+t2+.. m = 1.
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Obviously, if L were linear, or even additive, then following any of the
identities (2.2), (2.3), or (2.3), we would have that L(z) = cz with ¢ =

Boo(9)/ Boo ()

DEFINITION 2.1. Given function f € 4,4, the map f defined below,
(2:6) £(8) = tBoo(f) + f(1 - 1), for0<t<1,
will be called an E-transform of the function f, and the map that assigns to

every function f € Qg its E-transform f will be called E-transformation,
or just E-transform as well.

COROLLARY 2.1. If the maps L, f, and g are solutions of the equation (1.7),
then the maps L, f, and § satisfy the equation
(2.7) Lof=g. n

E-transforms are characterized by the following theorem.

THEOREM 2.1. Assume that (1) f € Qond, and (ii) f is not germinally lin-
ear. Then the map f is a concave homeomorhism of the intervals [0,1] and

Proof. Of course f is continuous, f(0) = 0, f(1) = Boo(f), so the interval

[0, Boo(f)] is included in the range of the map f. Next, for 0 < t < 1, we
have the following

(2.8) 0<f(t)=,600(f)t+f(1—t)=(l_t){ﬁw(‘f)lit f(11—_tt22)}
t

< (= t{Boo(f) 75 *+ P ()} = Boo(S).

Therefore, the range of the map f equals the interval [0, Boo ()]-

Now, we are going to show that the map f is a bijection. So, let
O<ti <ty < 1. If f(tl) = f(tg), then

t18e0(f) + F(1 = £1) = t2B0o(f) + F(1 — t2).

Therefore,

FA=t1) = f(1 —t2) = Boo(f)(t2 — t1),
and consequently,
f{to + At) — f(to)
(2.9) Bo(f) = Tt ),

where 0<t,=1—-t3<l,and 0< At=(1—t1))— (1 —t2) =ta—t;.
Since f is concave, but not germinally linear, we have

Q1) pu(p = LEEAIIE) SISO g
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The contradiction (2.11) proves that f must be a bijection. Concerning
concavity of f, for 0 < t; <t2 <1 and 0 < X <1, we get the following.

(211)  fO 4 (1= Nitg)
= Boo (f)(At1 + (1 = A)t2) + f(1 — (A1 + (1 = A)t2))
= Moo(f)t1 + (1 = N)Boo(Hta + F(M1 = t1) + (1 = A)(1 — t2))
2 MBoo(f)tr + f(1 = t1)] + (1 = A)[Boo()t2 + f(1 — 12)]
= )‘f(tl) + (1= N)f(t2).

Thus the map f is a concave, continuous bijection of the interval [0, 1]
onto the interval [0, Boo(f)]; obviously its inverse is also continuous. Hence,
the map f is the required homeomorphism. =

COROLLARY 2.2. For any [ satisfying the assumptions of Theorem 2.1 we
have

(2.12) (f)(1=) = Boo(f) = f/(0+) = 0. w

COROLLARY 2.3. The E-transformation f f is a 1-1 correspondence be-
tween the sets:

(2.13D) Ql(,:fi) = {f € Qpna : [ is not germinally linear}, and
(2.13R) r(n9) = {pel: ¢ is concave and ¢'(1-) = 0}. m

COROLLARY 2.4. The inverse map to the E-transformation, when defined on
(2.13D), is the map ng,gl)cave dSprrpTE QI(JZZ), given as follows:

(2.14) e (t) =1 =) +tp(l) —p(1), te[0,1]. =

COROLLARY 2.5. If the maps L, f, and g are solutions of the equation (1.7),
and the functions f and g are not germinally linear, then

(2.15) L=go(f)™ . u

The right hand side of the formula (2.15) is a composition of the function
g and the inverse of the function f.

Now, given functions f and g of the entropy equation (1.7) consider their
symmetrizations:

(2.16a) f~(p)=fp)+ f(1-p), forpe(0,1];
(2.16b) 97 (p)=g(p) +9(1-p), forpe(0,1].
In view of the equation (1.7), we get another (algebraic) equation for L:

(2.17) Lof~=g".
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In the next section we are going to use equations (2.15) and (2.17) in a

more symmetric setting regarding the functions L, f, and g, and solve them
for L.

3. Normalization of the entropy equation

Let us consider again the equation (1.7) with the unknown functions L,
f, g. We assume that the functions f and g are not germinally linear (in
fact, it suffices to assume that one of them is not germinally linear) and that
the numbers B (f) and B.(g) are finite. Consider the following functions:

f(p)

a # = or .

# _ g(p) or .
C # u)= ; u or u .
Ble)  L*@)= g LBe(f),  forue (0,1

Of course, the reverse formulas hold:

(3.2.0) f(®) = Boo(f) f#(p), forpe[0,1];

(3.2.b) 9(p) = Boo(9)9% (p),  for p € [0,1];
x

(3.2.c) L(z) = foo(9)L¥ (7—5),  for z € [0, Boo(f)].

Boo(f)
Then all three functions L#, f#, and g# are defined on the interval [0, 1],
the range of L# is [0, 1}, and the range of the summation functionals corre-
sponding to the functions f# and g# is again the interval {0, 1] (for both).
Therefore the equation (1.7) is equivalent to the following one:

(3.3) L#[Zf#(pj)] = Zg#(m) for 0 <p; <1, with Z(PJ’) =1

J

The equation (3.3) will be called a normalization of the equation (1.7), and
the three functions L#, f#, and g# , the normalized versions of the functions
L, f, and g, respectively. It is clear that the operations of symmetrization
and normalization are commutative. From now on we will consider only the
equation (3.3), where, for the sake of simplicity, we will replace the map L#
with L, and the functions f# and g# with f and g, like in the original
equation (1.7). This time, however, L denotes an ordered homeomorphism
of the interval [0,1] onto itself ( so that L(0) = 0 and L(1) = 1); all such
homeomorphisms form a group, which will be again denoted by I'. Now,
both the numbers Bo(f) and Bo(g) are equal 1 and the ranges of the
summation functionals fy and gy are also equal the interval [0, 1]. That is,
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the equation (3.3) again becomes

L[Zf(pj)] = g(p;) for 0<p; <1, with » (p;) =1.
J J J
with the functions L, f, and g satisfying the above conditions.

The symmetrization of the functions f and g leads to the functions f~
and g™, which are nondecreasing on the interval [0, 3] and nonincreasing on
the 1nterval [1,0]. If the functions f and g are stnctly concave, then the
functions f~ and g™ are increasing on the interval [0, 2] and decreasing on
the interval [1, 0]. Thus we get the following

PRrOPOSITION 3.1. If the functions L, f, and g are solutions of the equation
of (3.4) and the functions f, g are not germinally linear, then

(3.5) L=go(f)™!, where L,j,f €T;
(36) L(x) =g~ o () (&), for = € [0,21(3)]

The equation (3.5) is an (algebraic) equation in the group I' of ordered
homeomorhisms of the interval [0, 1]. The equation (3.6) gives L only on a
subinterval via symmetrizations f~ and ¢g™.

In a normalized case and with the function f not being germinally linear,
the E-transform of the function f is an ordered and concave homeomorphism

of the interval [0,1] onto itself. For such maps the following proposition
holds.

PROPOSITION 3.2. Let ¢ be an ordered and concave homeomorphism of the
interval [0, 1) onto itself different from the identity map id. Then

(3.7) lim ¢™(z) =1, for all z € (0,1).
n—00

Proof. Let ¢ be an ordered homeomorphism of {0,1] onto itself that is
concave and z € (0,1). Since ¢(0) = 0 and ¢(1) = 1, we have 0 < p(z) < 1.
Next, by concavity of ¢, we have £ J—l 1) = 1, so that e(z) > =z.
Therefore 1> p™(z) = (e~ 1(:1:)) > go"‘ (x) for all n > 1. Thus
the sequence {¢™(z)} converges to a certain y € (z,1], for which we have
©(y) = e(limy 00 ™ (z)) = limp 00 "1 (z) = y. It follows that y must be
equal 1. Otherwise we would get a contradiction

=@ ey,
Y 1
Let us now rewrite formula (2.17) to the normalized case

(3.7) Lo f~=g"~.
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Combining formulas (3.5) and (3.7) we obtain
(38) go(fytof =g~

Separating terms that depend only on one of the functions, f or g, we arrive
at

(3.9) (N rof =@ og™

Now, we are in a position to obtain an operator equation involving the
E-transforms f and § only.

PROPOSITION 3.3. If the functions L, f, and g are solutions of the equation
(3.4) and the functions f, g are not germinally linear, then

(310) (H'U®)+Ff1-t)-1) =@ @B +91 -1 ~1), te[o1].

Proof. Following definition (2.6) of the E-transform and its inverse (2.14),
adapted to the normalized case, we obtain

~

(3.11) f=-t)=f(t)—-t, te[01],
(3.12) f)=fa-t)+t-1, te[0,1], and
(3.13) e =Ffo+fa-9-1,  tefo1).

Therefore, the equation (3.9) becomes (3.10). =

Now, denote by I'concave the set of all concave ordered homeomorphisms
of the interval [0,1] onto itself, and define an operator ¥ : Iconcave —
CRr[0, 1], by setting

(3.14) ¥(F)(t) = F"Y(F(t)+F(1—t)~1), forte [0,1],and F € Cconcave-

If the operator ¥ of (3.14) is 1-1, then the map L of (3.5), and consequently
of (1.7), must be linear. It is clear that if F is linear then its image ¥(F') is
0. The map V¥ is nonlinear. The function ¥(F') may be viewed as a sort of
measure of nonlinearity (concavity) of F.

4. The case of germinally linear entropies

Let us now consider the case when the function f in the equation (1.7)
is germinally linear. The function g must be germinally linear either as is
evident from the following proposition.

PROPOSITION 4.1. Let the functions L, f, and g satisfy the equation (1.7)
with the function f being germinally linear. Then the function g is germinally
linear as well.

Proof. Assume that there is a 0 < § < 1 and ¢ > 0 such that for each
0 <z <4, f(x) = cx. Then for every selection of 0 < p;,pa,...,pn < § with
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>_;pj =1, wehave ). g(p;) = Llc] = const. Thus, the sequence {ng(1)}is
also constant for n > 1/4, and consequently g(z) = L(c)z, for 0 <z < 4. =

PROPOSITION 4.1. Let the function f € S be germinally linear. Then its
E-transform ff is constant for t close to 1.

Proof. Let 0 < d < 1 denote the length of a maximal interval on which
f(z) is linear,

(4.1) d=max{0<d| f(z) = Poc(f)x forall 0 <z < § < 1}.
Then for all t € (1 — d, 1] we have

(4.2) F(t) = tBoo(f) + f(1 = 1) = Boo(f)(t+ (1 — 1)) = Boo(f)- m
Therefore, in this case, the E-transform f is not a homeomorphism of the
whole interval [0, 1] onto the interval {0, 8o (f)]. However, the map f, when
restricted to the interval [0,1 — d], with d as in (4.1), and still denoted by
f is a homeorphism (of the intervals [0,1 — d] and [0, Boo(f)]). With this
reservation in mind we can write a formula corresponding to (2.7)

(4.3) L=go(f)™

The normalization and symmetrization for germinally linear functions work
the same as for non germinally linear, so the other formulas for solutions
of the equation (1.7) hold as well. In particular, we have the analogs of
formulas (3.7)-(3.10), which express the map L in terms of the functions f
and g.

5. Conclusions

The method used in [4] to prove that the map L in the entropy equation
(1.7) is linear (the case of complete unbounded entropies) relied strongly on
the fact that the range of the summation functional fy is equal to the infinite
interval [0, 00), which followed from the fact that lim,_,oo nf(%) = 0o. This
is not true for the bounded entropies and that is why we did algebraization
of the equation and ended with the operator (3.14) defined on the set of
ordered and concave homeomorphisms of the interval [0,1] onto itself. This
operator is highly nonlinear. However, if it is injective, then the map L of
(1.7) must be linear. We leave the issue of injectivity of the operator (3.14)
to another paper.
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